- home
- Advanced Search
- Energy Research
- agricultural and veterinary science...
- Energy Research
- agricultural and veterinary science...
description Publicationkeyboard_double_arrow_right Article , Journal 2011 France, Australia, NetherlandsPublisher:Elsevier BV Funded by:EC | COCOSEC| COCOSvan Der Molen, M.K.; Dolman, A.J.; Ciais, P.; Eglin, T.; Gobron, N.; Law, B.E.; Meir, P.; Peters, W.; Phillips, O.L.; Reichstein, M.; Chen, T.; Dekker, S.C.; Doubková, M.; Friedl, M.A.; Jung, M.; van den Hurk, B.J.J.M.; de Jeu, R.A.M.; Kruijt, B.; Ohta, T.; Rebel, K.T.; Plummer, S.; Seneviratne, S.I.; Sitch, S.; Teuling, A.J.; van Der Werf, G.R.; Wang, G.;handle: 1871/46686 , 1885/84873
Drought as an intermittent disturbance of the water cycle interacts with the carbon cycle differently than the ‘gradual’ climate change. During drought plants respond physiologically and structurally to prevent excessive water loss according to species-specific water use strategies. This has consequences for carbon uptake by photosynthesis and release by total ecosystem respiration. After a drought the disturbances in the reservoirs of moisture, organic matter and nutrients in the soil and carbohydrates in plants lead to longer-term effects in plant carbon cycling, and potentially mortality. Direct and carry-over effects, mortality and consequently species competition in response to drought are strongly related to the survival strategies of species. Here we review the state of the art of the understanding of the relation between soil moisture drought and the interactions with the carbon cycle of the terrestrial ecosystems. We argue that plant strategies must be given an adequate role in global vegetation models if the effects of drought on the carbon cycle are to be described in a way that justifies the interacting processes.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/84873Data sources: Bielefeld Academic Search Engine (BASE)Agricultural and Forest MeteorologyArticle . 2011Data sources: DANS (Data Archiving and Networked Services)Agricultural and Forest MeteorologyArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAgricultural and Forest MeteorologyArticle . 2011Data sources: DANS (Data Archiving and Networked Services)Agricultural and Forest MeteorologyArticle . 2011Data sources: SESAM Publication Database - FP7 ENVInstitut national des sciences de l'Univers: HAL-INSUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2011.01.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 466 citations 466 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/84873Data sources: Bielefeld Academic Search Engine (BASE)Agricultural and Forest MeteorologyArticle . 2011Data sources: DANS (Data Archiving and Networked Services)Agricultural and Forest MeteorologyArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAgricultural and Forest MeteorologyArticle . 2011Data sources: DANS (Data Archiving and Networked Services)Agricultural and Forest MeteorologyArticle . 2011Data sources: SESAM Publication Database - FP7 ENVInstitut national des sciences de l'Univers: HAL-INSUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2011.01.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Emilio Chuvieco; Florent Mouillot; Guido R. van der Werf; Jesús San Miguel; Mihai Tanase; Nikos Koutsias; Mariano García; Marta Yebra; Marc Padilla; Ioannis Gitas; Angelika Heil; Todd J. Hawbaker; Louis Giglio;Fire has a diverse range of impacts on Earth's physical and social systems. Accurate and up to date information on areas affected by fire is critical to better understand drivers of fire activity, as well as its relevance for biogeochemical cycles, climate, air quality, and to aid fire management. Mapping burned areas was traditionally done from field sketches. With the launch of the first Earth observation satellites, remote sensing quickly became a more practical alternative to detect burned areas, as they provide timely regional and global coverage of fire occurrence. This review paper explores the physical basis to detect burned area from satellite observations, describes the historical trends of using satellite sensors to monitor burned areas, summarizes the most recent approaches to map burned areas and evaluates the existing burned area products (both at global and regional scales). Finally, it identifies potential future opportunities to further improve burned area detection from Earth observation satellites.
Remote Sensing of En... arrow_drop_down Remote Sensing of EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRemote Sensing of EnvironmentArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2019.02.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 350 citations 350 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 154visibility views 154 download downloads 97 Powered bymore_vert Remote Sensing of En... arrow_drop_down Remote Sensing of EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRemote Sensing of EnvironmentArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2019.02.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2011 France, Australia, NetherlandsPublisher:Elsevier BV Funded by:EC | COCOSEC| COCOSvan Der Molen, M.K.; Dolman, A.J.; Ciais, P.; Eglin, T.; Gobron, N.; Law, B.E.; Meir, P.; Peters, W.; Phillips, O.L.; Reichstein, M.; Chen, T.; Dekker, S.C.; Doubková, M.; Friedl, M.A.; Jung, M.; van den Hurk, B.J.J.M.; de Jeu, R.A.M.; Kruijt, B.; Ohta, T.; Rebel, K.T.; Plummer, S.; Seneviratne, S.I.; Sitch, S.; Teuling, A.J.; van Der Werf, G.R.; Wang, G.;handle: 1871/46686 , 1885/84873
Drought as an intermittent disturbance of the water cycle interacts with the carbon cycle differently than the ‘gradual’ climate change. During drought plants respond physiologically and structurally to prevent excessive water loss according to species-specific water use strategies. This has consequences for carbon uptake by photosynthesis and release by total ecosystem respiration. After a drought the disturbances in the reservoirs of moisture, organic matter and nutrients in the soil and carbohydrates in plants lead to longer-term effects in plant carbon cycling, and potentially mortality. Direct and carry-over effects, mortality and consequently species competition in response to drought are strongly related to the survival strategies of species. Here we review the state of the art of the understanding of the relation between soil moisture drought and the interactions with the carbon cycle of the terrestrial ecosystems. We argue that plant strategies must be given an adequate role in global vegetation models if the effects of drought on the carbon cycle are to be described in a way that justifies the interacting processes.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/84873Data sources: Bielefeld Academic Search Engine (BASE)Agricultural and Forest MeteorologyArticle . 2011Data sources: DANS (Data Archiving and Networked Services)Agricultural and Forest MeteorologyArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAgricultural and Forest MeteorologyArticle . 2011Data sources: DANS (Data Archiving and Networked Services)Agricultural and Forest MeteorologyArticle . 2011Data sources: SESAM Publication Database - FP7 ENVInstitut national des sciences de l'Univers: HAL-INSUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2011.01.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 466 citations 466 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/84873Data sources: Bielefeld Academic Search Engine (BASE)Agricultural and Forest MeteorologyArticle . 2011Data sources: DANS (Data Archiving and Networked Services)Agricultural and Forest MeteorologyArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAgricultural and Forest MeteorologyArticle . 2011Data sources: DANS (Data Archiving and Networked Services)Agricultural and Forest MeteorologyArticle . 2011Data sources: SESAM Publication Database - FP7 ENVInstitut national des sciences de l'Univers: HAL-INSUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2011.01.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Emilio Chuvieco; Florent Mouillot; Guido R. van der Werf; Jesús San Miguel; Mihai Tanase; Nikos Koutsias; Mariano García; Marta Yebra; Marc Padilla; Ioannis Gitas; Angelika Heil; Todd J. Hawbaker; Louis Giglio;Fire has a diverse range of impacts on Earth's physical and social systems. Accurate and up to date information on areas affected by fire is critical to better understand drivers of fire activity, as well as its relevance for biogeochemical cycles, climate, air quality, and to aid fire management. Mapping burned areas was traditionally done from field sketches. With the launch of the first Earth observation satellites, remote sensing quickly became a more practical alternative to detect burned areas, as they provide timely regional and global coverage of fire occurrence. This review paper explores the physical basis to detect burned area from satellite observations, describes the historical trends of using satellite sensors to monitor burned areas, summarizes the most recent approaches to map burned areas and evaluates the existing burned area products (both at global and regional scales). Finally, it identifies potential future opportunities to further improve burned area detection from Earth observation satellites.
Remote Sensing of En... arrow_drop_down Remote Sensing of EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRemote Sensing of EnvironmentArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2019.02.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 350 citations 350 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 154visibility views 154 download downloads 97 Powered bymore_vert Remote Sensing of En... arrow_drop_down Remote Sensing of EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRemote Sensing of EnvironmentArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2019.02.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu