- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024 United Kingdom, FrancePublisher:Proceedings of the National Academy of Sciences Funded by:FCT | LA 1, ARC | Australian Laureate Fello..., NSF | CNH-L: Interactive Dynami... +1 projectsFCT| LA 1 ,ARC| Australian Laureate Fellowships - Grant ID: FL230100201 ,NSF| CNH-L: Interactive Dynamics of Reef Fisheries and Human Health ,FCT| LA 22Iain R. Caldwell; Tim R. McClanahan; Remy M. Oddenyo; Nicholas A.J. Graham; Maria Beger; Laurent Vigliola; Stuart A. Sandin; Alan M. Friedlander; Bemahafaly Randriamanantsoa; Laurent Wantiez; Alison L. Green; Austin T. Humphries; Marah J. Hardt; Jennifer E. Caselle; David A. Feary; Rucha Karkarey; Catherine Jadot; Andrew S. Hoey; Jacob G. Eurich; Shaun K. Wilson; Nicole Crane; Mark Tupper; Sebastian C.A. Ferse; Eva Maire; David Mouillot; Joshua E. Cinner;The amount of ocean protected from fishing and other human impacts has often been used as a metric of conservation progress. However, protection efforts have highly variable outcomes that depend on local conditions, which makes it difficult to quantify what coral reef protection efforts to date have actually achieved at a global scale. Here, we develop a predictive model of how local conditions influence conservation outcomes on ~2,600 coral reef sites across 44 ecoregions, which we used to quantify how much more fish biomass there is on coral reefs compared to a modeled scenario with no protection. Under the assumptions of our model, our study reveals that without existing protection efforts there would be ~10% less fish biomass on coral reefs. Thus, we estimate that coral reef protection efforts have led to approximately 1 in every 10 kg of existing fish biomass.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2024Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2308605121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2024Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2308605121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 FrancePublisher:Elsevier BV Liet Chim; Ngoc Thi Bich Nguyen; Ngoc Thi Bich Nguyen; Pierrette Lemaire; Laurent Wantiez;Abstract There has been growing interest in the development of mud crab aquaculture in New Caledonia. However, for this to become established at a commercial level, a cost-effective formulated feed based on internationally-available ingredients needs to be developed. We have evaluated the optimal dietary protein content for juvenile crabs, Scylla serrata (Forskal, 1775), using a series of diets with a protein content ranging from 27 to 49% and soy protein concentrate (SPC) as the main protein source. For this purpose, 54 individually housed crabs were allocated to five dietary treatments (n = 10 or 11). The crabs were fed ad libitum, for 81 days with the allocated diets. The apparent digestibilities of dry mater, crude protein and energy were high (96.2–97.3%), irrespective of the diet. The voluntary feed intake (VFI) of crabs widely varied from 46 to 220 g kg− 1 of fresh initial body weight per week (iBW week− 1) whatever the diet. However, SPC intake and protein intake increased significantly with dietary protein content up to the diet with 40% crude protein, but did not increase further with diets containing 44% and 49% crude protein. The cumulative molts were strongly affected by the VFI levels or energy intake and also, to a lesser extent, by the levels of SPC or protein in diets. Two phases in tissue gain were observed after ecdysis: an initial deposition phase lasting around 30 days followed by a plateau which lasted until the next molt. The daily tissue growth was 16.5% of dry body weight (dry BW) one day after ecdysis and dramatically decreased to 3.6% of dry BW over the first 10 days, then decreased more slowly to the minimum value of 1.3% of dry BW over the next 70 days. During the course of experiment, the best growth (tissue growth and molt frequency) and the best feed efficiency (FCR, PER, retention of proteins and lipids) were obtained with crabs fed on the diet with 40% crude protein. This result was confirmed by a bioenergetic study which showed significantly higher allocation of the energy intake for growth (RE) of crabs fed on diet 40% crude protein. Finally, under our experimental conditions, 1 kg of juvenile crabs required 6.5 ± 1.1 g of protein per day. This level was obtained with the diet SPC-42 that contained 40% of protein of which almost three quarters were derived from SPC. Two hypotheses are proposed to explain the negative effect of high level of SPC or protein on growth and feed efficiency for crabs fed on in diets containing 52% and 60% SPC.
ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2014Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aquaculture.2014.09.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 41 citations 41 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2014Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aquaculture.2014.09.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Journal , Other literature type 2013 France, France, France, France, France, France, France, France, AustraliaPublisher:Elsevier BV Trevor Hutton; Valeriano Parravicini; Ashley J. Williams; Martine Rodier; Martine Rodier; Adrian Flynn; Graham J. Edgar; Piers K. Dunstan; Daniela M. Ceccarelli; Laurent Wantiez; Laurent Vigliola; David Mouillot; Robert A. Campbell; Christophe E. Menkès; Christophe E. Menkès; Tim Skewes; Serge Andréfouët; Jock W. Young; Valerie Allain; Sarah Samadi; Daniel C. Gledhill; Steven Swearer; Claude Payri; Ken Ridgway; Catherine M. Dichmont; Cécile Dupouy; A. David McKinnon; Richard Brinkman; Philippe Borsa; Mike Cappo; Miles Furnas; Rodrigo H. Bustamante; Dhugal J. Lindsay; Yves Letourneur; Bernard Pelletier; Anthony J. Richardson; Anthony J. Richardson; Alan Williams; Nicholas J. Bax; Nicholas J. Bax; R. Farman; Stephanie D’agata; Bertrand Richer de Forges; Michel Kulbicki; Sophie Cravatte; Sophie Cravatte; Robin J. Beaman; Claire Garrigue; David S. Schoeman;pmid: 24182902
The Coral Sea, located at the southwestern rim of the Pacific Ocean, is the only tropical marginal sea where human impacts remain relatively minor. Patterns and processes identified within the region have global relevance as a baseline for understanding impacts in more disturbed tropical locations. Despite 70 years of documented research, the Coral Sea has been relatively neglected, with a slower rate of increase in publications over the past 20 years than total marine research globally. We review current knowledge of the Coral Sea to provide an overview of regional geology, oceanography, ecology and fisheries. Interactions between physical features and biological assemblages influence ecological processes and the direction and strength of connectivity among Coral Sea ecosystems. To inform management effectively, we will need to fill some major knowledge gaps, including geographic gaps in sampling and a lack of integration of research themes, which hinder the understanding of most ecosystem processes.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverhttps://doi.org/10.1016/b978-0...Part of book or chapter of book . 2013 . Peer-reviewedData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUPart of book or chapter of book . 2013Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-408096-6.00004-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverhttps://doi.org/10.1016/b978-0...Part of book or chapter of book . 2013 . Peer-reviewedData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUPart of book or chapter of book . 2013Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-408096-6.00004-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 United Kingdom, France, FrancePublisher:Wiley Authors: Timothy R. McClanahan; Alan M. Friedlander; Laurent Wantiez; Nicholas A. J. Graham; +3 AuthorsTimothy R. McClanahan; Alan M. Friedlander; Laurent Wantiez; Nicholas A. J. Graham; J. Henrich Bruggemann; Pascale Chabanet; Remy M. Oddenyo;doi: 10.1111/faf.12625
AbstractCurrent best‐practice policy recommendations for managing fish stocks are achieved by a mixture of maintaining modest fishing mortality (restricting effort, times and gear), marine reserve networks and not subsidizing unprofitable fisheries. A seldom evaluated question is how effective these proposed approaches are for maintaining all fish stocks and biodiversity elements in marine seascapes? Both recommended and unrecommended fishing practices fragment habitats and reduce metapopulation connectivity with potentially unexpected seascape‐level consequences. To better understand these outcomes, we pooled and evaluated fish community data into two seascape groupings for comparisons of biomass and life‐history characteristics. These were remote baseline reefs (>9 hr from regional cities and >4 hr from human habitation, n = 584 locations) and those emulating best‐practice seascapes (BPS, n = 140). BPS were a mix of high‐compliance marine reserves (fishable biomass = 892 ± 696 (±SD) kg/ha, n = 95; >5 km2 and >15 years of closure) and fished seascapes (478 ± 395 kg/ha, n = 45) that had biomass near the maximum sustained yield (MSY) estimates for coral reefs. The fish communities in the BPS locations differed considerably from the remote baseline by having 49% of the median and 32% of the mean biomass, smaller community‐weighted body sizes, and faster growth and mortality rates. Most of the declines were associated with high biomass taxa that included carnivorous jacks (Carangidae), snappers (Lutjanidae), groupers (Serranidae) and triggerfish (Balistidae), which were reduced to between 11% and 28% of the mean baseline. Surgeonfish (Acanthuridae) and parrotfish (Scarinae) were an exception in being reduced to only 48 and 53% of the baseline's mean biomass, respectively. As expected, community‐level body sizes and age values were larger and trophic level higher, while growth and mortality were lower in baselines than BPS seascapes. After evaluating the different environmental responses between seascapes and accounting for the largest geographic factor, longitude, we evaluated the community responses to 4 possible BPS planning scenarios. Biomass responses to age and trophic level and length at maturity were similar and predictable for the two seascapes. In contrast, growth and generation time responses differed between seascapes. Baselines had peak biomass patterns at intermediate values, whereas BPS displayed a declining influence of growth and a saturating response for generation time. Consequently, deviations between BPS and baselines indicate that current BPS proposals do not fully emulate the ecology of remote or wilderness locations. Therefore, wilderness will be a required management designation if the global fish communities are to be fully conserved.
ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of IfremerFish and FisheriesArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/faf.12625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of IfremerFish and FisheriesArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/faf.12625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint 2022 FrancePublisher:MDPI AG Authors: Ngoc Thi Bich Nguyen; Laurent Wantiez; Pierrette Lemaire; Liet Chim;Three isoenergetic diets differing in their fishmeal/soy protein concentrate (SPC) ratio were assessed on the tissue growth and energy budget of juvenile crabs Scylla serrata in postmolt stages (PMolt) and in intermolt stages (IMolt). The average growth rates on a dry matter basis were 2.064 ± 0.324% and 0.492 ± 0.08% initial BW.day−1 during PMolt and IMolt stages, respectively. The efficiencies of the feed conversion (FCE, %), protein retention (PRE, %) and energy retention (ERE, %) were similar for the three experimental diets. However, FCE, PRE and ERE in PMolt stages were four to five times higher than in IMolt stages. The feed intake, energy and protein required for growth in PMolt stages were obviously higher than in IMolt stages. The energy budgets (% total energy intake) were marginally affected by diet but were significantly affected by the molt stage. The maintenance energy was lower in PMolt stages (49.84 ± 4.9%) than in IMolt stages (83.33 ± 2.45%). The excess in maintenance energy in IMolt stages represents the portion set aside for the next molt: shell energy content (4.97 ± 0.31%) and energy for ecdysis (±28%). Conversely, recovery energy was significantly higher in PMolt stages (34.39 ± 0.99%) than in IMolt stages (8.33 ± 1.7%). In conclusion, SPC sustained good tissue growth and good feed utilization and can be used as a main source of dietary protein for crab juveniles in captivity.
Fishes arrow_drop_down FishesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2410-3888/7/6/334/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/fishes7060334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Fishes arrow_drop_down FishesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2410-3888/7/6/334/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/fishes7060334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 FrancePublisher:Public Library of Science (PLoS) Mehdi Adjeroud; Haizea Jimenez; Haizea Jimenez; Christophe Peignon; Pascal Dumas; Laurent Wantiez;No-take marine reserves are one of the oldest and most versatile tools used across the Pacific for the conservation of reef resources, in particular for invertebrates traditionally targeted by local fishers. Assessing their actual efficiency is still a challenge in complex ecosystems such as coral reefs, where reserve effects are likely to be obscured by high levels of environmental variability. The goal of this study was to investigate the potential interference of small-scale habitat structure on the efficiency of reserves. The spatial distribution of widely harvested macroinvertebrates was surveyed in a large set of protected vs. unprotected stations from eleven reefs located in New Caledonia. Abundance, density and individual size data were collected along random, small-scale (20×1 m) transects. Fine habitat typology was derived with a quantitative photographic method using 17 local habitat variables. Marine reserves substantially augmented the local density, size structure and biomass of the target species. Density of Trochus niloticus and Tridacna maxima doubled globally inside the reserve network; average size was greater by 10 to 20% for T. niloticus. We demonstrated that the apparent success of protection could be obscured by marked variations in population structure occurring over short distances, resulting from small-scale heterogeneity in the reef habitat. The efficiency of reserves appeared to be modulated by the availability of suitable habitats at the decimetric scale ("microhabitats") for the considered sessile/low-mobile macroinvertebrate species. Incorporating microhabitat distribution could significantly enhance the efficiency of habitat surrogacy, a valuable approach in the case of conservation targets focusing on endangered or emblematic macroinvertebrate or relatively sedentary fish species.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0058998&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0058998&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2011 United Kingdom, United States, Australia, United Kingdom, Costa Rica, France, Costa Rica, Singapore, SpainPublisher:Public Library of Science (PLoS) Funded by:NSERCNSERCMarah J. Hardt; Kevin J. Gaston; Gustavo Paredes; Ivor D. Williams; Ivor D. Williams; Octavio Aburto-Oropeza; Arturo Ayala Bocos; Fernando Rivera; Fernando A. Zapata; Stuart A. Sandin; Joshua E. Cinner; Tau Morove; Amílcar Leví Cupul Magaña; Derek P. Tittensor; Derek P. Tittensor; Derek P. Tittensor; Mark Tupper; Sebastian C. A. Ferse; Emmanuel Tessier; Andrew G. Bauman; Andrew G. Bauman; Enric Sala; Pascale Chabanet; Yves Letourneur; Shaun K. Wilson; Andrew J. Brooks; Alison Green; Edward E. DeMartini; Edward E. DeMartini; Ismael Mascareñas-Osorio; Héctor Reyes Bonilla; David A. Feary; David A. Feary; Maria Beger; Camilo Mora; David J. Booth; Marc-Olivier Nadon; Marc-Olivier Nadon; German Soler; Paolo Usseglio; Paolo Usseglio; Yossi Loya; Alan M. Friedlander; Michel Kulbicki; Paula Ayotte; Paula Ayotte; Juan J. Cruz-Motta; Jorge Cortés; Hector M. Guzman; Rick D. Stuart-Smith; Camilo Martinez; Michel Loreau; Sandra Bessudo; Yohei Nakamura; Stuart Banks; Nicholas Polunin; Graham J. Edgar; Charlotte Gough; Andres López Pérez; Eran Brokovich; Laurent Wantiez; Morgan S. Pratchett; Laurent Vigliola; Nicholas A. J. Graham;Difficulties in scaling up theoretical and experimental results have raised controversy over the consequences of biodiversity loss for the functioning of natural ecosystems. Using a global survey of reef fish assemblages, we show that in contrast to previous theoretical and experimental studies, ecosystem functioning (as measured by standing biomass) scales in a non-saturating manner with biodiversity (as measured by species and functional richness) in this ecosystem. Our field study also shows a significant and negative interaction between human population density and biodiversity on ecosystem functioning (i.e., for the same human density there were larger reductions in standing biomass at more diverse reefs). Human effects were found to be related to fishing, coastal development, and land use stressors, and currently affect over 75% of the world's coral reefs. Our results indicate that the consequences of biodiversity loss in coral reefs have been considerably underestimated based on existing knowledge and that reef fish assemblages, particularly the most diverse, are greatly vulnerable to the expansion and intensity of anthropogenic stressors in coastal areas.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Nova Southeastern University: NSU WorksArticle . 2011License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2011 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAFachrepositorium LebenswissenschaftenArticle . 2011Data sources: Fachrepositorium LebenswissenschaftenNewcastle University Library ePrints ServiceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Universidad de Costa Rica: Repositorio KérwáArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.1000606&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 516 citations 516 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 77visibility views 77 download downloads 83 Powered bymore_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Nova Southeastern University: NSU WorksArticle . 2011License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2011 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAFachrepositorium LebenswissenschaftenArticle . 2011Data sources: Fachrepositorium LebenswissenschaftenNewcastle University Library ePrints ServiceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Universidad de Costa Rica: Repositorio KérwáArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.1000606&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 France, Australia, France, Australia, Australia, Australia, France, Australia, United KingdomPublisher:Proceedings of the National Academy of Sciences Funded by:ARC | Future Fellowships - Gran..., FCT | LA 1, ARC | ARC Centres of Excellence...ARC| Future Fellowships - Grant ID: FT160100047 ,FCT| LA 1 ,ARC| ARC Centres of Excellences - Grant ID: CE140100020Sebastian C. A. Ferse; David Mouillot; David Mouillot; David A. Feary; Charlotte Gough; U. Rashid Sumaila; Andrew S. Hoey; Eran Brokovich; Rick D. Stuart-Smith; Tim R. McClanahan; Pascale Chabanet; Stuart A. Sandin; Andrew J. Brooks; Alison Green; Graham J. Edgar; Eva Maire; Eva Maire; Cindy Huchery; Ivor D. Williams; Alan M. Friedlander; Joshua E. Cinner; Marah J. Hardt; Michele L. Barnes; Shinta Pardede; Georgina G. Gurney; Stephanie D’agata; Stephanie D’agata; Stephanie D’agata; John N. Kittinger; John N. Kittinger; David J. Booth; M. Aaron MacNeil; M. Aaron MacNeil; Mark Tupper; Juan J. Cruz-Motta; Michel Kulbicki; Camilo Mora; Maria Beger; Maria Beger; Shaun K. Wilson; Laurent Wantiez; Christina C. Hicks; Christina C. Hicks; Laurent Vigliola; Nicholas A. J. Graham; Nicholas A. J. Graham;Significance Marine reserves that prohibit fishing are a critical tool for sustaining coral reef ecosystems, yet it remains unclear how human impacts in surrounding areas affect the capacity of marine reserves to deliver key conservation benefits. Our global study found that only marine reserves in areas of low human impact consistently sustained top predators. Fish biomass inside marine reserves declined along a gradient of human impacts in surrounding areas; however, reserves located where human impacts are moderate had the greatest difference in fish biomass compared with openly fished areas. Reserves in low human-impact areas are required for sustaining ecological functions like high-order predation, but reserves in high-impact areas can provide substantial conservation gains in fish biomass.
Hyper Article en Lig... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1073/pnas.1708001115Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2018License: CC BY NC NDData sources: Fachrepositorium LebenswissenschaftenArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of IfremerThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1708001115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 215 citations 215 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1073/pnas.1708001115Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2018License: CC BY NC NDData sources: Fachrepositorium LebenswissenschaftenArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of IfremerThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1708001115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 Australia, Australia, France, United Kingdom, Australia, Australia, FrancePublisher:Inter-Research Science Center Authors: McClanahan, Tim R.; Schroeder, Robert E.; Friedlander, Alan M.; Vigliola, Laurent; +8 AuthorsMcClanahan, Tim R.; Schroeder, Robert E.; Friedlander, Alan M.; Vigliola, Laurent; Wantiez, Laurent; Caselle, Jennifer E.; Graham, Nicholas A.J.; Wilson, Shaun; Edgar, Graham J.; Stuart-Smith, Rick D.; Oddenyo, Remy M.; Cinner, J.E.;doi: 10.3354/meps12874
Baselines and benchmarks (B&Bs) are needed to evaluate the ecological status and fisheries potential of coral reefs. B&Bs may depend on habitat features and energetic limitations that constrain biomass within the natural variability of the environment and fish behaviors. To evaluate if broad B&Bs exist, we compiled data on the biomass of fishes in ~1000 reefs with no recent history of fishing in 19 ecoregions. These reefs spanned the full longitude and latitude of Indian and Pacific Ocean reefs and included older high-compliance fisheries closures (>15 yr closure) and remote reef areas (>9 h travel time from fisheries markets). There was no significant change in biomass over the 15 to 48 yr closure period but closures had only ~40% of the biomass (740 kg ha-1, lower confidence interval [LCI] = 660 kg ha-1, upper confidence interval [UCI] = 810 kg ha-1, n = 157) of remote tropical reefs (1870 [1730, 2000] kg ha-1, n = 503). Remote subtropical reefs had lower biomass (950 [860, 1040] kg ha-1, n = 329) than tropical reefs. Closures and remote reef fish biomass responded differently to environmental variables of coral cover, net primary productivity, and light, indicating that remote reefs are more limited by productivity and habitat than closures. Closures in fished seascapes are unlikely to achieve the biomass and community composition of remote reefs, which suggests fisheries benchmarks will differ substantially from wilderness baselines. A fishery benchmark (B0) of ~1000 kg ha-1 adjusted for geography is suggested for fisheries purposes. For ecological purposes, a wilderness baseline of ~1900 kg ha-1 is appropriate for including large and mobile species not well protected by closures.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2019Full-Text: https://doi.org/10.3354/meps12874Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2019Data sources: ArchiMer - Institutional Archive of IfremerUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps12874&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2019Full-Text: https://doi.org/10.3354/meps12874Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2019Data sources: ArchiMer - Institutional Archive of IfremerUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps12874&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 United Kingdom, Australia, Australia, France, Australia, France, FrancePublisher:Springer Science and Business Media LLC Funded by:FCT | LA 1FCT| LA 1David A. Feary; Sebastian C. A. Ferse; Andrew S. Hoey; David J. Booth; M. Aaron MacNeil; M. Aaron MacNeil; M. Aaron MacNeil; Katherine E. Holmes; David Mouillot; David Mouillot; Joseph Maina; Joseph Maina; Joseph Maina; Charlie Gough; Edward H. Allison; Pascale Chabanet; Tim R. McClanahan; Rick D. Stuart-Smith; Stuart Campbell; Joshua E. Cinner; Graham J. Edgar; Shaun K. Wilson; U. Rashid Sumaila; Eran Brokovich; Stuart A. Sandin; Marah J. Hardt; Stephanie D’agata; Stephanie D’agata; Stephanie D’agata; John N. Kittinger; John N. Kittinger; Christina C. Hicks; Christina C. Hicks; Christina C. Hicks; Ivor D. Williams; Michel Kulbicki; Andrew J. Brooks; Larry B. Crowder; Alison Green; Cindy Huchery; Eva Maire; Eva Maire; Maria Beger; Laurent Wantiez; Laurent Vigliola; Juan J. Cruz-Motta; Camilo Mora; Nicholas A. J. Graham; Nicholas A. J. Graham; Alan M. Friedlander; Mark Tupper;doi: 10.1038/nature18607
pmid: 27309809
Ongoing declines in the structure and function of the world’s coral reefs require novel approaches to sustain these ecosystems and the millions of people who depend on them3. A presently unexplored approach that draws on theory and practice in human health and rural development is to systematically identify and learn from the ‘outliers’—places where ecosystems are substantially better (‘bright spots’) or worse (‘dark spots’) than expected, given the environmental conditions and socioeconomic drivers they are exposed to. Here we compile data from more than 2,500 reefs worldwide and develop a Bayesian hierarchical model to generate expectations of how standing stocks of reef fish biomass are related to 18 socioeconomic drivers and environmental conditions. We identify 15 bright spots and 35 dark spots among our global survey of coral reefs, defined as sites that have biomass levels more than two standard deviations from expectations. Importantly, bright spots are not simply comprised of remote areas with low fishing pressure; they include localities where human populations and use of ecosystem resources is high, potentially providing insights into how communities have successfully confronted strong drivers of change. Conversely, dark spots are not necessarily the sites with the lowest absolute biomass and even include some remote, uninhabited locations often considered near pristine6. We surveyed local experts about social, institutional, and environmental conditions at these sites to reveal that bright spots are characterized by strong sociocultural institutions such as customary taboos and marine tenure, high levels of local engagement in management, high dependence on marine resources, and beneficial environmental conditions such as deep-water refuges. Alternatively, dark spots are characterized by intensive capture and storage technology and a recent history of environmental shocks. Our results suggest that investments in strengthening fisheries governance, particularly aspects such as participation and property rights, could facilitate innovative conservation actions that help communities defy expectations of global reef degradation.
Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2016 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/81029/1/Cinner_et_al_Bright_spots_Nature_second_revision.pdfData sources: Lancaster EPrintsLancaster University: Lancaster EprintsArticle . 2016License: CC BY NCFull-Text: https://eprints.lancs.ac.uk/id/eprint/81029/1/Cinner_et_al_Bright_spots_Nature_second_revision.pdfData sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2016Data sources: ArchiMer - Institutional Archive of IfremerJames Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature18607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 413 citations 413 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2016 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/81029/1/Cinner_et_al_Bright_spots_Nature_second_revision.pdfData sources: Lancaster EPrintsLancaster University: Lancaster EprintsArticle . 2016License: CC BY NCFull-Text: https://eprints.lancs.ac.uk/id/eprint/81029/1/Cinner_et_al_Bright_spots_Nature_second_revision.pdfData sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2016Data sources: ArchiMer - Institutional Archive of IfremerJames Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature18607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024 United Kingdom, FrancePublisher:Proceedings of the National Academy of Sciences Funded by:FCT | LA 1, ARC | Australian Laureate Fello..., NSF | CNH-L: Interactive Dynami... +1 projectsFCT| LA 1 ,ARC| Australian Laureate Fellowships - Grant ID: FL230100201 ,NSF| CNH-L: Interactive Dynamics of Reef Fisheries and Human Health ,FCT| LA 22Iain R. Caldwell; Tim R. McClanahan; Remy M. Oddenyo; Nicholas A.J. Graham; Maria Beger; Laurent Vigliola; Stuart A. Sandin; Alan M. Friedlander; Bemahafaly Randriamanantsoa; Laurent Wantiez; Alison L. Green; Austin T. Humphries; Marah J. Hardt; Jennifer E. Caselle; David A. Feary; Rucha Karkarey; Catherine Jadot; Andrew S. Hoey; Jacob G. Eurich; Shaun K. Wilson; Nicole Crane; Mark Tupper; Sebastian C.A. Ferse; Eva Maire; David Mouillot; Joshua E. Cinner;The amount of ocean protected from fishing and other human impacts has often been used as a metric of conservation progress. However, protection efforts have highly variable outcomes that depend on local conditions, which makes it difficult to quantify what coral reef protection efforts to date have actually achieved at a global scale. Here, we develop a predictive model of how local conditions influence conservation outcomes on ~2,600 coral reef sites across 44 ecoregions, which we used to quantify how much more fish biomass there is on coral reefs compared to a modeled scenario with no protection. Under the assumptions of our model, our study reveals that without existing protection efforts there would be ~10% less fish biomass on coral reefs. Thus, we estimate that coral reef protection efforts have led to approximately 1 in every 10 kg of existing fish biomass.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2024Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2308605121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2024Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2308605121&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 FrancePublisher:Elsevier BV Liet Chim; Ngoc Thi Bich Nguyen; Ngoc Thi Bich Nguyen; Pierrette Lemaire; Laurent Wantiez;Abstract There has been growing interest in the development of mud crab aquaculture in New Caledonia. However, for this to become established at a commercial level, a cost-effective formulated feed based on internationally-available ingredients needs to be developed. We have evaluated the optimal dietary protein content for juvenile crabs, Scylla serrata (Forskal, 1775), using a series of diets with a protein content ranging from 27 to 49% and soy protein concentrate (SPC) as the main protein source. For this purpose, 54 individually housed crabs were allocated to five dietary treatments (n = 10 or 11). The crabs were fed ad libitum, for 81 days with the allocated diets. The apparent digestibilities of dry mater, crude protein and energy were high (96.2–97.3%), irrespective of the diet. The voluntary feed intake (VFI) of crabs widely varied from 46 to 220 g kg− 1 of fresh initial body weight per week (iBW week− 1) whatever the diet. However, SPC intake and protein intake increased significantly with dietary protein content up to the diet with 40% crude protein, but did not increase further with diets containing 44% and 49% crude protein. The cumulative molts were strongly affected by the VFI levels or energy intake and also, to a lesser extent, by the levels of SPC or protein in diets. Two phases in tissue gain were observed after ecdysis: an initial deposition phase lasting around 30 days followed by a plateau which lasted until the next molt. The daily tissue growth was 16.5% of dry body weight (dry BW) one day after ecdysis and dramatically decreased to 3.6% of dry BW over the first 10 days, then decreased more slowly to the minimum value of 1.3% of dry BW over the next 70 days. During the course of experiment, the best growth (tissue growth and molt frequency) and the best feed efficiency (FCR, PER, retention of proteins and lipids) were obtained with crabs fed on the diet with 40% crude protein. This result was confirmed by a bioenergetic study which showed significantly higher allocation of the energy intake for growth (RE) of crabs fed on diet 40% crude protein. Finally, under our experimental conditions, 1 kg of juvenile crabs required 6.5 ± 1.1 g of protein per day. This level was obtained with the diet SPC-42 that contained 40% of protein of which almost three quarters were derived from SPC. Two hypotheses are proposed to explain the negative effect of high level of SPC or protein on growth and feed efficiency for crabs fed on in diets containing 52% and 60% SPC.
ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2014Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aquaculture.2014.09.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 41 citations 41 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2014Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aquaculture.2014.09.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Journal , Other literature type 2013 France, France, France, France, France, France, France, France, AustraliaPublisher:Elsevier BV Trevor Hutton; Valeriano Parravicini; Ashley J. Williams; Martine Rodier; Martine Rodier; Adrian Flynn; Graham J. Edgar; Piers K. Dunstan; Daniela M. Ceccarelli; Laurent Wantiez; Laurent Vigliola; David Mouillot; Robert A. Campbell; Christophe E. Menkès; Christophe E. Menkès; Tim Skewes; Serge Andréfouët; Jock W. Young; Valerie Allain; Sarah Samadi; Daniel C. Gledhill; Steven Swearer; Claude Payri; Ken Ridgway; Catherine M. Dichmont; Cécile Dupouy; A. David McKinnon; Richard Brinkman; Philippe Borsa; Mike Cappo; Miles Furnas; Rodrigo H. Bustamante; Dhugal J. Lindsay; Yves Letourneur; Bernard Pelletier; Anthony J. Richardson; Anthony J. Richardson; Alan Williams; Nicholas J. Bax; Nicholas J. Bax; R. Farman; Stephanie D’agata; Bertrand Richer de Forges; Michel Kulbicki; Sophie Cravatte; Sophie Cravatte; Robin J. Beaman; Claire Garrigue; David S. Schoeman;pmid: 24182902
The Coral Sea, located at the southwestern rim of the Pacific Ocean, is the only tropical marginal sea where human impacts remain relatively minor. Patterns and processes identified within the region have global relevance as a baseline for understanding impacts in more disturbed tropical locations. Despite 70 years of documented research, the Coral Sea has been relatively neglected, with a slower rate of increase in publications over the past 20 years than total marine research globally. We review current knowledge of the Coral Sea to provide an overview of regional geology, oceanography, ecology and fisheries. Interactions between physical features and biological assemblages influence ecological processes and the direction and strength of connectivity among Coral Sea ecosystems. To inform management effectively, we will need to fill some major knowledge gaps, including geographic gaps in sampling and a lack of integration of research themes, which hinder the understanding of most ecosystem processes.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverhttps://doi.org/10.1016/b978-0...Part of book or chapter of book . 2013 . Peer-reviewedData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUPart of book or chapter of book . 2013Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-408096-6.00004-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverhttps://doi.org/10.1016/b978-0...Part of book or chapter of book . 2013 . Peer-reviewedData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUPart of book or chapter of book . 2013Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-408096-6.00004-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 United Kingdom, France, FrancePublisher:Wiley Authors: Timothy R. McClanahan; Alan M. Friedlander; Laurent Wantiez; Nicholas A. J. Graham; +3 AuthorsTimothy R. McClanahan; Alan M. Friedlander; Laurent Wantiez; Nicholas A. J. Graham; J. Henrich Bruggemann; Pascale Chabanet; Remy M. Oddenyo;doi: 10.1111/faf.12625
AbstractCurrent best‐practice policy recommendations for managing fish stocks are achieved by a mixture of maintaining modest fishing mortality (restricting effort, times and gear), marine reserve networks and not subsidizing unprofitable fisheries. A seldom evaluated question is how effective these proposed approaches are for maintaining all fish stocks and biodiversity elements in marine seascapes? Both recommended and unrecommended fishing practices fragment habitats and reduce metapopulation connectivity with potentially unexpected seascape‐level consequences. To better understand these outcomes, we pooled and evaluated fish community data into two seascape groupings for comparisons of biomass and life‐history characteristics. These were remote baseline reefs (>9 hr from regional cities and >4 hr from human habitation, n = 584 locations) and those emulating best‐practice seascapes (BPS, n = 140). BPS were a mix of high‐compliance marine reserves (fishable biomass = 892 ± 696 (±SD) kg/ha, n = 95; >5 km2 and >15 years of closure) and fished seascapes (478 ± 395 kg/ha, n = 45) that had biomass near the maximum sustained yield (MSY) estimates for coral reefs. The fish communities in the BPS locations differed considerably from the remote baseline by having 49% of the median and 32% of the mean biomass, smaller community‐weighted body sizes, and faster growth and mortality rates. Most of the declines were associated with high biomass taxa that included carnivorous jacks (Carangidae), snappers (Lutjanidae), groupers (Serranidae) and triggerfish (Balistidae), which were reduced to between 11% and 28% of the mean baseline. Surgeonfish (Acanthuridae) and parrotfish (Scarinae) were an exception in being reduced to only 48 and 53% of the baseline's mean biomass, respectively. As expected, community‐level body sizes and age values were larger and trophic level higher, while growth and mortality were lower in baselines than BPS seascapes. After evaluating the different environmental responses between seascapes and accounting for the largest geographic factor, longitude, we evaluated the community responses to 4 possible BPS planning scenarios. Biomass responses to age and trophic level and length at maturity were similar and predictable for the two seascapes. In contrast, growth and generation time responses differed between seascapes. Baselines had peak biomass patterns at intermediate values, whereas BPS displayed a declining influence of growth and a saturating response for generation time. Consequently, deviations between BPS and baselines indicate that current BPS proposals do not fully emulate the ecology of remote or wilderness locations. Therefore, wilderness will be a required management designation if the global fish communities are to be fully conserved.
ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of IfremerFish and FisheriesArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/faf.12625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ArchiMer - Instituti... arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of IfremerFish and FisheriesArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefLancaster University: Lancaster EprintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/faf.12625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint 2022 FrancePublisher:MDPI AG Authors: Ngoc Thi Bich Nguyen; Laurent Wantiez; Pierrette Lemaire; Liet Chim;Three isoenergetic diets differing in their fishmeal/soy protein concentrate (SPC) ratio were assessed on the tissue growth and energy budget of juvenile crabs Scylla serrata in postmolt stages (PMolt) and in intermolt stages (IMolt). The average growth rates on a dry matter basis were 2.064 ± 0.324% and 0.492 ± 0.08% initial BW.day−1 during PMolt and IMolt stages, respectively. The efficiencies of the feed conversion (FCE, %), protein retention (PRE, %) and energy retention (ERE, %) were similar for the three experimental diets. However, FCE, PRE and ERE in PMolt stages were four to five times higher than in IMolt stages. The feed intake, energy and protein required for growth in PMolt stages were obviously higher than in IMolt stages. The energy budgets (% total energy intake) were marginally affected by diet but were significantly affected by the molt stage. The maintenance energy was lower in PMolt stages (49.84 ± 4.9%) than in IMolt stages (83.33 ± 2.45%). The excess in maintenance energy in IMolt stages represents the portion set aside for the next molt: shell energy content (4.97 ± 0.31%) and energy for ecdysis (±28%). Conversely, recovery energy was significantly higher in PMolt stages (34.39 ± 0.99%) than in IMolt stages (8.33 ± 1.7%). In conclusion, SPC sustained good tissue growth and good feed utilization and can be used as a main source of dietary protein for crab juveniles in captivity.
Fishes arrow_drop_down FishesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2410-3888/7/6/334/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/fishes7060334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Fishes arrow_drop_down FishesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2410-3888/7/6/334/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefArchiMer - Institutional Archive of IfremerOther literature type . 2022Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/fishes7060334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 FrancePublisher:Public Library of Science (PLoS) Mehdi Adjeroud; Haizea Jimenez; Haizea Jimenez; Christophe Peignon; Pascal Dumas; Laurent Wantiez;No-take marine reserves are one of the oldest and most versatile tools used across the Pacific for the conservation of reef resources, in particular for invertebrates traditionally targeted by local fishers. Assessing their actual efficiency is still a challenge in complex ecosystems such as coral reefs, where reserve effects are likely to be obscured by high levels of environmental variability. The goal of this study was to investigate the potential interference of small-scale habitat structure on the efficiency of reserves. The spatial distribution of widely harvested macroinvertebrates was surveyed in a large set of protected vs. unprotected stations from eleven reefs located in New Caledonia. Abundance, density and individual size data were collected along random, small-scale (20×1 m) transects. Fine habitat typology was derived with a quantitative photographic method using 17 local habitat variables. Marine reserves substantially augmented the local density, size structure and biomass of the target species. Density of Trochus niloticus and Tridacna maxima doubled globally inside the reserve network; average size was greater by 10 to 20% for T. niloticus. We demonstrated that the apparent success of protection could be obscured by marked variations in population structure occurring over short distances, resulting from small-scale heterogeneity in the reef habitat. The efficiency of reserves appeared to be modulated by the availability of suitable habitats at the decimetric scale ("microhabitats") for the considered sessile/low-mobile macroinvertebrate species. Incorporating microhabitat distribution could significantly enhance the efficiency of habitat surrogacy, a valuable approach in the case of conservation targets focusing on endangered or emblematic macroinvertebrate or relatively sedentary fish species.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0058998&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0058998&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2011 United Kingdom, United States, Australia, United Kingdom, Costa Rica, France, Costa Rica, Singapore, SpainPublisher:Public Library of Science (PLoS) Funded by:NSERCNSERCMarah J. Hardt; Kevin J. Gaston; Gustavo Paredes; Ivor D. Williams; Ivor D. Williams; Octavio Aburto-Oropeza; Arturo Ayala Bocos; Fernando Rivera; Fernando A. Zapata; Stuart A. Sandin; Joshua E. Cinner; Tau Morove; Amílcar Leví Cupul Magaña; Derek P. Tittensor; Derek P. Tittensor; Derek P. Tittensor; Mark Tupper; Sebastian C. A. Ferse; Emmanuel Tessier; Andrew G. Bauman; Andrew G. Bauman; Enric Sala; Pascale Chabanet; Yves Letourneur; Shaun K. Wilson; Andrew J. Brooks; Alison Green; Edward E. DeMartini; Edward E. DeMartini; Ismael Mascareñas-Osorio; Héctor Reyes Bonilla; David A. Feary; David A. Feary; Maria Beger; Camilo Mora; David J. Booth; Marc-Olivier Nadon; Marc-Olivier Nadon; German Soler; Paolo Usseglio; Paolo Usseglio; Yossi Loya; Alan M. Friedlander; Michel Kulbicki; Paula Ayotte; Paula Ayotte; Juan J. Cruz-Motta; Jorge Cortés; Hector M. Guzman; Rick D. Stuart-Smith; Camilo Martinez; Michel Loreau; Sandra Bessudo; Yohei Nakamura; Stuart Banks; Nicholas Polunin; Graham J. Edgar; Charlotte Gough; Andres López Pérez; Eran Brokovich; Laurent Wantiez; Morgan S. Pratchett; Laurent Vigliola; Nicholas A. J. Graham;Difficulties in scaling up theoretical and experimental results have raised controversy over the consequences of biodiversity loss for the functioning of natural ecosystems. Using a global survey of reef fish assemblages, we show that in contrast to previous theoretical and experimental studies, ecosystem functioning (as measured by standing biomass) scales in a non-saturating manner with biodiversity (as measured by species and functional richness) in this ecosystem. Our field study also shows a significant and negative interaction between human population density and biodiversity on ecosystem functioning (i.e., for the same human density there were larger reductions in standing biomass at more diverse reefs). Human effects were found to be related to fishing, coastal development, and land use stressors, and currently affect over 75% of the world's coral reefs. Our results indicate that the consequences of biodiversity loss in coral reefs have been considerably underestimated based on existing knowledge and that reef fish assemblages, particularly the most diverse, are greatly vulnerable to the expansion and intensity of anthropogenic stressors in coastal areas.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Nova Southeastern University: NSU WorksArticle . 2011License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2011 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAFachrepositorium LebenswissenschaftenArticle . 2011Data sources: Fachrepositorium LebenswissenschaftenNewcastle University Library ePrints ServiceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Universidad de Costa Rica: Repositorio KérwáArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.1000606&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 516 citations 516 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 77visibility views 77 download downloads 83 Powered bymore_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Nova Southeastern University: NSU WorksArticle . 2011License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2011 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAFachrepositorium LebenswissenschaftenArticle . 2011Data sources: Fachrepositorium LebenswissenschaftenNewcastle University Library ePrints ServiceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Universidad de Costa Rica: Repositorio KérwáArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.1000606&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 France, Australia, France, Australia, Australia, Australia, France, Australia, United KingdomPublisher:Proceedings of the National Academy of Sciences Funded by:ARC | Future Fellowships - Gran..., FCT | LA 1, ARC | ARC Centres of Excellence...ARC| Future Fellowships - Grant ID: FT160100047 ,FCT| LA 1 ,ARC| ARC Centres of Excellences - Grant ID: CE140100020Sebastian C. A. Ferse; David Mouillot; David Mouillot; David A. Feary; Charlotte Gough; U. Rashid Sumaila; Andrew S. Hoey; Eran Brokovich; Rick D. Stuart-Smith; Tim R. McClanahan; Pascale Chabanet; Stuart A. Sandin; Andrew J. Brooks; Alison Green; Graham J. Edgar; Eva Maire; Eva Maire; Cindy Huchery; Ivor D. Williams; Alan M. Friedlander; Joshua E. Cinner; Marah J. Hardt; Michele L. Barnes; Shinta Pardede; Georgina G. Gurney; Stephanie D’agata; Stephanie D’agata; Stephanie D’agata; John N. Kittinger; John N. Kittinger; David J. Booth; M. Aaron MacNeil; M. Aaron MacNeil; Mark Tupper; Juan J. Cruz-Motta; Michel Kulbicki; Camilo Mora; Maria Beger; Maria Beger; Shaun K. Wilson; Laurent Wantiez; Christina C. Hicks; Christina C. Hicks; Laurent Vigliola; Nicholas A. J. Graham; Nicholas A. J. Graham;Significance Marine reserves that prohibit fishing are a critical tool for sustaining coral reef ecosystems, yet it remains unclear how human impacts in surrounding areas affect the capacity of marine reserves to deliver key conservation benefits. Our global study found that only marine reserves in areas of low human impact consistently sustained top predators. Fish biomass inside marine reserves declined along a gradient of human impacts in surrounding areas; however, reserves located where human impacts are moderate had the greatest difference in fish biomass compared with openly fished areas. Reserves in low human-impact areas are required for sustaining ecological functions like high-order predation, but reserves in high-impact areas can provide substantial conservation gains in fish biomass.
Hyper Article en Lig... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1073/pnas.1708001115Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2018License: CC BY NC NDData sources: Fachrepositorium LebenswissenschaftenArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of IfremerThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1708001115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 215 citations 215 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2018Full-Text: https://doi.org/10.1073/pnas.1708001115Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefFachrepositorium LebenswissenschaftenArticle . 2018License: CC BY NC NDData sources: Fachrepositorium LebenswissenschaftenArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of IfremerThe University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1708001115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 Australia, Australia, France, United Kingdom, Australia, Australia, FrancePublisher:Inter-Research Science Center Authors: McClanahan, Tim R.; Schroeder, Robert E.; Friedlander, Alan M.; Vigliola, Laurent; +8 AuthorsMcClanahan, Tim R.; Schroeder, Robert E.; Friedlander, Alan M.; Vigliola, Laurent; Wantiez, Laurent; Caselle, Jennifer E.; Graham, Nicholas A.J.; Wilson, Shaun; Edgar, Graham J.; Stuart-Smith, Rick D.; Oddenyo, Remy M.; Cinner, J.E.;doi: 10.3354/meps12874
Baselines and benchmarks (B&Bs) are needed to evaluate the ecological status and fisheries potential of coral reefs. B&Bs may depend on habitat features and energetic limitations that constrain biomass within the natural variability of the environment and fish behaviors. To evaluate if broad B&Bs exist, we compiled data on the biomass of fishes in ~1000 reefs with no recent history of fishing in 19 ecoregions. These reefs spanned the full longitude and latitude of Indian and Pacific Ocean reefs and included older high-compliance fisheries closures (>15 yr closure) and remote reef areas (>9 h travel time from fisheries markets). There was no significant change in biomass over the 15 to 48 yr closure period but closures had only ~40% of the biomass (740 kg ha-1, lower confidence interval [LCI] = 660 kg ha-1, upper confidence interval [UCI] = 810 kg ha-1, n = 157) of remote tropical reefs (1870 [1730, 2000] kg ha-1, n = 503). Remote subtropical reefs had lower biomass (950 [860, 1040] kg ha-1, n = 329) than tropical reefs. Closures and remote reef fish biomass responded differently to environmental variables of coral cover, net primary productivity, and light, indicating that remote reefs are more limited by productivity and habitat than closures. Closures in fished seascapes are unlikely to achieve the biomass and community composition of remote reefs, which suggests fisheries benchmarks will differ substantially from wilderness baselines. A fishery benchmark (B0) of ~1000 kg ha-1 adjusted for geography is suggested for fisheries purposes. For ecological purposes, a wilderness baseline of ~1900 kg ha-1 is appropriate for including large and mobile species not well protected by closures.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2019Full-Text: https://doi.org/10.3354/meps12874Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2019Data sources: ArchiMer - Institutional Archive of IfremerUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps12874&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2019Full-Text: https://doi.org/10.3354/meps12874Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2019Data sources: ArchiMer - Institutional Archive of IfremerUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/meps12874&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 United Kingdom, Australia, Australia, France, Australia, France, FrancePublisher:Springer Science and Business Media LLC Funded by:FCT | LA 1FCT| LA 1David A. Feary; Sebastian C. A. Ferse; Andrew S. Hoey; David J. Booth; M. Aaron MacNeil; M. Aaron MacNeil; M. Aaron MacNeil; Katherine E. Holmes; David Mouillot; David Mouillot; Joseph Maina; Joseph Maina; Joseph Maina; Charlie Gough; Edward H. Allison; Pascale Chabanet; Tim R. McClanahan; Rick D. Stuart-Smith; Stuart Campbell; Joshua E. Cinner; Graham J. Edgar; Shaun K. Wilson; U. Rashid Sumaila; Eran Brokovich; Stuart A. Sandin; Marah J. Hardt; Stephanie D’agata; Stephanie D’agata; Stephanie D’agata; John N. Kittinger; John N. Kittinger; Christina C. Hicks; Christina C. Hicks; Christina C. Hicks; Ivor D. Williams; Michel Kulbicki; Andrew J. Brooks; Larry B. Crowder; Alison Green; Cindy Huchery; Eva Maire; Eva Maire; Maria Beger; Laurent Wantiez; Laurent Vigliola; Juan J. Cruz-Motta; Camilo Mora; Nicholas A. J. Graham; Nicholas A. J. Graham; Alan M. Friedlander; Mark Tupper;doi: 10.1038/nature18607
pmid: 27309809
Ongoing declines in the structure and function of the world’s coral reefs require novel approaches to sustain these ecosystems and the millions of people who depend on them3. A presently unexplored approach that draws on theory and practice in human health and rural development is to systematically identify and learn from the ‘outliers’—places where ecosystems are substantially better (‘bright spots’) or worse (‘dark spots’) than expected, given the environmental conditions and socioeconomic drivers they are exposed to. Here we compile data from more than 2,500 reefs worldwide and develop a Bayesian hierarchical model to generate expectations of how standing stocks of reef fish biomass are related to 18 socioeconomic drivers and environmental conditions. We identify 15 bright spots and 35 dark spots among our global survey of coral reefs, defined as sites that have biomass levels more than two standard deviations from expectations. Importantly, bright spots are not simply comprised of remote areas with low fishing pressure; they include localities where human populations and use of ecosystem resources is high, potentially providing insights into how communities have successfully confronted strong drivers of change. Conversely, dark spots are not necessarily the sites with the lowest absolute biomass and even include some remote, uninhabited locations often considered near pristine6. We surveyed local experts about social, institutional, and environmental conditions at these sites to reveal that bright spots are characterized by strong sociocultural institutions such as customary taboos and marine tenure, high levels of local engagement in management, high dependence on marine resources, and beneficial environmental conditions such as deep-water refuges. Alternatively, dark spots are characterized by intensive capture and storage technology and a recent history of environmental shocks. Our results suggest that investments in strengthening fisheries governance, particularly aspects such as participation and property rights, could facilitate innovative conservation actions that help communities defy expectations of global reef degradation.
Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2016 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/81029/1/Cinner_et_al_Bright_spots_Nature_second_revision.pdfData sources: Lancaster EPrintsLancaster University: Lancaster EprintsArticle . 2016License: CC BY NCFull-Text: https://eprints.lancs.ac.uk/id/eprint/81029/1/Cinner_et_al_Bright_spots_Nature_second_revision.pdfData sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2016Data sources: ArchiMer - Institutional Archive of IfremerJames Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature18607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 413 citations 413 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster EPrintsArticle . 2016 . Peer-reviewedFull-Text: https://eprints.lancs.ac.uk/id/eprint/81029/1/Cinner_et_al_Bright_spots_Nature_second_revision.pdfData sources: Lancaster EPrintsLancaster University: Lancaster EprintsArticle . 2016License: CC BY NCFull-Text: https://eprints.lancs.ac.uk/id/eprint/81029/1/Cinner_et_al_Bright_spots_Nature_second_revision.pdfData sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2016Data sources: ArchiMer - Institutional Archive of IfremerJames Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature18607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu