- home
- Advanced Search
- Energy Research
- agricultural and veterinary science...
- Energy Research
- agricultural and veterinary science...
description Publicationkeyboard_double_arrow_right Article , Journal 2019 France, United States, FrancePublisher:MDPI AG Funded by:Irish AidIrish AidAna Loboguerrero; Bruce Campbell; Peter Cooper; James Hansen; Todd Rosenstock; Eva Wollenberg;doi: 10.3390/su11051372
handle: 10568/100379
Human activities and their relation with land, through agriculture and forestry, are significantly impacting Earth system functioning. Specifically, agriculture has increasingly become a key sector for adaptation and mitigation initiatives that address climate change and help ensure food security for a growing global population. Climate change and agricultural outcomes influence our ability to reach targets for at least seven of the 17 Sustainable Development Goals. By 2015, 103 nations had committed themselves to reduce greenhouse gas emissions from agriculture, while 102 countries had prioritized agriculture in their adaptation agenda. Adaptation and mitigation actions within agriculture still receive insufficient support across scales, from local to international level. This paper reviews a series of climate change adaptation and mitigation options that can support increased production, production efficiency and greater food security for 9 billion people by 2050. Climate-smart agriculture can help foster synergies between productivity, adaptation, and mitigation, although trade-offs may be equally apparent. This study highlights the importance of identifying and exploiting those synergies in the context of Nationally Determined Contributions. Finally, the paper points out that keeping global warming to 2 °C above pre-industrial levels by 2100 requires going beyond the agriculture sector and exploring possibilities with respect to reduced emissions from deforestation, food loss, and waste, as well as from rethinking human diets.
The University of Ve... arrow_drop_down The University of Vermont: ScholarWorks @ UVMArticle . 2019License: CC BYFull-Text: https://scholarworks.uvm.edu/rsfac/87Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019License: CC BYFull-Text: https://hdl.handle.net/10568/100379Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11051372&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 103 citations 103 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Ve... arrow_drop_down The University of Vermont: ScholarWorks @ UVMArticle . 2019License: CC BYFull-Text: https://scholarworks.uvm.edu/rsfac/87Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019License: CC BYFull-Text: https://hdl.handle.net/10568/100379Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11051372&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 FrancePublisher:Public Library of Science (PLoS) Authors: Alejandro Parodi; Sara Stephanie Valencia-Salazar; Ana María Loboguerrero; Deissy Martínez-Barón; +2 AuthorsAlejandro Parodi; Sara Stephanie Valencia-Salazar; Ana María Loboguerrero; Deissy Martínez-Barón; Enrique Murgueitio; Ian Vázquez‐Rowe;handle: 10568/125132
Circular food systems are increasingly acknowledged for their potential to contribute to the transition towards sustainable futures. In a circular food system, the use of finite and limited resources is minimized, and nutrients in residual streams and inedible biomass for humans are reused as inputs in the bioeconomy. Livestock has become relevant in this narrative for upcycling nutrients contained in food by-products and grass resources into nutritious food for humans without using human-edible resources. Evaluating on-going national sustainability initiatives in the livestock sector is key to determine if circularity elements are already represented and to identify new opportunities and pathways for the future. In this paper we synthetize the environmental actions promoted by different initiatives driving the sustainable transformation of Colombian cattle production systems and assess the inclusion of circularity elements in these actions. The proposed environmental actions were concentrated in the conservation of remaining natural ecosystems, zero-deforestation and the sustainable intensification of cattle production through silvopastoral and paddock rotational systems. Circularity was addressed by some initiatives via the use organic fertilizers and the use of manure as fertilizers or feedstock for bioenergy generation. However, given that cattle farming is often practiced in low-input systems where the collection of by-products for reutilization (e.g., manure) is not always feasible, these actions are expected to have limited impact in the sector. Silvopastoral systems can positively promote circularity by creating the conditions for internal nutrient recycling via litterfall, biological nitrogen fixation, phosphorus solubilization, and presence of beneficial insects. However, to avoid food-feed competition and to remain circular, these should only be installed in agricultural areas unsuitable for crop production. In areas where crops can grow, other production systems that prioritize the production of plant biomass for human consumption (i.e., agrosilvopastoral systems, mixed crop-livestock systems or forms of crop intercropping) should be considered.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/125132Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pclm.0000074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/125132Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pclm.0000074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 FrancePublisher:Frontiers Media SA Nadine Andrieu; Nadine Andrieu; Nadine Andrieu; Fanny Howland; Ivonne Acosta-Alba; Ivonne Acosta-Alba; Ivonne Acosta-Alba; Jean-François Le Coq; Jean-François Le Coq; Jean-François Le Coq; Ana Milena Osorio-Garcia; Deissy Martinez-Baron; Deissy Martinez-Baron; Catherine Gamba-Trimiño; Ana Maria Loboguerrero; Ana Maria Loboguerrero; Eduardo Chia;handle: 10568/101397
The literature is increasing on how to prioritize climate-smart options with stakeholders but relatively few examples exist on how to co-design climate-smart farming systems with them, in particular with smallholder farmers. This article presents a methodological framework to co-design climate-smart farming systems with local stakeholders (farmers, scientists, NGOs) so that large-scale change can be achieved. This framework is based on the lessons learned during a research project conducted in Honduras and Colombia from 2015 to 2017. Seven phases are suggested to engage a process of co-conception of climate-smart farming systems that might enable implementation at scale: (1) “exploration of the initial situation,” which identifies local stakeholders potentially interested in being involved in the process, existing farming systems, and specific constraints to the implementation of climate-smart agriculture (CSA); (2) “co-definition of an innovation platform,” which defines the structure and the rules of functioning for a platform favoring the involvement of local stakeholders in the process; (3) “shared diagnosis,” which defines the main challenges to be solved by the innovation platform; (4) “identification and ex ante assessment of new farming systems,” which assess the potential performances of solutions prioritized by the members of the innovation platform under CSA pillars; (5) “experimentation,” which tests the prioritized solutions on-farm; (6) “assessment of the co-design process of climate-smart farming systems,” which validates the ability of the process to reach its initial objectives, particularly in terms of new farming systems but also in terms of capacity building; and (7) “definition of strategies for scaling up/out,” which addresses the scaling of the co-design process. For each phase, specific tools or methodologies are used: focus groups, social network analysis, theory of change, life-cycle assessment, and on-farm experiments. Each phase is illustrated with results obtained in Colombia or Honduras.
Frontiers in Sustain... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019License: CC BYFull-Text: https://hdl.handle.net/10568/101397Data sources: Bielefeld Academic Search Engine (BASE)Frontiers in Sustainable Food SystemsArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fsufs.2019.00037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Frontiers in Sustain... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019License: CC BYFull-Text: https://hdl.handle.net/10568/101397Data sources: Bielefeld Academic Search Engine (BASE)Frontiers in Sustainable Food SystemsArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fsufs.2019.00037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 FrancePublisher:MDPI AG Ngonidzashe Chirinda; Laura Arenas; Sandra Loaiza; Catalina Trujillo; Maria Katto; Paula Chaparro; Jonathan Nuñez; Jacobo Arango; Deissy Martinez-Baron; Ana Loboguerrero; Luis Becerra Lopez-Lavalle; Ivan Avila; Myriam Guzmán; Michael Peters; Jennifer Twyman; María García; Laura Serna; Daniel Escobar; Diksha Arora; Jeimar Tapasco; Lady Mazabel; Fernando Correa; Manabu Ishitani; Mayesse Da Silva; Eduardo Graterol; Santiago Jaramillo; Adriana Pinto; Andres Zuluaga; Nelson Lozano; Ryan Byrnes; Gabriel LaHue; Carolina Alvarez; Idupulapati Rao; Rolando Barahona;doi: 10.3390/su9111891
handle: 10568/89124
Agricultural producers grapple with low farm yields and declining ecosystem services within their landscapes. In several instances, agricultural production systems may be considered largely unsustainable in socioeconomic and ecological (resource conservation and use and impact on nature) terms. Novel technological and management options that can serve as vehicles to promote the provision of multiple benefits, including the improvement of smallholder livelihoods, are needed. We call for a paradigm shift to allow designing and implementing agricultural systems that are not only efficient (serving as a means to promote development based on the concept of creating more goods and services while using fewer resources and creating less waste) but can also be considered synergistic (symbiotic relationship between socio-ecological systems) by simultaneously contributing to major objectives of economic, ecological, and social (equity) improvement of agro-ecosystems. These transformations require strategic approaches that are supported by participatory system-level research, experimentation, and innovation. Using data from several studies, we here provide evidence for technological and management options that could be optimized, promoted, and adopted to enable agricultural systems to be efficient, effective, and, indeed, sustainable. Specifically, we present results from a study conducted in Colombia, which demonstrated that, in rice systems, improved water management practices such as Alternate Wetting and Drying (AWD) reduce methane emissions (~70%). We also show how women can play a key role in AWD adoption. For livestock systems, we present in vitro evidence showing that the use of alternative feed options such as cassava leaves contributes to livestock feed supplementation and could represent a cost-effective approach for reducing enteric methane emissions (22% to 55%). We argue that to design and benefit from sustainable agricultural systems, there is a need for better targeting of interventions that are co-designed, co-evaluated, and co-promoted, with farmers as allies of transformational change (as done in the climate-smart villages), not as recipients of external knowledge. Moreover, for inclusive sustainability that harnesses existing knowledge and influences decision-making processes across scales, there is a need for constant, efficient, effective, and real trans-disciplinary communication and collaboration.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2017License: CC BYFull-Text: https://hdl.handle.net/10568/89124Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9111891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2017License: CC BYFull-Text: https://hdl.handle.net/10568/89124Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9111891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FrancePublisher:MDPI AG Ngonidzashe Chirinda; Laura Arenas; Maria Katto; Sandra Loaiza; Fernando Correa; Manabu Isthitani; Ana Loboguerrero; Deissy Martínez-Barón; Eduardo Graterol; Santiago Jaramillo; Carlos Torres; Miguel Arango; Myriam Guzmán; Ivan Avila; Sara Hube; Ditmar Kurtz; Gonzalo Zorrilla; Jose Terra; Pilar Irisarri; Silvana Tarlera; Gabriel LaHue; Walkyria Scivittaro; Aldo Noguera; Cimelio Bayer;doi: 10.3390/su10030671
handle: 10568/91520
The burgeoning demand for rice in Latin America and Caribbean (LAC) exceeds supply, resulting in a rice deficit. To overcome this challenge, rice production should be increased, albeit sustainably. However, since rice production is associated with increases in the atmospheric concentration of two greenhouse gases (GHGs), namely methane (CH4) and nitrous oxide (N2O), the challenge is on ensuring that production increases are not associated with an increase in GHG emissions and thus do not cause an increase in GHG emission intensities. Based on current understanding of drivers of CH4 and N2O production, we provide here insights on the potential climate change mitigation benefits of management and technological options (i.e., seeding, tillage, irrigation, residue management) pursued in the LAC region. Studies conducted in the LAC region show intermittent irrigation or alternate wetting and drying of rice fields to reduce CH4 emissions by 25–70% without increasing N2O emissions. Results on yield changes associated with intermittent irrigation remain inconclusive. Compared to conventional tillage, no-tillage and anticipated tillage (i.e., fall tillage) cause a 21% and 25% reduction in CH4 emissions, respectively. From existing literature, it was unambiguous that the mitigation potential of most management strategies pursued in the LAC region need to be quantified while acknowledging country-specific conditions. While breeding high yielding and low emitting rice varieties may represent the most promising and possibly sustainable approach for achieving GHG emission reductions without demanding major changes in on-farm management practices, this is rather idealistic. We contend that a more realistic approach for realizing low GHG emitting rice production systems is to focus on increasing rice yields, for obvious food security reasons, which, while not reducing absolute emissions, should translate to a reduction in GHG emission intensities. Moreover, there is need to explore creative ways of incentivizing the adoption of promising combinations of management and technological options.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/91520Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10030671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/91520Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10030671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 France, United States, FrancePublisher:MDPI AG Funded by:Irish AidIrish AidAna Loboguerrero; Bruce Campbell; Peter Cooper; James Hansen; Todd Rosenstock; Eva Wollenberg;doi: 10.3390/su11051372
handle: 10568/100379
Human activities and their relation with land, through agriculture and forestry, are significantly impacting Earth system functioning. Specifically, agriculture has increasingly become a key sector for adaptation and mitigation initiatives that address climate change and help ensure food security for a growing global population. Climate change and agricultural outcomes influence our ability to reach targets for at least seven of the 17 Sustainable Development Goals. By 2015, 103 nations had committed themselves to reduce greenhouse gas emissions from agriculture, while 102 countries had prioritized agriculture in their adaptation agenda. Adaptation and mitigation actions within agriculture still receive insufficient support across scales, from local to international level. This paper reviews a series of climate change adaptation and mitigation options that can support increased production, production efficiency and greater food security for 9 billion people by 2050. Climate-smart agriculture can help foster synergies between productivity, adaptation, and mitigation, although trade-offs may be equally apparent. This study highlights the importance of identifying and exploiting those synergies in the context of Nationally Determined Contributions. Finally, the paper points out that keeping global warming to 2 °C above pre-industrial levels by 2100 requires going beyond the agriculture sector and exploring possibilities with respect to reduced emissions from deforestation, food loss, and waste, as well as from rethinking human diets.
The University of Ve... arrow_drop_down The University of Vermont: ScholarWorks @ UVMArticle . 2019License: CC BYFull-Text: https://scholarworks.uvm.edu/rsfac/87Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019License: CC BYFull-Text: https://hdl.handle.net/10568/100379Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11051372&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 103 citations 103 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Ve... arrow_drop_down The University of Vermont: ScholarWorks @ UVMArticle . 2019License: CC BYFull-Text: https://scholarworks.uvm.edu/rsfac/87Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019License: CC BYFull-Text: https://hdl.handle.net/10568/100379Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11051372&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 FrancePublisher:Public Library of Science (PLoS) Authors: Alejandro Parodi; Sara Stephanie Valencia-Salazar; Ana María Loboguerrero; Deissy Martínez-Barón; +2 AuthorsAlejandro Parodi; Sara Stephanie Valencia-Salazar; Ana María Loboguerrero; Deissy Martínez-Barón; Enrique Murgueitio; Ian Vázquez‐Rowe;handle: 10568/125132
Circular food systems are increasingly acknowledged for their potential to contribute to the transition towards sustainable futures. In a circular food system, the use of finite and limited resources is minimized, and nutrients in residual streams and inedible biomass for humans are reused as inputs in the bioeconomy. Livestock has become relevant in this narrative for upcycling nutrients contained in food by-products and grass resources into nutritious food for humans without using human-edible resources. Evaluating on-going national sustainability initiatives in the livestock sector is key to determine if circularity elements are already represented and to identify new opportunities and pathways for the future. In this paper we synthetize the environmental actions promoted by different initiatives driving the sustainable transformation of Colombian cattle production systems and assess the inclusion of circularity elements in these actions. The proposed environmental actions were concentrated in the conservation of remaining natural ecosystems, zero-deforestation and the sustainable intensification of cattle production through silvopastoral and paddock rotational systems. Circularity was addressed by some initiatives via the use organic fertilizers and the use of manure as fertilizers or feedstock for bioenergy generation. However, given that cattle farming is often practiced in low-input systems where the collection of by-products for reutilization (e.g., manure) is not always feasible, these actions are expected to have limited impact in the sector. Silvopastoral systems can positively promote circularity by creating the conditions for internal nutrient recycling via litterfall, biological nitrogen fixation, phosphorus solubilization, and presence of beneficial insects. However, to avoid food-feed competition and to remain circular, these should only be installed in agricultural areas unsuitable for crop production. In areas where crops can grow, other production systems that prioritize the production of plant biomass for human consumption (i.e., agrosilvopastoral systems, mixed crop-livestock systems or forms of crop intercropping) should be considered.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/125132Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pclm.0000074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/125132Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pclm.0000074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 FrancePublisher:Frontiers Media SA Nadine Andrieu; Nadine Andrieu; Nadine Andrieu; Fanny Howland; Ivonne Acosta-Alba; Ivonne Acosta-Alba; Ivonne Acosta-Alba; Jean-François Le Coq; Jean-François Le Coq; Jean-François Le Coq; Ana Milena Osorio-Garcia; Deissy Martinez-Baron; Deissy Martinez-Baron; Catherine Gamba-Trimiño; Ana Maria Loboguerrero; Ana Maria Loboguerrero; Eduardo Chia;handle: 10568/101397
The literature is increasing on how to prioritize climate-smart options with stakeholders but relatively few examples exist on how to co-design climate-smart farming systems with them, in particular with smallholder farmers. This article presents a methodological framework to co-design climate-smart farming systems with local stakeholders (farmers, scientists, NGOs) so that large-scale change can be achieved. This framework is based on the lessons learned during a research project conducted in Honduras and Colombia from 2015 to 2017. Seven phases are suggested to engage a process of co-conception of climate-smart farming systems that might enable implementation at scale: (1) “exploration of the initial situation,” which identifies local stakeholders potentially interested in being involved in the process, existing farming systems, and specific constraints to the implementation of climate-smart agriculture (CSA); (2) “co-definition of an innovation platform,” which defines the structure and the rules of functioning for a platform favoring the involvement of local stakeholders in the process; (3) “shared diagnosis,” which defines the main challenges to be solved by the innovation platform; (4) “identification and ex ante assessment of new farming systems,” which assess the potential performances of solutions prioritized by the members of the innovation platform under CSA pillars; (5) “experimentation,” which tests the prioritized solutions on-farm; (6) “assessment of the co-design process of climate-smart farming systems,” which validates the ability of the process to reach its initial objectives, particularly in terms of new farming systems but also in terms of capacity building; and (7) “definition of strategies for scaling up/out,” which addresses the scaling of the co-design process. For each phase, specific tools or methodologies are used: focus groups, social network analysis, theory of change, life-cycle assessment, and on-farm experiments. Each phase is illustrated with results obtained in Colombia or Honduras.
Frontiers in Sustain... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019License: CC BYFull-Text: https://hdl.handle.net/10568/101397Data sources: Bielefeld Academic Search Engine (BASE)Frontiers in Sustainable Food SystemsArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fsufs.2019.00037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Frontiers in Sustain... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019License: CC BYFull-Text: https://hdl.handle.net/10568/101397Data sources: Bielefeld Academic Search Engine (BASE)Frontiers in Sustainable Food SystemsArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fsufs.2019.00037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 FrancePublisher:MDPI AG Ngonidzashe Chirinda; Laura Arenas; Sandra Loaiza; Catalina Trujillo; Maria Katto; Paula Chaparro; Jonathan Nuñez; Jacobo Arango; Deissy Martinez-Baron; Ana Loboguerrero; Luis Becerra Lopez-Lavalle; Ivan Avila; Myriam Guzmán; Michael Peters; Jennifer Twyman; María García; Laura Serna; Daniel Escobar; Diksha Arora; Jeimar Tapasco; Lady Mazabel; Fernando Correa; Manabu Ishitani; Mayesse Da Silva; Eduardo Graterol; Santiago Jaramillo; Adriana Pinto; Andres Zuluaga; Nelson Lozano; Ryan Byrnes; Gabriel LaHue; Carolina Alvarez; Idupulapati Rao; Rolando Barahona;doi: 10.3390/su9111891
handle: 10568/89124
Agricultural producers grapple with low farm yields and declining ecosystem services within their landscapes. In several instances, agricultural production systems may be considered largely unsustainable in socioeconomic and ecological (resource conservation and use and impact on nature) terms. Novel technological and management options that can serve as vehicles to promote the provision of multiple benefits, including the improvement of smallholder livelihoods, are needed. We call for a paradigm shift to allow designing and implementing agricultural systems that are not only efficient (serving as a means to promote development based on the concept of creating more goods and services while using fewer resources and creating less waste) but can also be considered synergistic (symbiotic relationship between socio-ecological systems) by simultaneously contributing to major objectives of economic, ecological, and social (equity) improvement of agro-ecosystems. These transformations require strategic approaches that are supported by participatory system-level research, experimentation, and innovation. Using data from several studies, we here provide evidence for technological and management options that could be optimized, promoted, and adopted to enable agricultural systems to be efficient, effective, and, indeed, sustainable. Specifically, we present results from a study conducted in Colombia, which demonstrated that, in rice systems, improved water management practices such as Alternate Wetting and Drying (AWD) reduce methane emissions (~70%). We also show how women can play a key role in AWD adoption. For livestock systems, we present in vitro evidence showing that the use of alternative feed options such as cassava leaves contributes to livestock feed supplementation and could represent a cost-effective approach for reducing enteric methane emissions (22% to 55%). We argue that to design and benefit from sustainable agricultural systems, there is a need for better targeting of interventions that are co-designed, co-evaluated, and co-promoted, with farmers as allies of transformational change (as done in the climate-smart villages), not as recipients of external knowledge. Moreover, for inclusive sustainability that harnesses existing knowledge and influences decision-making processes across scales, there is a need for constant, efficient, effective, and real trans-disciplinary communication and collaboration.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2017License: CC BYFull-Text: https://hdl.handle.net/10568/89124Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9111891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2017License: CC BYFull-Text: https://hdl.handle.net/10568/89124Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9111891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FrancePublisher:MDPI AG Ngonidzashe Chirinda; Laura Arenas; Maria Katto; Sandra Loaiza; Fernando Correa; Manabu Isthitani; Ana Loboguerrero; Deissy Martínez-Barón; Eduardo Graterol; Santiago Jaramillo; Carlos Torres; Miguel Arango; Myriam Guzmán; Ivan Avila; Sara Hube; Ditmar Kurtz; Gonzalo Zorrilla; Jose Terra; Pilar Irisarri; Silvana Tarlera; Gabriel LaHue; Walkyria Scivittaro; Aldo Noguera; Cimelio Bayer;doi: 10.3390/su10030671
handle: 10568/91520
The burgeoning demand for rice in Latin America and Caribbean (LAC) exceeds supply, resulting in a rice deficit. To overcome this challenge, rice production should be increased, albeit sustainably. However, since rice production is associated with increases in the atmospheric concentration of two greenhouse gases (GHGs), namely methane (CH4) and nitrous oxide (N2O), the challenge is on ensuring that production increases are not associated with an increase in GHG emissions and thus do not cause an increase in GHG emission intensities. Based on current understanding of drivers of CH4 and N2O production, we provide here insights on the potential climate change mitigation benefits of management and technological options (i.e., seeding, tillage, irrigation, residue management) pursued in the LAC region. Studies conducted in the LAC region show intermittent irrigation or alternate wetting and drying of rice fields to reduce CH4 emissions by 25–70% without increasing N2O emissions. Results on yield changes associated with intermittent irrigation remain inconclusive. Compared to conventional tillage, no-tillage and anticipated tillage (i.e., fall tillage) cause a 21% and 25% reduction in CH4 emissions, respectively. From existing literature, it was unambiguous that the mitigation potential of most management strategies pursued in the LAC region need to be quantified while acknowledging country-specific conditions. While breeding high yielding and low emitting rice varieties may represent the most promising and possibly sustainable approach for achieving GHG emission reductions without demanding major changes in on-farm management practices, this is rather idealistic. We contend that a more realistic approach for realizing low GHG emitting rice production systems is to focus on increasing rice yields, for obvious food security reasons, which, while not reducing absolute emissions, should translate to a reduction in GHG emission intensities. Moreover, there is need to explore creative ways of incentivizing the adoption of promising combinations of management and technological options.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/91520Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10030671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/91520Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10030671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu