- home
- Advanced Search
- Energy Research
- 2021-2025
- health sciences
- Energy Research
- 2021-2025
- health sciences
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Springer Science and Business Media LLC Žganjar, Mia; Ogrizović, Mojca; Matul, Mojca; Čadež, Neža; Gunde-Cimerman, Nina; González-Fernández, Cristina; Gostinčar, Cene; Tomás-Pejó, Elia; Petrovič, Uroš;AbstractConverting waste into high-value products promotes sustainability by reducing waste and creating new revenue streams. This study investigates the potential of diverse yeasts for microbial oil production by utilizing short-chain fatty acids (SCFAs) that can be produced from organic waste and focuses on identifying strains with the best SCFA utilisation, tolerance and lipid production. A collection of 1434 yeast strains was cultivated with SCFAs as the sole carbon source. Eleven strains emerged as candidates with promising growth rates and high lipid accumulation. Subsequent fermentation experiments in liquid SCFA-rich media, which focused on optimizing lipid accumulation by adjusting the carbon to nitrogen (C/N) ratio, showed an increase in lipid content at a C/N ratio of 200:1, but with a concurrent reduction in biomass. Two strains were characterized by their superior ability to produce lipids compared to the reference strain Yarrowia lipolytica CECT124: Y. lipolytica EXF-17398 and Pichia manshurica EXF-7849. Characterization of these two strains indicated that they exhibit a biotechnologically relevant balance between maximizing lipid yield and maintaining growth at high SCFA concentrations. These results emphasize the potential of using SCFAs as a sustainable feedstock for oleochemical production, offering a dual benefit of waste valorisation and microbial oil production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-65150-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-65150-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Wiley Authors: Carlos Castillo‐Saldarriaga; Christine N. S. Santos; Stephen Sarria; Parayil K. Ajikumar; +1 AuthorsCarlos Castillo‐Saldarriaga; Christine N. S. Santos; Stephen Sarria; Parayil K. Ajikumar; Ralf Takors;ABSTRACTYeast extract (YE) is a complex nutritional source associated with high performance on microbial production processes. However, its inherent compositional variability challenges its scalability. While prior efforts have focused on growth‐associated products, the dynamics of growth‐uncoupled production, which leads to higher production rates and conversion yields, still need to be explored. This production scenario is common in large‐scale applications. This study presents a systematic approach to replace YE for the production of the terpene amorpha‐4,11‐diene in Escherichia coli. Sequential processing was successfully applied to identify glutamic acid, alanine, leucine, valine, isoleucine and glycine as the key amino acids (AAs) under slow‐growth conditions. Thoroughly applying biomass retention as part of sequential processing increased production capacity by 45% using these AAs instead of YE. Further studies, including flux balance analyses, targeted pyruvate as the common AA precursor. The optimized fed‐batch process feeding pyruvate with 0.09 gPyr h−1 enhanced amorpha‐4,11‐diene production by 37%, although adding only 1% carbon via pyruvate. Flux balance analysis revealed the criteria for optimum pyruvate feeding, for example, to prevent succinate secretion and maintain the NADH/NAD+ balance. These findings illustrate the interplay between media composition and metabolic activity and provide a successful guideline for identifying lean, best‐performing media for industrial applications.
Microbial Biotechnol... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1751-7915.70056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Microbial Biotechnol... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1751-7915.70056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:The Royal Society Authors: Sean C. Lema; J. Adam Luckenbach; Yoji Yamamoto; Madeline J. Housh;Reproduction in fishes is sensitive to temperature. Elevated temperatures and anomalous ‘heat waves’ associated with climate change have the potential to impact fish reproductive performance and, in some cases, even induce sex reversals. Here we examine how thermal sensitivity in the hormone pathways regulating reproduction provides a framework for understanding impacts of warmer conditions on fish reproduction. Such effects will differ depending on evolved variation in temperature sensitivity of endocrine pathways regulating reproductive processes of sex determination/differentiation, gametogenesis and spawning, as well as how developmental timing of those processes varies with reproductive ecology. For fish populations unable to shift geographical range, persistence under future climates may require changes in temperature responsiveness of the hormone pathways regulating reproductive processes. How thermal sensitivity in those hormone pathways varies among populations and species, how those pathways generate temperature maxima for reproduction, and how rapidly reproductive thermal tolerances can change via adaptation or transgenerational plasticity will shape which fishes are most at risk for impaired reproduction under rising temperatures. This article is part of the theme issue ‘Endocrine responses to environmental variation: conceptual approaches and recent developments’.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2024 . Peer-reviewedData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2024Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2022.0516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2024 . Peer-reviewedData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2024Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2022.0516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Ashutosh Tiwari; Chiu-Wen Chen; Dibyajyoti Haldar; Anil Kumar Patel; Cheng-Di Dong; Reeta Rani Singhania;doi: 10.3390/app13084673
Biorefinery has emerged in recent years as an alternative to petrorefinery, as biofuels have all the potential to replace fossil fuels for the sustainable development of human society. From this aspect, lignocellulosic biomasses are the most important, since these are the most abundant ubiquitous most raw material on earth, which can be converted into biofuels such as bioethanol, biobutanol, biohydrogen, biogas, etc. There are several strategies for conversion, such as biochemical, thermochemical, and microbial conversions of biomasses to biofuels; however, each of the strategies has its own consequences. Enzymatic conversion of biomasses into sugars, and thereby into bioethanol, is considered as the most sustainable way. However, biomass recalcitrance to enzymatic hydrolysis is the biggest challenge, as cellulose, hemicellulose, and lignin are intricately attached to each other making their separation a tedious task. Pretreatment is necessary to partially remove or change the form of lignin to make cellulose and hemicellulose accessible to enzymes. Most of the pretreatment methods are designed to target lignin, as it is the major component responsible for recalcitrance nature of biomasses. Laccase is a versatile lignin-degrading or lignin-modifying enzyme which is secreted by filamentous fungi and bacteria, and is reported for the biological pretreatment of biomasses, which is the most sustainable way of pretreatment. However, the rate of the reaction is extremely slow making it less attractive. This article will give an insight into the biorefinery of biomasses, with the special significance to laccase.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app13084673&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app13084673&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Authors: Hao Wang; Guohua He;doi: 10.1002/rvr2.7
AbstractRivers are basic natural resources supporting ecosystems and human societies, and the health of rivers is crucial to the Earth's sustainable development. Under the profound influence of climate change and human activities, great changes have recently occurred in the circulation and development of rivers, as well as the ways in which they are utilized. In this context, achieving an effective balance between river protection and human development is necessary. In this paper, the essential role of rivers is discussed from three aspects: the formation and evolution of rivers, the shaping of biodiversity, and the cultivation of human civilization. The paper analyzes the challenges brought to the sustainable development of rivers by climate change, human activities, and increased water demand, and proposes four dimensions of future research: scientifically balancing the relationship between river development and protection, improving the adaptability of river development and utilization in the context of climate change, improving the integrity and intelligence level of river management, and building a more fair and sustainable comprehensive river management model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/rvr2.7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/rvr2.7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Review , Journal 2021 NetherlandsPublisher:Springer Science and Business Media LLC Nerve Zhou; Karl Rumbold; Anita Ejiro Nwaefuna; Teun Boekhout; Teun Boekhout;pmid: 33827664
pmc: PMC8028181
AbstractBioethanol from abundant and inexpensive agricultural and industrial wastes possesses the potential to reduce greenhouse gas emissions. Bioethanol as renewable fuel addresses elevated production costs, as well as food security concerns. Although technical advancements in simultaneous saccharification and fermentation have reduced the cost of production, one major drawback of this technology is that the pre-treatment process creates environmental stressors inhibitory to fermentative yeasts subsequently reducing bioethanol productivity. Robust fermentative yeasts with extreme stress tolerance remain limited. This review presents the potential of dung beetles from pristine and unexplored environments as an attractive source of extremophilic bioethanolic yeasts. Dung beetles survive on a recalcitrant lignocellulose-rich diet suggesting the presence of symbiotic yeasts with a cellulolytic potential. Dung beetles inhabiting extreme stress environments have the potential to harbour yeasts with the ability to withstand inhibitory environmental stresses typically associated with bioethanol production. The review further discusses established methods used to isolate bioethanolic yeasts, from dung beetles.
Universiteit van Ams... arrow_drop_down Biotechnology for BiofuelsArticle . 2021License: CC BYData sources: Universiteit van Amsterdam Digital Academic Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13068-021-01940-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Universiteit van Ams... arrow_drop_down Biotechnology for BiofuelsArticle . 2021License: CC BYData sources: Universiteit van Amsterdam Digital Academic Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13068-021-01940-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 SpainPublisher:MDPI AG Authors: Gokhan Zengin; María de la Luz Cádiz-Gurrea; Álvaro Fernández-Ochoa; Francisco Javier Leyva-Jiménez; +7 AuthorsGokhan Zengin; María de la Luz Cádiz-Gurrea; Álvaro Fernández-Ochoa; Francisco Javier Leyva-Jiménez; Antonio Segura Carretero; Malwina Momotko; Evren Yildiztugay; Refik Karatas; Sharmeen Jugreet; Mohamad Fawzi Mahomoodally; Grzegorz Boczkaj;In the present study, the extracts of Cytinus hypocistis (L.) L using both traditional solvents (hexane, ethyl acetate, dichloromethane, ethanol, ethanol/water, and water) and natural deep eutectic solvents (NADESs) were investigated in terms of their total polyphenolic contents and antioxidant and enzyme-inhibitive properties. The extracts were found to possess total phenolic and total flavonoid contents in the ranges of 26.47–186.13 mg GAE/g and 0.68–12.55 mg RE/g, respectively. Higher total phenolic contents were obtained for NADES extracts. Compositional differences were reported in relation to antioxidant potential studied by several assays (DPPH: 70.19–939.35 mg TE/g, ABTS: 172.56–4026.50 mg TE/g; CUPRAC: 97.41–1730.38 mg TE/g, FRAP: 84.11–1534.85 mg TE/g). Application of NADESs (choline chloride—urea 1:2, a so-called Reline) allowed one to obtain the highest number of extracts having antioxidant potential in the radical scavenging and reducing assays. NADES-B (protonated by HCl L-proline-xylitol 5:1) was the only extractant from the studied solvents that isolated a specific fraction without chelating activity. Reline extract exhibited the highest acetylcholinesterase inhibition compared to NADES-B and NADES-C (protonated by H2SO4 L-proline-xylitol 5:1) extracts, which showed no inhibition. The NADES extracts were observed to have higher tyrosinase inhibitory properties compared to extracts obtained by traditional organic solvents. Furthermore, the NADES extracts were relatively better inhibitors of the diabetic enzymes. These findings provided an interesting comparison in terms of total polyphenolic content yields, antioxidant and enzyme inhibitory properties (cholinesterase, amylase, glucosidase, and tyrosinase) between traditional solvent extracts and NADES extracts, used as an alternative. While the organic solvents showed better antioxidant activity, the NADES extracts were found to have some other improved properties, such as higher total phenolic content and enzyme-inhibiting properties, suggesting functional prospects for their use in phytonutrient extraction and fractionation. The obtained results could also be used to give a broad overview of the different biological potentials of C. hypocistis.
Molecules arrow_drop_down MoleculesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1420-3049/27/18/5788/pdfData sources: Multidisciplinary Digital Publishing InstituteRepositorio Institucional Universidad de GranadaArticle . 2022License: CC BYData sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules27185788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Molecules arrow_drop_down MoleculesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1420-3049/27/18/5788/pdfData sources: Multidisciplinary Digital Publishing InstituteRepositorio Institucional Universidad de GranadaArticle . 2022License: CC BYData sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules27185788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Frontiers Media SA Authors: Ubair Nisar; Daomin Peng; Yongtong Mu; Yu Sun;Biofloc technology (BFT) is gaining traction as a strategic aquaculture tool for boosting feed conversions, biosecurity, and wastewater recycling. The significant aspect of BFT is aquaculture with highest stocking density and minimal water exchange. It not only improves the water quality of a system by removing inorganic nitrogen from wastewater but also serves as a suitable feed supplement and probiotic source for cultured species. This technology is commonly used for shrimp and tilapia culture and can be used for both semi-intensive and intensive culture systems. Biofloc, when combined with formulated diets, forms a balanced food chain that improves growth performance. Nutrients in this system are continuously recycled and reused and form an efficient alternative system in aquaculture. In addition to the reduction in water exchange, it is also considered as a bio-security measure, since it prevents entry of disease from outside sources. Aquamimicry is an innovative concept that simulates natural estuarine conditions by developing copepods that act as supplementary nutrition especially for shrimp culture. The review highlights the process, significance, and development of BFT, its microbial interactions, nutritional value, transition from biofloc to copefloc, and concept of aquamimicry to sustainably improve aquaculture production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fnut.2021.791738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 59 citations 59 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fnut.2021.791738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:American Association for Cancer Research (AACR) pmid: 36161800
Abstract Climate-related catastrophes like the recent floods in Eastern Kentucky are disrupting access to cancer care, increasing people's risk of exposure to carcinogens, and further exacerbating long-standing disparities in cancer care and survival.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1158/2159-8290.cd-nd2022-0017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1158/2159-8290.cd-nd2022-0017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Germany, ItalyPublisher:Frontiers Media SA Balestrazzi, Alma; Calvio, Cinzia; Macovei, Anca; Pagano, Andrea; Laux, Patrick; Moutahir, Hassane; Rajjou, Loїc; Tani, Eleni; Chachalis, Dimosthenis; Katsis, Christos; Ghaouti, Lamiae; Gmouh, Said; Majid, Sanaa; Elleuch, Amine; Hanin, Moez; Khemakhem, Bassem; Abed, Hanen El; Nunes, Joao; Araújo, Susana; Benhamrouche, Aziz; Bersi, Mohand;In developing countries, orphan legumes stand at the forefront in the struggle against climate change. Their high nutrient value is crucial in malnutrition and chronic diseases prevention. However, as the ‘orphan’ definition suggests, their seed systems are still underestimated and seed production is scanty. Seed priming is an effective, sustainable strategy to boost seed quality in orphan legumes for which up-to-date guidelines are required to guarantee reliable and reproducible results. How far are we along this path? What do we expect from seed priming? This brings to other relevant questions. What is the socio-economic relevance of orphan legumes in the Mediterranean Basin? How to potentiate a broader cultivation in specific regions? The case study of the BENEFIT-Med (Boosting technologies of orphan legumes towards resilient farming systems) project, developed by multidisciplinary research networks, envisions a roadmap for producing new knowledge and innovative technologies to improve seed productivity through priming, with the long-term objective of promoting sustainability and food security for/in the climate-sensitive regions. This review highlights the existing drawbacks that must be overcome before orphan legumes could reach the state of ‘climate-ready crops’. Only by the integration of knowledge in seed biology, technology and agronomy, the barrier existing between research bench and local agricultural fields may be overcome, generating high-impact technical innovations for orphan legumes. We intend to provide a powerful message to encourage future research in line with the United Nations Agenda 2030 for Sustainable Development.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2024.1388866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2024.1388866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Springer Science and Business Media LLC Žganjar, Mia; Ogrizović, Mojca; Matul, Mojca; Čadež, Neža; Gunde-Cimerman, Nina; González-Fernández, Cristina; Gostinčar, Cene; Tomás-Pejó, Elia; Petrovič, Uroš;AbstractConverting waste into high-value products promotes sustainability by reducing waste and creating new revenue streams. This study investigates the potential of diverse yeasts for microbial oil production by utilizing short-chain fatty acids (SCFAs) that can be produced from organic waste and focuses on identifying strains with the best SCFA utilisation, tolerance and lipid production. A collection of 1434 yeast strains was cultivated with SCFAs as the sole carbon source. Eleven strains emerged as candidates with promising growth rates and high lipid accumulation. Subsequent fermentation experiments in liquid SCFA-rich media, which focused on optimizing lipid accumulation by adjusting the carbon to nitrogen (C/N) ratio, showed an increase in lipid content at a C/N ratio of 200:1, but with a concurrent reduction in biomass. Two strains were characterized by their superior ability to produce lipids compared to the reference strain Yarrowia lipolytica CECT124: Y. lipolytica EXF-17398 and Pichia manshurica EXF-7849. Characterization of these two strains indicated that they exhibit a biotechnologically relevant balance between maximizing lipid yield and maintaining growth at high SCFA concentrations. These results emphasize the potential of using SCFAs as a sustainable feedstock for oleochemical production, offering a dual benefit of waste valorisation and microbial oil production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-65150-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-65150-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Wiley Authors: Carlos Castillo‐Saldarriaga; Christine N. S. Santos; Stephen Sarria; Parayil K. Ajikumar; +1 AuthorsCarlos Castillo‐Saldarriaga; Christine N. S. Santos; Stephen Sarria; Parayil K. Ajikumar; Ralf Takors;ABSTRACTYeast extract (YE) is a complex nutritional source associated with high performance on microbial production processes. However, its inherent compositional variability challenges its scalability. While prior efforts have focused on growth‐associated products, the dynamics of growth‐uncoupled production, which leads to higher production rates and conversion yields, still need to be explored. This production scenario is common in large‐scale applications. This study presents a systematic approach to replace YE for the production of the terpene amorpha‐4,11‐diene in Escherichia coli. Sequential processing was successfully applied to identify glutamic acid, alanine, leucine, valine, isoleucine and glycine as the key amino acids (AAs) under slow‐growth conditions. Thoroughly applying biomass retention as part of sequential processing increased production capacity by 45% using these AAs instead of YE. Further studies, including flux balance analyses, targeted pyruvate as the common AA precursor. The optimized fed‐batch process feeding pyruvate with 0.09 gPyr h−1 enhanced amorpha‐4,11‐diene production by 37%, although adding only 1% carbon via pyruvate. Flux balance analysis revealed the criteria for optimum pyruvate feeding, for example, to prevent succinate secretion and maintain the NADH/NAD+ balance. These findings illustrate the interplay between media composition and metabolic activity and provide a successful guideline for identifying lean, best‐performing media for industrial applications.
Microbial Biotechnol... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1751-7915.70056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Microbial Biotechnol... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1751-7915.70056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:The Royal Society Authors: Sean C. Lema; J. Adam Luckenbach; Yoji Yamamoto; Madeline J. Housh;Reproduction in fishes is sensitive to temperature. Elevated temperatures and anomalous ‘heat waves’ associated with climate change have the potential to impact fish reproductive performance and, in some cases, even induce sex reversals. Here we examine how thermal sensitivity in the hormone pathways regulating reproduction provides a framework for understanding impacts of warmer conditions on fish reproduction. Such effects will differ depending on evolved variation in temperature sensitivity of endocrine pathways regulating reproductive processes of sex determination/differentiation, gametogenesis and spawning, as well as how developmental timing of those processes varies with reproductive ecology. For fish populations unable to shift geographical range, persistence under future climates may require changes in temperature responsiveness of the hormone pathways regulating reproductive processes. How thermal sensitivity in those hormone pathways varies among populations and species, how those pathways generate temperature maxima for reproduction, and how rapidly reproductive thermal tolerances can change via adaptation or transgenerational plasticity will shape which fishes are most at risk for impaired reproduction under rising temperatures. This article is part of the theme issue ‘Endocrine responses to environmental variation: conceptual approaches and recent developments’.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2024 . Peer-reviewedData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2024Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2022.0516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2024 . Peer-reviewedData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2024Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2022.0516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Ashutosh Tiwari; Chiu-Wen Chen; Dibyajyoti Haldar; Anil Kumar Patel; Cheng-Di Dong; Reeta Rani Singhania;doi: 10.3390/app13084673
Biorefinery has emerged in recent years as an alternative to petrorefinery, as biofuels have all the potential to replace fossil fuels for the sustainable development of human society. From this aspect, lignocellulosic biomasses are the most important, since these are the most abundant ubiquitous most raw material on earth, which can be converted into biofuels such as bioethanol, biobutanol, biohydrogen, biogas, etc. There are several strategies for conversion, such as biochemical, thermochemical, and microbial conversions of biomasses to biofuels; however, each of the strategies has its own consequences. Enzymatic conversion of biomasses into sugars, and thereby into bioethanol, is considered as the most sustainable way. However, biomass recalcitrance to enzymatic hydrolysis is the biggest challenge, as cellulose, hemicellulose, and lignin are intricately attached to each other making their separation a tedious task. Pretreatment is necessary to partially remove or change the form of lignin to make cellulose and hemicellulose accessible to enzymes. Most of the pretreatment methods are designed to target lignin, as it is the major component responsible for recalcitrance nature of biomasses. Laccase is a versatile lignin-degrading or lignin-modifying enzyme which is secreted by filamentous fungi and bacteria, and is reported for the biological pretreatment of biomasses, which is the most sustainable way of pretreatment. However, the rate of the reaction is extremely slow making it less attractive. This article will give an insight into the biorefinery of biomasses, with the special significance to laccase.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app13084673&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app13084673&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Authors: Hao Wang; Guohua He;doi: 10.1002/rvr2.7
AbstractRivers are basic natural resources supporting ecosystems and human societies, and the health of rivers is crucial to the Earth's sustainable development. Under the profound influence of climate change and human activities, great changes have recently occurred in the circulation and development of rivers, as well as the ways in which they are utilized. In this context, achieving an effective balance between river protection and human development is necessary. In this paper, the essential role of rivers is discussed from three aspects: the formation and evolution of rivers, the shaping of biodiversity, and the cultivation of human civilization. The paper analyzes the challenges brought to the sustainable development of rivers by climate change, human activities, and increased water demand, and proposes four dimensions of future research: scientifically balancing the relationship between river development and protection, improving the adaptability of river development and utilization in the context of climate change, improving the integrity and intelligence level of river management, and building a more fair and sustainable comprehensive river management model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/rvr2.7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/rvr2.7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Review , Journal 2021 NetherlandsPublisher:Springer Science and Business Media LLC Nerve Zhou; Karl Rumbold; Anita Ejiro Nwaefuna; Teun Boekhout; Teun Boekhout;pmid: 33827664
pmc: PMC8028181
AbstractBioethanol from abundant and inexpensive agricultural and industrial wastes possesses the potential to reduce greenhouse gas emissions. Bioethanol as renewable fuel addresses elevated production costs, as well as food security concerns. Although technical advancements in simultaneous saccharification and fermentation have reduced the cost of production, one major drawback of this technology is that the pre-treatment process creates environmental stressors inhibitory to fermentative yeasts subsequently reducing bioethanol productivity. Robust fermentative yeasts with extreme stress tolerance remain limited. This review presents the potential of dung beetles from pristine and unexplored environments as an attractive source of extremophilic bioethanolic yeasts. Dung beetles survive on a recalcitrant lignocellulose-rich diet suggesting the presence of symbiotic yeasts with a cellulolytic potential. Dung beetles inhabiting extreme stress environments have the potential to harbour yeasts with the ability to withstand inhibitory environmental stresses typically associated with bioethanol production. The review further discusses established methods used to isolate bioethanolic yeasts, from dung beetles.
Universiteit van Ams... arrow_drop_down Biotechnology for BiofuelsArticle . 2021License: CC BYData sources: Universiteit van Amsterdam Digital Academic Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13068-021-01940-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Universiteit van Ams... arrow_drop_down Biotechnology for BiofuelsArticle . 2021License: CC BYData sources: Universiteit van Amsterdam Digital Academic Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13068-021-01940-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 SpainPublisher:MDPI AG Authors: Gokhan Zengin; María de la Luz Cádiz-Gurrea; Álvaro Fernández-Ochoa; Francisco Javier Leyva-Jiménez; +7 AuthorsGokhan Zengin; María de la Luz Cádiz-Gurrea; Álvaro Fernández-Ochoa; Francisco Javier Leyva-Jiménez; Antonio Segura Carretero; Malwina Momotko; Evren Yildiztugay; Refik Karatas; Sharmeen Jugreet; Mohamad Fawzi Mahomoodally; Grzegorz Boczkaj;In the present study, the extracts of Cytinus hypocistis (L.) L using both traditional solvents (hexane, ethyl acetate, dichloromethane, ethanol, ethanol/water, and water) and natural deep eutectic solvents (NADESs) were investigated in terms of their total polyphenolic contents and antioxidant and enzyme-inhibitive properties. The extracts were found to possess total phenolic and total flavonoid contents in the ranges of 26.47–186.13 mg GAE/g and 0.68–12.55 mg RE/g, respectively. Higher total phenolic contents were obtained for NADES extracts. Compositional differences were reported in relation to antioxidant potential studied by several assays (DPPH: 70.19–939.35 mg TE/g, ABTS: 172.56–4026.50 mg TE/g; CUPRAC: 97.41–1730.38 mg TE/g, FRAP: 84.11–1534.85 mg TE/g). Application of NADESs (choline chloride—urea 1:2, a so-called Reline) allowed one to obtain the highest number of extracts having antioxidant potential in the radical scavenging and reducing assays. NADES-B (protonated by HCl L-proline-xylitol 5:1) was the only extractant from the studied solvents that isolated a specific fraction without chelating activity. Reline extract exhibited the highest acetylcholinesterase inhibition compared to NADES-B and NADES-C (protonated by H2SO4 L-proline-xylitol 5:1) extracts, which showed no inhibition. The NADES extracts were observed to have higher tyrosinase inhibitory properties compared to extracts obtained by traditional organic solvents. Furthermore, the NADES extracts were relatively better inhibitors of the diabetic enzymes. These findings provided an interesting comparison in terms of total polyphenolic content yields, antioxidant and enzyme inhibitory properties (cholinesterase, amylase, glucosidase, and tyrosinase) between traditional solvent extracts and NADES extracts, used as an alternative. While the organic solvents showed better antioxidant activity, the NADES extracts were found to have some other improved properties, such as higher total phenolic content and enzyme-inhibiting properties, suggesting functional prospects for their use in phytonutrient extraction and fractionation. The obtained results could also be used to give a broad overview of the different biological potentials of C. hypocistis.
Molecules arrow_drop_down MoleculesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1420-3049/27/18/5788/pdfData sources: Multidisciplinary Digital Publishing InstituteRepositorio Institucional Universidad de GranadaArticle . 2022License: CC BYData sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules27185788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Molecules arrow_drop_down MoleculesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1420-3049/27/18/5788/pdfData sources: Multidisciplinary Digital Publishing InstituteRepositorio Institucional Universidad de GranadaArticle . 2022License: CC BYData sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/molecules27185788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Frontiers Media SA Authors: Ubair Nisar; Daomin Peng; Yongtong Mu; Yu Sun;Biofloc technology (BFT) is gaining traction as a strategic aquaculture tool for boosting feed conversions, biosecurity, and wastewater recycling. The significant aspect of BFT is aquaculture with highest stocking density and minimal water exchange. It not only improves the water quality of a system by removing inorganic nitrogen from wastewater but also serves as a suitable feed supplement and probiotic source for cultured species. This technology is commonly used for shrimp and tilapia culture and can be used for both semi-intensive and intensive culture systems. Biofloc, when combined with formulated diets, forms a balanced food chain that improves growth performance. Nutrients in this system are continuously recycled and reused and form an efficient alternative system in aquaculture. In addition to the reduction in water exchange, it is also considered as a bio-security measure, since it prevents entry of disease from outside sources. Aquamimicry is an innovative concept that simulates natural estuarine conditions by developing copepods that act as supplementary nutrition especially for shrimp culture. The review highlights the process, significance, and development of BFT, its microbial interactions, nutritional value, transition from biofloc to copefloc, and concept of aquamimicry to sustainably improve aquaculture production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fnut.2021.791738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 59 citations 59 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fnut.2021.791738&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:American Association for Cancer Research (AACR) pmid: 36161800
Abstract Climate-related catastrophes like the recent floods in Eastern Kentucky are disrupting access to cancer care, increasing people's risk of exposure to carcinogens, and further exacerbating long-standing disparities in cancer care and survival.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1158/2159-8290.cd-nd2022-0017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1158/2159-8290.cd-nd2022-0017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Germany, ItalyPublisher:Frontiers Media SA Balestrazzi, Alma; Calvio, Cinzia; Macovei, Anca; Pagano, Andrea; Laux, Patrick; Moutahir, Hassane; Rajjou, Loїc; Tani, Eleni; Chachalis, Dimosthenis; Katsis, Christos; Ghaouti, Lamiae; Gmouh, Said; Majid, Sanaa; Elleuch, Amine; Hanin, Moez; Khemakhem, Bassem; Abed, Hanen El; Nunes, Joao; Araújo, Susana; Benhamrouche, Aziz; Bersi, Mohand;In developing countries, orphan legumes stand at the forefront in the struggle against climate change. Their high nutrient value is crucial in malnutrition and chronic diseases prevention. However, as the ‘orphan’ definition suggests, their seed systems are still underestimated and seed production is scanty. Seed priming is an effective, sustainable strategy to boost seed quality in orphan legumes for which up-to-date guidelines are required to guarantee reliable and reproducible results. How far are we along this path? What do we expect from seed priming? This brings to other relevant questions. What is the socio-economic relevance of orphan legumes in the Mediterranean Basin? How to potentiate a broader cultivation in specific regions? The case study of the BENEFIT-Med (Boosting technologies of orphan legumes towards resilient farming systems) project, developed by multidisciplinary research networks, envisions a roadmap for producing new knowledge and innovative technologies to improve seed productivity through priming, with the long-term objective of promoting sustainability and food security for/in the climate-sensitive regions. This review highlights the existing drawbacks that must be overcome before orphan legumes could reach the state of ‘climate-ready crops’. Only by the integration of knowledge in seed biology, technology and agronomy, the barrier existing between research bench and local agricultural fields may be overcome, generating high-impact technical innovations for orphan legumes. We intend to provide a powerful message to encourage future research in line with the United Nations Agenda 2030 for Sustainable Development.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2024.1388866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2024.1388866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu