- home
- Advanced Search
- Energy Research
- agricultural and veterinary science...
- Energy Research
- agricultural and veterinary science...
description Publicationkeyboard_double_arrow_right Article , Conference object 2022Publisher:MDPI AG Hassan El-Ramady; Gréta Törős; Khandsuren Badgar; Xhensila Llanaj; Peter Hajdú; Mohammed E. El-Mahrouk; Neama Abdalla; József Prokisch;doi: 10.3390/su14127104
The Kingdom of Plantae is considered the main source of human food, and includes several edible and medicinal plants, whereas mushrooms belong to the Kingdom of fungi. There are a lot of similar characteristics between mushrooms and higher plants, but there are also many differences among them, especially from the human health point of view. The absences of both chlorophyll content and the ability to form their own food are the main differences between mushrooms and higher plants. The main similar attributes found in both mushrooms and higher plants are represented in their nutritional and medicinal activities. The findings of this review have a number of practical implications. A lot of applications in different fields could be found also for both mushrooms and higher plants, especially in the bioenergy, biorefinery, soil restoration, and pharmaceutical fields, but this study is the first report on a comparative photographic review between them. An implication of the most important findings in this review is that both mushrooms and plants should be taken into account when integrated food and energy are needed. These findings will be of broad use to the scientific and biomedical communities. Further investigation and experimentation into the integration and production of food crops and mushrooms are strongly recommended under different environmental conditions, particularly climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14127104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14127104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Heba Elbasiouny; Hassan El-Ramady; Fathy Elbehiry; Vishnu D. Rajput; Tatiana Minkina; Saglara Mandzhieva;doi: 10.3390/su14020914
The climate is one of the key elements impacting several cycles connected to soil and plant systems, as well as plant production, soil quality, and environmental quality. Due to heightened human activity, the rate of CO2 is rising in the atmosphere. Changing climatic conditions (such as temperature, CO2, and precipitation) influence plant nutrition in a range of ways, comprising mineralization, decomposition, leaching, and losing nutrients in the soil. Soil carbon sequestration plays an essential function—not only in climate change mitigation but also in plant nutrient accessibility and soil fertility. As a result, there is a significant interest globally in soil carbon capture from atmospheric CO2 and sequestration in the soil via plants. Adopting effective management methods and increasing soil carbon inputs over outputs will consequently play a crucial role in soil carbon sequestration (SCseq) and plant nutrition. As a result, boosting agricultural yield is necessary for food security, notoriously in developing countries. Several unanswered problems remain regarding climate change and its impacts on plant nutrition and global food output, which will be elucidated over time. This review provides several remarkable pieces of information about the influence of changing climatic variables on plant nutrients (availability and uptake). Additionally, it addresses the effect of soil carbon sequestration, as one of climate change mitigations, on plant nutrition and how relevant management practices can positively influence this.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14020914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 109 citations 109 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14020914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 HungaryPublisher:Springer Science and Business Media LLC Hassan El-Ramady; Nevien Elhawat; Nevien Elhawat; Tarek Alshaal; A. Gerőcs; Péter Balogh; Éva Domokos-Szabolcsy; János Kátai; Miklós Fári; Mihály Czakó; László Márton;handle: 2437/209455
In recent years, giant reed (Arundo donax L) has received considerable attention as a promising plant for energy production. Giant reed is able to grow in a range of environments, including wetlands and marginal soils, and has shown promise in phytoremediation efforts. A pot experiment was carried out to investigate the ability of giant reed to restore ecosystems of different soils, including bauxite-derived red mud-amended soil and pure red mud (red mud—a waste generated by the Bayer process in the aluminum industry—is strongly alkaline and has a high salt content and electrical conductivity (EC) dominated by sodium). Samples were exposed to high temperatures, which simulate the effects of bushfires. Selected soil properties that were measured included soil dehydrogenase, alkaline phosphatase, urease and catalase activities, soil organic carbon, soil pH, EC, available soil macronutrients NPK, and above- and below-ground plant biomass yield. The results showed that giant reed reduced EC in all autoclaved soils and red mud-contaminated soils by 24–82 %. Significantly, available N was increased, and a slight increase was recorded for available K. The presence of giant reed enhanced the soils’ enzyme activities to recover in all tested autoclaved soils and red mud-contaminated soils; specifically, dehydrogenase activity increased by 262 and 705 % in non-autoclaved and autoclaved soils, respectively, and urease and catalase activities increased by 591 and 385 % in autoclaved soils, respectively. Total bacterial and fungal counts were higher in autoclaved soils than non-autoclaved soils after cultivating giant reed for 12 weeks. Autoclaved soils enabled higher biomass production for giant reed than non-autoclaved soils. These results demonstrate that giant reed is not only able to survive on soil that has lost its microbial community as a result of heat, but can also yield significant amounts of biomass while assisting recovering soil ecosystems after bushfires.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-013-9369-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-013-9369-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 HungaryPublisher:Springer Science and Business Media LLC Péter Balogh; Éva Domokos-Szabolcsy; János Kátai; M. Molnár; Attila Sztrik; Miklós Fári; József Popp; László Márton; Tarek Alshaal; Mihály Czakó; Nevien Elhawat; Nevien Elhawat; Hassan El-Ramady;An in vitro experiment was carried out to evaluate the phytoremediation potentials of two somatic embryo-derived ecotypes of Arundo donax-BL (American ecotype) and 20SZ (Hungarian ecotype)-of copper from synthetic wastewater. The two ecotypes were grown under sterile conditions in tubes containing a nutrient solution supplied with increasing doses of Cu (0, 1, 2, 3, 5, 10, and 26.8 mg L(-1)) for 6 weeks. The translocation and bioaccumulation factors and removal rate were estimated. In general, increasing Cu concentration in nutrient solution slightly decreased root, stem and leaf biomass without toxicity symptoms up to 26.8 mg L(-1). Moreover, both ecotypes showed high Cu removal efficiency from aqueous solution. However, Cu removal rate ranged between 96.6 to 98.8% for BL ecotype and 97 to 100% for 20SZ ecotype. Data illustrated that both BL and 20SZ ecotypes may be employed to treat Cu-contaminated water bodies up to 26.8 mg L(-1).
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-014-2736-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-014-2736-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC Tarek Alshaal; Miklós Fári; Mihály Czakó; Gabriella Antal; Péter Balogh; László Márton; Nevien Elhawat; Nevien Elhawat; Hassan El-Ramady; Éva Domokos-Szabolcsy;pmid: 26215460
To evaluate copper uptake and its toxicity on bioenergy grass giant reed (Arundo donax L.), experiments were carried out using two epigenetic clonal lines - American (BL) and Hungarian (20SZ) ecotypes - grown on elevated Cu concentrations up to 26.8 mg L(-1). Neither ecotype showed any noticeable foliar symptoms of Cu toxicity at concentrations tested up to 10 mg L(-1). Dry mass of plants of both ecotypes significantly increased at the highest Cu treatment compared to control. Although the BL ecotype had greater capacity to uptake Cu than 20SZ, the dry mass and shoot length of BL was higher than that of 20SZ. Values of bioconcentration and transportation factors were higher in the BL than in the 20SZ ecotype. Almost 45 % of total Cu content within the whole plant was found in the plant root of both ecotypes. This demonstrated both ecotypes can be utilized for Cu phytoremediation alongside with significant biomass production.
Bulletin of Environm... arrow_drop_down Bulletin of Environmental Contamination and ToxicologyArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: CrossrefBulletin of Environmental Contamination and ToxicologyArticle . 2016Data sources: Europe PubMed CentralBulletin of Environmental Contamination and ToxicologyJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00128-015-1622-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bulletin of Environm... arrow_drop_down Bulletin of Environmental Contamination and ToxicologyArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: CrossrefBulletin of Environmental Contamination and ToxicologyArticle . 2016Data sources: Europe PubMed CentralBulletin of Environmental Contamination and ToxicologyJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00128-015-1622-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object 2022Publisher:MDPI AG Hassan El-Ramady; Gréta Törős; Khandsuren Badgar; Xhensila Llanaj; Peter Hajdú; Mohammed E. El-Mahrouk; Neama Abdalla; József Prokisch;doi: 10.3390/su14127104
The Kingdom of Plantae is considered the main source of human food, and includes several edible and medicinal plants, whereas mushrooms belong to the Kingdom of fungi. There are a lot of similar characteristics between mushrooms and higher plants, but there are also many differences among them, especially from the human health point of view. The absences of both chlorophyll content and the ability to form their own food are the main differences between mushrooms and higher plants. The main similar attributes found in both mushrooms and higher plants are represented in their nutritional and medicinal activities. The findings of this review have a number of practical implications. A lot of applications in different fields could be found also for both mushrooms and higher plants, especially in the bioenergy, biorefinery, soil restoration, and pharmaceutical fields, but this study is the first report on a comparative photographic review between them. An implication of the most important findings in this review is that both mushrooms and plants should be taken into account when integrated food and energy are needed. These findings will be of broad use to the scientific and biomedical communities. Further investigation and experimentation into the integration and production of food crops and mushrooms are strongly recommended under different environmental conditions, particularly climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14127104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14127104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Heba Elbasiouny; Hassan El-Ramady; Fathy Elbehiry; Vishnu D. Rajput; Tatiana Minkina; Saglara Mandzhieva;doi: 10.3390/su14020914
The climate is one of the key elements impacting several cycles connected to soil and plant systems, as well as plant production, soil quality, and environmental quality. Due to heightened human activity, the rate of CO2 is rising in the atmosphere. Changing climatic conditions (such as temperature, CO2, and precipitation) influence plant nutrition in a range of ways, comprising mineralization, decomposition, leaching, and losing nutrients in the soil. Soil carbon sequestration plays an essential function—not only in climate change mitigation but also in plant nutrient accessibility and soil fertility. As a result, there is a significant interest globally in soil carbon capture from atmospheric CO2 and sequestration in the soil via plants. Adopting effective management methods and increasing soil carbon inputs over outputs will consequently play a crucial role in soil carbon sequestration (SCseq) and plant nutrition. As a result, boosting agricultural yield is necessary for food security, notoriously in developing countries. Several unanswered problems remain regarding climate change and its impacts on plant nutrition and global food output, which will be elucidated over time. This review provides several remarkable pieces of information about the influence of changing climatic variables on plant nutrients (availability and uptake). Additionally, it addresses the effect of soil carbon sequestration, as one of climate change mitigations, on plant nutrition and how relevant management practices can positively influence this.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14020914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 109 citations 109 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14020914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 HungaryPublisher:Springer Science and Business Media LLC Hassan El-Ramady; Nevien Elhawat; Nevien Elhawat; Tarek Alshaal; A. Gerőcs; Péter Balogh; Éva Domokos-Szabolcsy; János Kátai; Miklós Fári; Mihály Czakó; László Márton;handle: 2437/209455
In recent years, giant reed (Arundo donax L) has received considerable attention as a promising plant for energy production. Giant reed is able to grow in a range of environments, including wetlands and marginal soils, and has shown promise in phytoremediation efforts. A pot experiment was carried out to investigate the ability of giant reed to restore ecosystems of different soils, including bauxite-derived red mud-amended soil and pure red mud (red mud—a waste generated by the Bayer process in the aluminum industry—is strongly alkaline and has a high salt content and electrical conductivity (EC) dominated by sodium). Samples were exposed to high temperatures, which simulate the effects of bushfires. Selected soil properties that were measured included soil dehydrogenase, alkaline phosphatase, urease and catalase activities, soil organic carbon, soil pH, EC, available soil macronutrients NPK, and above- and below-ground plant biomass yield. The results showed that giant reed reduced EC in all autoclaved soils and red mud-contaminated soils by 24–82 %. Significantly, available N was increased, and a slight increase was recorded for available K. The presence of giant reed enhanced the soils’ enzyme activities to recover in all tested autoclaved soils and red mud-contaminated soils; specifically, dehydrogenase activity increased by 262 and 705 % in non-autoclaved and autoclaved soils, respectively, and urease and catalase activities increased by 591 and 385 % in autoclaved soils, respectively. Total bacterial and fungal counts were higher in autoclaved soils than non-autoclaved soils after cultivating giant reed for 12 weeks. Autoclaved soils enabled higher biomass production for giant reed than non-autoclaved soils. These results demonstrate that giant reed is not only able to survive on soil that has lost its microbial community as a result of heat, but can also yield significant amounts of biomass while assisting recovering soil ecosystems after bushfires.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-013-9369-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-013-9369-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 HungaryPublisher:Springer Science and Business Media LLC Péter Balogh; Éva Domokos-Szabolcsy; János Kátai; M. Molnár; Attila Sztrik; Miklós Fári; József Popp; László Márton; Tarek Alshaal; Mihály Czakó; Nevien Elhawat; Nevien Elhawat; Hassan El-Ramady;An in vitro experiment was carried out to evaluate the phytoremediation potentials of two somatic embryo-derived ecotypes of Arundo donax-BL (American ecotype) and 20SZ (Hungarian ecotype)-of copper from synthetic wastewater. The two ecotypes were grown under sterile conditions in tubes containing a nutrient solution supplied with increasing doses of Cu (0, 1, 2, 3, 5, 10, and 26.8 mg L(-1)) for 6 weeks. The translocation and bioaccumulation factors and removal rate were estimated. In general, increasing Cu concentration in nutrient solution slightly decreased root, stem and leaf biomass without toxicity symptoms up to 26.8 mg L(-1). Moreover, both ecotypes showed high Cu removal efficiency from aqueous solution. However, Cu removal rate ranged between 96.6 to 98.8% for BL ecotype and 97 to 100% for 20SZ ecotype. Data illustrated that both BL and 20SZ ecotypes may be employed to treat Cu-contaminated water bodies up to 26.8 mg L(-1).
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-014-2736-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2014 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-014-2736-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC Tarek Alshaal; Miklós Fári; Mihály Czakó; Gabriella Antal; Péter Balogh; László Márton; Nevien Elhawat; Nevien Elhawat; Hassan El-Ramady; Éva Domokos-Szabolcsy;pmid: 26215460
To evaluate copper uptake and its toxicity on bioenergy grass giant reed (Arundo donax L.), experiments were carried out using two epigenetic clonal lines - American (BL) and Hungarian (20SZ) ecotypes - grown on elevated Cu concentrations up to 26.8 mg L(-1). Neither ecotype showed any noticeable foliar symptoms of Cu toxicity at concentrations tested up to 10 mg L(-1). Dry mass of plants of both ecotypes significantly increased at the highest Cu treatment compared to control. Although the BL ecotype had greater capacity to uptake Cu than 20SZ, the dry mass and shoot length of BL was higher than that of 20SZ. Values of bioconcentration and transportation factors were higher in the BL than in the 20SZ ecotype. Almost 45 % of total Cu content within the whole plant was found in the plant root of both ecotypes. This demonstrated both ecotypes can be utilized for Cu phytoremediation alongside with significant biomass production.
Bulletin of Environm... arrow_drop_down Bulletin of Environmental Contamination and ToxicologyArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: CrossrefBulletin of Environmental Contamination and ToxicologyArticle . 2016Data sources: Europe PubMed CentralBulletin of Environmental Contamination and ToxicologyJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00128-015-1622-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bulletin of Environm... arrow_drop_down Bulletin of Environmental Contamination and ToxicologyArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: CrossrefBulletin of Environmental Contamination and ToxicologyArticle . 2016Data sources: Europe PubMed CentralBulletin of Environmental Contamination and ToxicologyJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00128-015-1622-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu