- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | ECCO-MATEEC| ECCO-MATEAuthors: LION, SIMONE; Michos, Constantine N.; Vlaskos, Ioannis; TACCANI, RODOLFO;handle: 11368/2904788 , 11368/2884115
This work assesses the possibility of fitting an organic Rankine cycle (ORC) system in a commercial agricultural tractor, recovering waste heat from a 300-kW brake power heavy-duty diesel engine. Two different cycle architectures are considered: a single evaporator layout to recover tail-pipe exhaust heat, and a parallel evaporator configuration to recover both exhaust and exhaust gas recirculation (EGR) heat. A second lower-temperature cooling circuit is also considered as possible different heat sink for the ORC system. Ten different working fluids have been assessed, and the optimum system configuration, in terms of fuel consumption, has been obtained applying an optimization algorithm to a process simulation model. A preliminary study has been carried out to evaluate the impact of the ORC system on the engine–vehicle-cooling system. A maximum fuel consumption reduction of 10.6% has been obtained using methanol and recovering heat from tail-pipe and EGR. However, considering also components and heat rejection performance, water steam, toluene and ethanol allow to obtain the best compromises between thermodynamic performance and engine–vehicle-cooling circuit impact.
Archivio istituziona... arrow_drop_down International Journal of Energy and Environmental EngineeringArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Energy and Environmental EngineeringArticleLicense: CC BYData sources: UnpayWallArchivio istituzionale della ricerca - Università di TriesteConference object . 2016International Journal of Energy and Environmental EngineeringJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40095-017-0234-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down International Journal of Energy and Environmental EngineeringArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Energy and Environmental EngineeringArticleLicense: CC BYData sources: UnpayWallArchivio istituzionale della ricerca - Università di TriesteConference object . 2016International Journal of Energy and Environmental EngineeringJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40095-017-0234-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | ECCO-MATEEC| ECCO-MATEAuthors: LION, SIMONE; Michos, Constantine N.; Vlaskos, Ioannis; TACCANI, RODOLFO;handle: 11368/2904788 , 11368/2884115
This work assesses the possibility of fitting an organic Rankine cycle (ORC) system in a commercial agricultural tractor, recovering waste heat from a 300-kW brake power heavy-duty diesel engine. Two different cycle architectures are considered: a single evaporator layout to recover tail-pipe exhaust heat, and a parallel evaporator configuration to recover both exhaust and exhaust gas recirculation (EGR) heat. A second lower-temperature cooling circuit is also considered as possible different heat sink for the ORC system. Ten different working fluids have been assessed, and the optimum system configuration, in terms of fuel consumption, has been obtained applying an optimization algorithm to a process simulation model. A preliminary study has been carried out to evaluate the impact of the ORC system on the engine–vehicle-cooling system. A maximum fuel consumption reduction of 10.6% has been obtained using methanol and recovering heat from tail-pipe and EGR. However, considering also components and heat rejection performance, water steam, toluene and ethanol allow to obtain the best compromises between thermodynamic performance and engine–vehicle-cooling circuit impact.
Archivio istituziona... arrow_drop_down International Journal of Energy and Environmental EngineeringArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Energy and Environmental EngineeringArticleLicense: CC BYData sources: UnpayWallArchivio istituzionale della ricerca - Università di TriesteConference object . 2016International Journal of Energy and Environmental EngineeringJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40095-017-0234-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down International Journal of Energy and Environmental EngineeringArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Energy and Environmental EngineeringArticleLicense: CC BYData sources: UnpayWallArchivio istituzionale della ricerca - Università di TriesteConference object . 2016International Journal of Energy and Environmental EngineeringJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40095-017-0234-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Funded by:EC | ECCO-MATEEC| ECCO-MATEAuthors: Lion, Simone; Vlaskos, Ioannis; Rouaud, Cedric; Taccani, Rodolfo;handle: 11368/2913172
The ECCO-MATE Project is a European Union funded project aimed to develop a synergistic framework for cutting edge research on novel engine technologies for higher energy efficiency and lower emissions. The project partners, Ricardo plc, an engineering consulting company, and the University of Trieste, focus the research attention on waste heat recovery systems, such as Organic Rankine Cycles (ORC), which are gaining increasing interest by engine manufacturers, vehicles and ships fleet operators, because of their potential for further increasing engine efficiency and decreasing fuel consumption. In particular, in the frame of the developed research activity, the 1-D Ricardo engine simulation software WAVE has been used in order to assess novel engine concepts, both in the commercial vehicles and marine sectors. A combined engine-ORC system First and Second Law of Thermodynamics analysis has been proposed in order to study where system inefficiencies are concentrated and propose improvements, with particular focus on commercial vehicle heavy duty diesel engines. A thermo-economic analysis has been also considered. In collaboration with the project partners National Technical University of Athens (NTUA) and Winterthur Gas & Diesel, an innovative low pressure Exhaust Gas Recirculation (EGR) configuration for low speed 2-stroke ship propulsion units has also been studied with the aim of reducing NOx in order to meet IMO Tier III emissions limits. ORC systems are, in this application also, a promising technology that can be used, in synergy with emission reduction systems, to recover, in particular, low temperature heat sources such as engine coolant and scavenging air, always with the aim of improving overall system efficiency while respecting new stringent emission reduction targets. The first results of the research activity show that a fuel consumption improvement up to 10% could be achieved both for commercial vehicles off-highway applications and in the marine sector, depending on the type of ORC and waste heat recovery architecture chosen and the engine considered.
Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Funded by:EC | ECCO-MATEEC| ECCO-MATEAuthors: Lion, Simone; Vlaskos, Ioannis; Rouaud, Cedric; Taccani, Rodolfo;handle: 11368/2913172
The ECCO-MATE Project is a European Union funded project aimed to develop a synergistic framework for cutting edge research on novel engine technologies for higher energy efficiency and lower emissions. The project partners, Ricardo plc, an engineering consulting company, and the University of Trieste, focus the research attention on waste heat recovery systems, such as Organic Rankine Cycles (ORC), which are gaining increasing interest by engine manufacturers, vehicles and ships fleet operators, because of their potential for further increasing engine efficiency and decreasing fuel consumption. In particular, in the frame of the developed research activity, the 1-D Ricardo engine simulation software WAVE has been used in order to assess novel engine concepts, both in the commercial vehicles and marine sectors. A combined engine-ORC system First and Second Law of Thermodynamics analysis has been proposed in order to study where system inefficiencies are concentrated and propose improvements, with particular focus on commercial vehicle heavy duty diesel engines. A thermo-economic analysis has been also considered. In collaboration with the project partners National Technical University of Athens (NTUA) and Winterthur Gas & Diesel, an innovative low pressure Exhaust Gas Recirculation (EGR) configuration for low speed 2-stroke ship propulsion units has also been studied with the aim of reducing NOx in order to meet IMO Tier III emissions limits. ORC systems are, in this application also, a promising technology that can be used, in synergy with emission reduction systems, to recover, in particular, low temperature heat sources such as engine coolant and scavenging air, always with the aim of improving overall system efficiency while respecting new stringent emission reduction targets. The first results of the research activity show that a fuel consumption improvement up to 10% could be achieved both for commercial vehicles off-highway applications and in the marine sector, depending on the type of ORC and waste heat recovery architecture chosen and the engine considered.
Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Elsevier BV Authors: Lion S.; Vlaskos I.; Taccani R.;handle: 11368/2959317
Reducing emissions from internal combustion engines is becoming one of the most important tasks for engine manufactures and transport regulatory organizations. In particular, the marine transportation sector is one of the most polluting, due to the intense maritime activity and the use of low-quality fuels, burned in Heavy Duty Diesel Engines, for ship propulsion and auxiliary power generation. In order to reduce the global shipping environmental impact, the IMO (International Maritime Organization) is restricting NOx and SOx ships’ emissions through the introduction of the IMO Tier III legislation, which requires to consider a wide spectrum of emissions reduction technologies and strategies, which are going to have an impact on the engine performance and fuel consumption. In this work, the main solutions being currently developed or adopted for low and medium speed Diesel engines have been reviewed from a qualitative, and sometimes quantitative, point of view, but, in comparison to previous literature, focusing more on their potential with respect to possible waste heat recovery systems utilization, such as, in particular, steam Rankine cycles and Organic Rankine Cycles (ORC). Indeed, even though many of the considered emissions mitigation technologies lead to a certain amount of penalty in fuel economy, the use of waste heat recovery systems to recover wasted engines energy could become interesting in order to develop more efficient but, at the same time, cleaner engines.
Archivio istituziona... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu166 citations 166 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Elsevier BV Authors: Lion S.; Vlaskos I.; Taccani R.;handle: 11368/2959317
Reducing emissions from internal combustion engines is becoming one of the most important tasks for engine manufactures and transport regulatory organizations. In particular, the marine transportation sector is one of the most polluting, due to the intense maritime activity and the use of low-quality fuels, burned in Heavy Duty Diesel Engines, for ship propulsion and auxiliary power generation. In order to reduce the global shipping environmental impact, the IMO (International Maritime Organization) is restricting NOx and SOx ships’ emissions through the introduction of the IMO Tier III legislation, which requires to consider a wide spectrum of emissions reduction technologies and strategies, which are going to have an impact on the engine performance and fuel consumption. In this work, the main solutions being currently developed or adopted for low and medium speed Diesel engines have been reviewed from a qualitative, and sometimes quantitative, point of view, but, in comparison to previous literature, focusing more on their potential with respect to possible waste heat recovery systems utilization, such as, in particular, steam Rankine cycles and Organic Rankine Cycles (ORC). Indeed, even though many of the considered emissions mitigation technologies lead to a certain amount of penalty in fuel economy, the use of waste heat recovery systems to recover wasted engines energy could become interesting in order to develop more efficient but, at the same time, cleaner engines.
Archivio istituziona... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu166 citations 166 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors: Michos, Constantine N.; LION, SIMONE; Vlaskos, Ioannis; TACCANI, RODOLFO;handle: 11368/2895905
In marine and power generation sectors, waste heat recovery technologies are attracting growing atten- tion in order to increase heavy duty diesel engines efficiency and decrease fuel consumption, with the purpose of respecting stringent emissions legislations. In this work, the backpressure effect of an Organic Rankine Cycle (ORC) evaporator on the exhaust line of a turbocharged, V12 heavy duty diesel engine, for typical marine and power generation applications has been investigated using the commercial software Ricardo WAVE. Three different state-of-the art turbocharging strategies are assessed in order to counterbalance the increased pumping losses of the engine due to the boiler installation: fixed turbine, Waste-Gate (WG) and Variable Geometry Turbine (VGT). At the same time, the steady-state thermodynamic performance of two different ORC configurations, simple tail-pipe evaporator and recuperated simple tail-pipe evaporator layouts, are assessed, with the scope of further increasing the engine power output, recovering unutilized exhaust gas heat. Several different working fluids, suitable for medium-high temperature waste heat recovery, are evaluated and screened, considering, as well, health and safety issues. Thermodynamic cycle parameters such as, for example, evaporation and condensing pressures, working fluid mass flow and cycle temperatures, are optimized in order to obtain the maximum improvement in Brake Specific Fuel Consumption (bsfc). From the engine side point of view, a VGT turbocharger is the most favorable solution to withstand increased backpressure, while, regarding the ORC side, between the considered fluids and layouts, acetone and a recuperated cycle show the most promising performance.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di TriesteArticle . 2017Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.11.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 64 citations 64 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di TriesteArticle . 2017Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.11.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors: Michos, Constantine N.; LION, SIMONE; Vlaskos, Ioannis; TACCANI, RODOLFO;handle: 11368/2895905
In marine and power generation sectors, waste heat recovery technologies are attracting growing atten- tion in order to increase heavy duty diesel engines efficiency and decrease fuel consumption, with the purpose of respecting stringent emissions legislations. In this work, the backpressure effect of an Organic Rankine Cycle (ORC) evaporator on the exhaust line of a turbocharged, V12 heavy duty diesel engine, for typical marine and power generation applications has been investigated using the commercial software Ricardo WAVE. Three different state-of-the art turbocharging strategies are assessed in order to counterbalance the increased pumping losses of the engine due to the boiler installation: fixed turbine, Waste-Gate (WG) and Variable Geometry Turbine (VGT). At the same time, the steady-state thermodynamic performance of two different ORC configurations, simple tail-pipe evaporator and recuperated simple tail-pipe evaporator layouts, are assessed, with the scope of further increasing the engine power output, recovering unutilized exhaust gas heat. Several different working fluids, suitable for medium-high temperature waste heat recovery, are evaluated and screened, considering, as well, health and safety issues. Thermodynamic cycle parameters such as, for example, evaporation and condensing pressures, working fluid mass flow and cycle temperatures, are optimized in order to obtain the maximum improvement in Brake Specific Fuel Consumption (bsfc). From the engine side point of view, a VGT turbocharger is the most favorable solution to withstand increased backpressure, while, regarding the ORC side, between the considered fluids and layouts, acetone and a recuperated cycle show the most promising performance.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di TriesteArticle . 2017Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.11.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 64 citations 64 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di TriesteArticle . 2017Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.11.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Funded by:EC | ECCO-MATEEC| ECCO-MATELION, SIMONE; Michos, Constantine N.; Vlaskos, Ioannis; Rouaud, Cedric; TACCANI, RODOLFO;handle: 11368/2904786
Heavy Duty Diesel Engine (HDDE) are between the biggest contributors to CO2 emission and ambient pollution as they are the most widely used technology for commercial vehicles and ship propulsion applications, as well as, together with reciprocating gas engines, for small medium-size distributed stationary power generation. New emission legislations in the on and off highway sectors, such as for example EURO VI and Tier 4 final, regarding NOx and Particulate Matter (PM), are also becoming year by year more stringent. For these reasons, in the last years, concerns about further engine development and efficiency improvement are of primary importance and several technologies have been studied and implemented. This review is meant to give an overview of the Organic Rankine Cycle (ORC) technology to recover wasted thermal energy in Heavy Duty Diesel Engines (e.g. exhaust gas, EGR, coolant circuit, charge air cooling, oil circuit) with particular focus on vehicle applications for on and off highway sectors (e.g. long-haul trucks, earthmoving machines, agricultural tractors). In addition, multiple different engine operating profiles in terms of torque and speed are gathered and reported for a variety of typical vehicles, in order to characterize the best system design point for the chosen application.
Archivio istituziona... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.05.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 141 citations 141 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.05.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Funded by:EC | ECCO-MATEEC| ECCO-MATELION, SIMONE; Michos, Constantine N.; Vlaskos, Ioannis; Rouaud, Cedric; TACCANI, RODOLFO;handle: 11368/2904786
Heavy Duty Diesel Engine (HDDE) are between the biggest contributors to CO2 emission and ambient pollution as they are the most widely used technology for commercial vehicles and ship propulsion applications, as well as, together with reciprocating gas engines, for small medium-size distributed stationary power generation. New emission legislations in the on and off highway sectors, such as for example EURO VI and Tier 4 final, regarding NOx and Particulate Matter (PM), are also becoming year by year more stringent. For these reasons, in the last years, concerns about further engine development and efficiency improvement are of primary importance and several technologies have been studied and implemented. This review is meant to give an overview of the Organic Rankine Cycle (ORC) technology to recover wasted thermal energy in Heavy Duty Diesel Engines (e.g. exhaust gas, EGR, coolant circuit, charge air cooling, oil circuit) with particular focus on vehicle applications for on and off highway sectors (e.g. long-haul trucks, earthmoving machines, agricultural tractors). In addition, multiple different engine operating profiles in terms of torque and speed are gathered and reported for a variety of typical vehicles, in order to characterize the best system design point for the chosen application.
Archivio istituziona... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.05.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 141 citations 141 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.05.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | ECCO-MATEEC| ECCO-MATEAuthors: LION, SIMONE; Michos, Constantine N.; Vlaskos, Ioannis; TACCANI, RODOLFO;handle: 11368/2904788 , 11368/2884115
This work assesses the possibility of fitting an organic Rankine cycle (ORC) system in a commercial agricultural tractor, recovering waste heat from a 300-kW brake power heavy-duty diesel engine. Two different cycle architectures are considered: a single evaporator layout to recover tail-pipe exhaust heat, and a parallel evaporator configuration to recover both exhaust and exhaust gas recirculation (EGR) heat. A second lower-temperature cooling circuit is also considered as possible different heat sink for the ORC system. Ten different working fluids have been assessed, and the optimum system configuration, in terms of fuel consumption, has been obtained applying an optimization algorithm to a process simulation model. A preliminary study has been carried out to evaluate the impact of the ORC system on the engine–vehicle-cooling system. A maximum fuel consumption reduction of 10.6% has been obtained using methanol and recovering heat from tail-pipe and EGR. However, considering also components and heat rejection performance, water steam, toluene and ethanol allow to obtain the best compromises between thermodynamic performance and engine–vehicle-cooling circuit impact.
Archivio istituziona... arrow_drop_down International Journal of Energy and Environmental EngineeringArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Energy and Environmental EngineeringArticleLicense: CC BYData sources: UnpayWallArchivio istituzionale della ricerca - Università di TriesteConference object . 2016International Journal of Energy and Environmental EngineeringJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40095-017-0234-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down International Journal of Energy and Environmental EngineeringArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Energy and Environmental EngineeringArticleLicense: CC BYData sources: UnpayWallArchivio istituzionale della ricerca - Università di TriesteConference object . 2016International Journal of Energy and Environmental EngineeringJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40095-017-0234-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | ECCO-MATEEC| ECCO-MATEAuthors: LION, SIMONE; Michos, Constantine N.; Vlaskos, Ioannis; TACCANI, RODOLFO;handle: 11368/2904788 , 11368/2884115
This work assesses the possibility of fitting an organic Rankine cycle (ORC) system in a commercial agricultural tractor, recovering waste heat from a 300-kW brake power heavy-duty diesel engine. Two different cycle architectures are considered: a single evaporator layout to recover tail-pipe exhaust heat, and a parallel evaporator configuration to recover both exhaust and exhaust gas recirculation (EGR) heat. A second lower-temperature cooling circuit is also considered as possible different heat sink for the ORC system. Ten different working fluids have been assessed, and the optimum system configuration, in terms of fuel consumption, has been obtained applying an optimization algorithm to a process simulation model. A preliminary study has been carried out to evaluate the impact of the ORC system on the engine–vehicle-cooling system. A maximum fuel consumption reduction of 10.6% has been obtained using methanol and recovering heat from tail-pipe and EGR. However, considering also components and heat rejection performance, water steam, toluene and ethanol allow to obtain the best compromises between thermodynamic performance and engine–vehicle-cooling circuit impact.
Archivio istituziona... arrow_drop_down International Journal of Energy and Environmental EngineeringArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Energy and Environmental EngineeringArticleLicense: CC BYData sources: UnpayWallArchivio istituzionale della ricerca - Università di TriesteConference object . 2016International Journal of Energy and Environmental EngineeringJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40095-017-0234-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down International Journal of Energy and Environmental EngineeringArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Energy and Environmental EngineeringArticleLicense: CC BYData sources: UnpayWallArchivio istituzionale della ricerca - Università di TriesteConference object . 2016International Journal of Energy and Environmental EngineeringJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40095-017-0234-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Funded by:EC | ECCO-MATEEC| ECCO-MATEAuthors: Lion, Simone; Vlaskos, Ioannis; Rouaud, Cedric; Taccani, Rodolfo;handle: 11368/2913172
The ECCO-MATE Project is a European Union funded project aimed to develop a synergistic framework for cutting edge research on novel engine technologies for higher energy efficiency and lower emissions. The project partners, Ricardo plc, an engineering consulting company, and the University of Trieste, focus the research attention on waste heat recovery systems, such as Organic Rankine Cycles (ORC), which are gaining increasing interest by engine manufacturers, vehicles and ships fleet operators, because of their potential for further increasing engine efficiency and decreasing fuel consumption. In particular, in the frame of the developed research activity, the 1-D Ricardo engine simulation software WAVE has been used in order to assess novel engine concepts, both in the commercial vehicles and marine sectors. A combined engine-ORC system First and Second Law of Thermodynamics analysis has been proposed in order to study where system inefficiencies are concentrated and propose improvements, with particular focus on commercial vehicle heavy duty diesel engines. A thermo-economic analysis has been also considered. In collaboration with the project partners National Technical University of Athens (NTUA) and Winterthur Gas & Diesel, an innovative low pressure Exhaust Gas Recirculation (EGR) configuration for low speed 2-stroke ship propulsion units has also been studied with the aim of reducing NOx in order to meet IMO Tier III emissions limits. ORC systems are, in this application also, a promising technology that can be used, in synergy with emission reduction systems, to recover, in particular, low temperature heat sources such as engine coolant and scavenging air, always with the aim of improving overall system efficiency while respecting new stringent emission reduction targets. The first results of the research activity show that a fuel consumption improvement up to 10% could be achieved both for commercial vehicles off-highway applications and in the marine sector, depending on the type of ORC and waste heat recovery architecture chosen and the engine considered.
Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Funded by:EC | ECCO-MATEEC| ECCO-MATEAuthors: Lion, Simone; Vlaskos, Ioannis; Rouaud, Cedric; Taccani, Rodolfo;handle: 11368/2913172
The ECCO-MATE Project is a European Union funded project aimed to develop a synergistic framework for cutting edge research on novel engine technologies for higher energy efficiency and lower emissions. The project partners, Ricardo plc, an engineering consulting company, and the University of Trieste, focus the research attention on waste heat recovery systems, such as Organic Rankine Cycles (ORC), which are gaining increasing interest by engine manufacturers, vehicles and ships fleet operators, because of their potential for further increasing engine efficiency and decreasing fuel consumption. In particular, in the frame of the developed research activity, the 1-D Ricardo engine simulation software WAVE has been used in order to assess novel engine concepts, both in the commercial vehicles and marine sectors. A combined engine-ORC system First and Second Law of Thermodynamics analysis has been proposed in order to study where system inefficiencies are concentrated and propose improvements, with particular focus on commercial vehicle heavy duty diesel engines. A thermo-economic analysis has been also considered. In collaboration with the project partners National Technical University of Athens (NTUA) and Winterthur Gas & Diesel, an innovative low pressure Exhaust Gas Recirculation (EGR) configuration for low speed 2-stroke ship propulsion units has also been studied with the aim of reducing NOx in order to meet IMO Tier III emissions limits. ORC systems are, in this application also, a promising technology that can be used, in synergy with emission reduction systems, to recover, in particular, low temperature heat sources such as engine coolant and scavenging air, always with the aim of improving overall system efficiency while respecting new stringent emission reduction targets. The first results of the research activity show that a fuel consumption improvement up to 10% could be achieved both for commercial vehicles off-highway applications and in the marine sector, depending on the type of ORC and waste heat recovery architecture chosen and the engine considered.
Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Elsevier BV Authors: Lion S.; Vlaskos I.; Taccani R.;handle: 11368/2959317
Reducing emissions from internal combustion engines is becoming one of the most important tasks for engine manufactures and transport regulatory organizations. In particular, the marine transportation sector is one of the most polluting, due to the intense maritime activity and the use of low-quality fuels, burned in Heavy Duty Diesel Engines, for ship propulsion and auxiliary power generation. In order to reduce the global shipping environmental impact, the IMO (International Maritime Organization) is restricting NOx and SOx ships’ emissions through the introduction of the IMO Tier III legislation, which requires to consider a wide spectrum of emissions reduction technologies and strategies, which are going to have an impact on the engine performance and fuel consumption. In this work, the main solutions being currently developed or adopted for low and medium speed Diesel engines have been reviewed from a qualitative, and sometimes quantitative, point of view, but, in comparison to previous literature, focusing more on their potential with respect to possible waste heat recovery systems utilization, such as, in particular, steam Rankine cycles and Organic Rankine Cycles (ORC). Indeed, even though many of the considered emissions mitigation technologies lead to a certain amount of penalty in fuel economy, the use of waste heat recovery systems to recover wasted engines energy could become interesting in order to develop more efficient but, at the same time, cleaner engines.
Archivio istituziona... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu166 citations 166 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Elsevier BV Authors: Lion S.; Vlaskos I.; Taccani R.;handle: 11368/2959317
Reducing emissions from internal combustion engines is becoming one of the most important tasks for engine manufactures and transport regulatory organizations. In particular, the marine transportation sector is one of the most polluting, due to the intense maritime activity and the use of low-quality fuels, burned in Heavy Duty Diesel Engines, for ship propulsion and auxiliary power generation. In order to reduce the global shipping environmental impact, the IMO (International Maritime Organization) is restricting NOx and SOx ships’ emissions through the introduction of the IMO Tier III legislation, which requires to consider a wide spectrum of emissions reduction technologies and strategies, which are going to have an impact on the engine performance and fuel consumption. In this work, the main solutions being currently developed or adopted for low and medium speed Diesel engines have been reviewed from a qualitative, and sometimes quantitative, point of view, but, in comparison to previous literature, focusing more on their potential with respect to possible waste heat recovery systems utilization, such as, in particular, steam Rankine cycles and Organic Rankine Cycles (ORC). Indeed, even though many of the considered emissions mitigation technologies lead to a certain amount of penalty in fuel economy, the use of waste heat recovery systems to recover wasted engines energy could become interesting in order to develop more efficient but, at the same time, cleaner engines.
Archivio istituziona... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu166 citations 166 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors: Michos, Constantine N.; LION, SIMONE; Vlaskos, Ioannis; TACCANI, RODOLFO;handle: 11368/2895905
In marine and power generation sectors, waste heat recovery technologies are attracting growing atten- tion in order to increase heavy duty diesel engines efficiency and decrease fuel consumption, with the purpose of respecting stringent emissions legislations. In this work, the backpressure effect of an Organic Rankine Cycle (ORC) evaporator on the exhaust line of a turbocharged, V12 heavy duty diesel engine, for typical marine and power generation applications has been investigated using the commercial software Ricardo WAVE. Three different state-of-the art turbocharging strategies are assessed in order to counterbalance the increased pumping losses of the engine due to the boiler installation: fixed turbine, Waste-Gate (WG) and Variable Geometry Turbine (VGT). At the same time, the steady-state thermodynamic performance of two different ORC configurations, simple tail-pipe evaporator and recuperated simple tail-pipe evaporator layouts, are assessed, with the scope of further increasing the engine power output, recovering unutilized exhaust gas heat. Several different working fluids, suitable for medium-high temperature waste heat recovery, are evaluated and screened, considering, as well, health and safety issues. Thermodynamic cycle parameters such as, for example, evaporation and condensing pressures, working fluid mass flow and cycle temperatures, are optimized in order to obtain the maximum improvement in Brake Specific Fuel Consumption (bsfc). From the engine side point of view, a VGT turbocharger is the most favorable solution to withstand increased backpressure, while, regarding the ORC side, between the considered fluids and layouts, acetone and a recuperated cycle show the most promising performance.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di TriesteArticle . 2017Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.11.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 64 citations 64 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di TriesteArticle . 2017Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.11.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors: Michos, Constantine N.; LION, SIMONE; Vlaskos, Ioannis; TACCANI, RODOLFO;handle: 11368/2895905
In marine and power generation sectors, waste heat recovery technologies are attracting growing atten- tion in order to increase heavy duty diesel engines efficiency and decrease fuel consumption, with the purpose of respecting stringent emissions legislations. In this work, the backpressure effect of an Organic Rankine Cycle (ORC) evaporator on the exhaust line of a turbocharged, V12 heavy duty diesel engine, for typical marine and power generation applications has been investigated using the commercial software Ricardo WAVE. Three different state-of-the art turbocharging strategies are assessed in order to counterbalance the increased pumping losses of the engine due to the boiler installation: fixed turbine, Waste-Gate (WG) and Variable Geometry Turbine (VGT). At the same time, the steady-state thermodynamic performance of two different ORC configurations, simple tail-pipe evaporator and recuperated simple tail-pipe evaporator layouts, are assessed, with the scope of further increasing the engine power output, recovering unutilized exhaust gas heat. Several different working fluids, suitable for medium-high temperature waste heat recovery, are evaluated and screened, considering, as well, health and safety issues. Thermodynamic cycle parameters such as, for example, evaporation and condensing pressures, working fluid mass flow and cycle temperatures, are optimized in order to obtain the maximum improvement in Brake Specific Fuel Consumption (bsfc). From the engine side point of view, a VGT turbocharger is the most favorable solution to withstand increased backpressure, while, regarding the ORC side, between the considered fluids and layouts, acetone and a recuperated cycle show the most promising performance.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di TriesteArticle . 2017Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.11.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 64 citations 64 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di TriesteArticle . 2017Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.11.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Funded by:EC | ECCO-MATEEC| ECCO-MATELION, SIMONE; Michos, Constantine N.; Vlaskos, Ioannis; Rouaud, Cedric; TACCANI, RODOLFO;handle: 11368/2904786
Heavy Duty Diesel Engine (HDDE) are between the biggest contributors to CO2 emission and ambient pollution as they are the most widely used technology for commercial vehicles and ship propulsion applications, as well as, together with reciprocating gas engines, for small medium-size distributed stationary power generation. New emission legislations in the on and off highway sectors, such as for example EURO VI and Tier 4 final, regarding NOx and Particulate Matter (PM), are also becoming year by year more stringent. For these reasons, in the last years, concerns about further engine development and efficiency improvement are of primary importance and several technologies have been studied and implemented. This review is meant to give an overview of the Organic Rankine Cycle (ORC) technology to recover wasted thermal energy in Heavy Duty Diesel Engines (e.g. exhaust gas, EGR, coolant circuit, charge air cooling, oil circuit) with particular focus on vehicle applications for on and off highway sectors (e.g. long-haul trucks, earthmoving machines, agricultural tractors). In addition, multiple different engine operating profiles in terms of torque and speed are gathered and reported for a variety of typical vehicles, in order to characterize the best system design point for the chosen application.
Archivio istituziona... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.05.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 141 citations 141 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.05.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Funded by:EC | ECCO-MATEEC| ECCO-MATELION, SIMONE; Michos, Constantine N.; Vlaskos, Ioannis; Rouaud, Cedric; TACCANI, RODOLFO;handle: 11368/2904786
Heavy Duty Diesel Engine (HDDE) are between the biggest contributors to CO2 emission and ambient pollution as they are the most widely used technology for commercial vehicles and ship propulsion applications, as well as, together with reciprocating gas engines, for small medium-size distributed stationary power generation. New emission legislations in the on and off highway sectors, such as for example EURO VI and Tier 4 final, regarding NOx and Particulate Matter (PM), are also becoming year by year more stringent. For these reasons, in the last years, concerns about further engine development and efficiency improvement are of primary importance and several technologies have been studied and implemented. This review is meant to give an overview of the Organic Rankine Cycle (ORC) technology to recover wasted thermal energy in Heavy Duty Diesel Engines (e.g. exhaust gas, EGR, coolant circuit, charge air cooling, oil circuit) with particular focus on vehicle applications for on and off highway sectors (e.g. long-haul trucks, earthmoving machines, agricultural tractors). In addition, multiple different engine operating profiles in terms of torque and speed are gathered and reported for a variety of typical vehicles, in order to characterize the best system design point for the chosen application.
Archivio istituziona... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.05.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 141 citations 141 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.05.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu