- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:American Chemical Society (ACS) Funded by:EC | IMPACTEC| IMPACTAuthors: Christopher D. Holmes; Pedro Campuzano Jost; Pedro Campuzano Jost; Hannah Halliday; +59 AuthorsChristopher D. Holmes; Pedro Campuzano Jost; Pedro Campuzano Jost; Hannah Halliday; Carley D. Fredrickson; G. S. Tyndall; L. Gregory Huey; Caroline C. Womack; Caroline C. Womack; Kirk Ullmann; Pamela S. Rickly; Pamela S. Rickly; Z. Decker; Z. Decker; Z. Decker; Jakob Lindaas; Joshua P. DiGangi; Siyuan Wang; Siyuan Wang; John B. Nowak; Michael A. Robinson; Michael A. Robinson; Michael A. Robinson; Glenn S. Diskin; Demetrios Pagonis; Demetrios Pagonis; Ann M. Middlebrook; Alessandro Franchin; Alessandro Franchin; Alessandro Franchin; Georgios I. Gkatzelis; Georgios I. Gkatzelis; Jeff Peischl; Jeff Peischl; Thomas B. Ryerson; Felix Piel; Felix Piel; Matthew M. Coggon; Matthew M. Coggon; Armin Wisthaler; Armin Wisthaler; Kanako Sekimoto; Ilann Bourgeois; Ilann Bourgeois; Denise D. Montzka; Patrick R. Veres; Rebecca A. Washenfelder; Andrew W. Rollins; Steven S. Brown; Steven S. Brown; Katherine Hayden; J. Andrew Neuman; J. Andrew Neuman; Brett B. Palm; Frank Flocke; Jose L. Jimenez; Jose L. Jimenez; Young Ro Lee; Joel A. Thornton; Samuel R. Hall; Carsten Warneke; Carsten Warneke; Andrew J. Weinheimer;pmid: 34817984
We present a novel method, the Gaussian observational model for edge to center heterogeneity (GOMECH), to quantify the horizontal chemical structure of plumes. GOMECH fits observations of short-lived emissions or products against a long-lived tracer (e.g., CO) to provide relative metrics for the plume width (wi/wCO) and center (bi/wCO). To validate GOMECH, we investigate OH and NO3 oxidation processes in smoke plumes sampled during FIREX-AQ (Fire Influence on Regional to Global Environments and Air Quality, a 2019 wildfire smoke study). An analysis of 430 crosswind transects demonstrates that nitrous acid (HONO), a primary source of OH, is narrower than CO (wHONO/wCO = 0.73-0.84 ± 0.01) and maleic anhydride (an OH oxidation product) is enhanced on plume edges (wmaleicanhydride/wCO = 1.06-1.12 ± 0.01). By contrast, NO3 production [P(NO3)] occurs mainly at the plume center (wP(NO3)/wCO = 0.91-1.00 ± 0.01). Phenolic emissions, highly reactive to OH and NO3, are narrower than CO (wphenol/wCO = 0.96 ± 0.03, wcatechol/wCO = 0.91 ± 0.01, and wmethylcatechol/wCO = 0.84 ± 0.01), suggesting that plume edge phenolic losses are the greatest. Yet, nitrophenolic aerosol, their oxidation product, is the greatest at the plume center (wnitrophenolicaerosol/wCO = 0.95 ± 0.02). In a large plume case study, GOMECH suggests that nitrocatechol aerosol is most associated with P(NO3). Last, we corroborate GOMECH with a large eddy simulation model which suggests most (55%) of nitrocatechol is produced through NO3 in our case study.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c03803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c03803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 GermanyPublisher:American Chemical Society (ACS) Pagonis, Demetrios; Selimovic, Vanessa; Campuzano-Jost, Pedro; Guo, Hongyu; Day, Douglas A.; Schueneman, Melinda K.; Nault, Benjamin A.; Coggon, Matthew M.; DiGangi, Joshua P.; Diskin, Glenn S.; Fortner, Edward C.; Gargulinski, Emily M.; Gkatzelis, Georgios; Hair, Johnathan W.; Herndon, Scott C.; Holmes, Christopher D.; Katich, Joseph M.; Nowak, John B.; Perring, Anne E.; Saide, Pablo; Shingler, Taylor J.; Soja, Amber J.; Thapa, Laura H.; Warneke, Carsten; Wiggins, Elizabeth B.; Wisthaler, Armin; Yacovitch, Tara I.; Yokelson, Robert J.; Jimenez, Jose L.;pmid: 37874964
Environmental science & technology 57(44), 17011 - 17021 (2023). doi:10.1021/acs.est.3c05017 Published by American Chemical Society, Columbus, Ohio
Juelich Shared Elect... arrow_drop_down Environmental Science & TechnologyArticle . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.3c05017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Environmental Science & TechnologyArticle . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.3c05017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:American Chemical Society (ACS) Armin Wisthaler; Armin Wisthaler; Solianna A. Herrera; Derek V. Mallia; Sally E. Pusede; Yonghoon Choi; Melissa Yang; Stephan F. J. De Wekker; Charles Harward; Glenn S. Diskin; Glen W. Sachse;pmid: 33759511
Nitrous oxide (N2O) is a long-lived greenhouse gas that also destroys stratospheric ozone. N2O emissions are uncertain and characterized by high spatiotemporal variability, making individual observations difficult to upscale, especially in mixed land use source regions like the San Joaquin Valley (SJV) of California. Here, we calculate spatially integrated N2O emission rates using nocturnal and convective boundary-layer budgeting methods. We utilize vertical profile measurements from the NASA DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality) campaign, which took place January-February, 2013. For empirical constraints on N2O source identity, we analyze N2O enhancement ratios with methane, ammonia, carbon dioxide, and carbon monoxide separately in the nocturnal boundary layer, nocturnal residual layer, and convective boundary layer. We find that an established inventory (EDGAR v4.3.2) underestimates N2O emissions by at least a factor of 2.5, that wintertime emissions from animal agriculture are important to annual totals, and that there is evidence for higher N2O emissions during the daytime than at night.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.0c08418&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.0c08418&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:American Chemical Society (ACS) Siyi Cai; Liang Zhu; Shuxiao Wang; Armin Wisthaler; Qing Li; Jingkun Jiang; Jiming Hao;pmid: 31288521
Coal combustion in low-efficiency household stoves results in the emission of large amounts of nonmethane organic compounds (NMOCs), including intermediate-volatility compounds (IVOCs) and semivolatile organic compounds (SVOCs). This conceptual picture is reasonably well established, however, quantitative assessment of I/SVOC emissions from household stoves is rare. We used a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) to quantify the emissions of organic gases from a typical Chinese household coal stove operated with anthracite and bituminous coals. Most NMOCs (approximately 64-88%) were dominated by hydrocarbons and emitted during the ignition and flaming phases. The ratio of oxidized hydrocarbons increased during the flaming and smoldering stages due to the elevated combustion efficiency. The average emission factors of NMOCs were 121 ± 25.7 and 3690 ± 930 mg/kg for anthracite and bituminous coals, respectively. I/SVOCs contributed to approximately 30% of the total emitted NMOC mass during bituminous coal combustion, much higher than the contribution of biomass burning (approximately 1.5%). Furthermore, I/SVOCs may contribute over 70% of the secondary organic aerosol (SOA) mass formed from gaseous organic species emitted as a result of bituminous coal combustion. This study highlights the importance of inventorying coal-originated I/SVOCs when conducting SOA formation simulation studies.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.9b00734&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.9b00734&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:American Chemical Society (ACS) Funded by:EC | IMPACTEC| IMPACTAuthors: Christopher D. Holmes; Pedro Campuzano Jost; Pedro Campuzano Jost; Hannah Halliday; +59 AuthorsChristopher D. Holmes; Pedro Campuzano Jost; Pedro Campuzano Jost; Hannah Halliday; Carley D. Fredrickson; G. S. Tyndall; L. Gregory Huey; Caroline C. Womack; Caroline C. Womack; Kirk Ullmann; Pamela S. Rickly; Pamela S. Rickly; Z. Decker; Z. Decker; Z. Decker; Jakob Lindaas; Joshua P. DiGangi; Siyuan Wang; Siyuan Wang; John B. Nowak; Michael A. Robinson; Michael A. Robinson; Michael A. Robinson; Glenn S. Diskin; Demetrios Pagonis; Demetrios Pagonis; Ann M. Middlebrook; Alessandro Franchin; Alessandro Franchin; Alessandro Franchin; Georgios I. Gkatzelis; Georgios I. Gkatzelis; Jeff Peischl; Jeff Peischl; Thomas B. Ryerson; Felix Piel; Felix Piel; Matthew M. Coggon; Matthew M. Coggon; Armin Wisthaler; Armin Wisthaler; Kanako Sekimoto; Ilann Bourgeois; Ilann Bourgeois; Denise D. Montzka; Patrick R. Veres; Rebecca A. Washenfelder; Andrew W. Rollins; Steven S. Brown; Steven S. Brown; Katherine Hayden; J. Andrew Neuman; J. Andrew Neuman; Brett B. Palm; Frank Flocke; Jose L. Jimenez; Jose L. Jimenez; Young Ro Lee; Joel A. Thornton; Samuel R. Hall; Carsten Warneke; Carsten Warneke; Andrew J. Weinheimer;pmid: 34817984
We present a novel method, the Gaussian observational model for edge to center heterogeneity (GOMECH), to quantify the horizontal chemical structure of plumes. GOMECH fits observations of short-lived emissions or products against a long-lived tracer (e.g., CO) to provide relative metrics for the plume width (wi/wCO) and center (bi/wCO). To validate GOMECH, we investigate OH and NO3 oxidation processes in smoke plumes sampled during FIREX-AQ (Fire Influence on Regional to Global Environments and Air Quality, a 2019 wildfire smoke study). An analysis of 430 crosswind transects demonstrates that nitrous acid (HONO), a primary source of OH, is narrower than CO (wHONO/wCO = 0.73-0.84 ± 0.01) and maleic anhydride (an OH oxidation product) is enhanced on plume edges (wmaleicanhydride/wCO = 1.06-1.12 ± 0.01). By contrast, NO3 production [P(NO3)] occurs mainly at the plume center (wP(NO3)/wCO = 0.91-1.00 ± 0.01). Phenolic emissions, highly reactive to OH and NO3, are narrower than CO (wphenol/wCO = 0.96 ± 0.03, wcatechol/wCO = 0.91 ± 0.01, and wmethylcatechol/wCO = 0.84 ± 0.01), suggesting that plume edge phenolic losses are the greatest. Yet, nitrophenolic aerosol, their oxidation product, is the greatest at the plume center (wnitrophenolicaerosol/wCO = 0.95 ± 0.02). In a large plume case study, GOMECH suggests that nitrocatechol aerosol is most associated with P(NO3). Last, we corroborate GOMECH with a large eddy simulation model which suggests most (55%) of nitrocatechol is produced through NO3 in our case study.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c03803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.1c03803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 GermanyPublisher:American Chemical Society (ACS) Pagonis, Demetrios; Selimovic, Vanessa; Campuzano-Jost, Pedro; Guo, Hongyu; Day, Douglas A.; Schueneman, Melinda K.; Nault, Benjamin A.; Coggon, Matthew M.; DiGangi, Joshua P.; Diskin, Glenn S.; Fortner, Edward C.; Gargulinski, Emily M.; Gkatzelis, Georgios; Hair, Johnathan W.; Herndon, Scott C.; Holmes, Christopher D.; Katich, Joseph M.; Nowak, John B.; Perring, Anne E.; Saide, Pablo; Shingler, Taylor J.; Soja, Amber J.; Thapa, Laura H.; Warneke, Carsten; Wiggins, Elizabeth B.; Wisthaler, Armin; Yacovitch, Tara I.; Yokelson, Robert J.; Jimenez, Jose L.;pmid: 37874964
Environmental science & technology 57(44), 17011 - 17021 (2023). doi:10.1021/acs.est.3c05017 Published by American Chemical Society, Columbus, Ohio
Juelich Shared Elect... arrow_drop_down Environmental Science & TechnologyArticle . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.3c05017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Environmental Science & TechnologyArticle . 2023 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.3c05017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:American Chemical Society (ACS) Armin Wisthaler; Armin Wisthaler; Solianna A. Herrera; Derek V. Mallia; Sally E. Pusede; Yonghoon Choi; Melissa Yang; Stephan F. J. De Wekker; Charles Harward; Glenn S. Diskin; Glen W. Sachse;pmid: 33759511
Nitrous oxide (N2O) is a long-lived greenhouse gas that also destroys stratospheric ozone. N2O emissions are uncertain and characterized by high spatiotemporal variability, making individual observations difficult to upscale, especially in mixed land use source regions like the San Joaquin Valley (SJV) of California. Here, we calculate spatially integrated N2O emission rates using nocturnal and convective boundary-layer budgeting methods. We utilize vertical profile measurements from the NASA DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality) campaign, which took place January-February, 2013. For empirical constraints on N2O source identity, we analyze N2O enhancement ratios with methane, ammonia, carbon dioxide, and carbon monoxide separately in the nocturnal boundary layer, nocturnal residual layer, and convective boundary layer. We find that an established inventory (EDGAR v4.3.2) underestimates N2O emissions by at least a factor of 2.5, that wintertime emissions from animal agriculture are important to annual totals, and that there is evidence for higher N2O emissions during the daytime than at night.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.0c08418&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.0c08418&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:American Chemical Society (ACS) Siyi Cai; Liang Zhu; Shuxiao Wang; Armin Wisthaler; Qing Li; Jingkun Jiang; Jiming Hao;pmid: 31288521
Coal combustion in low-efficiency household stoves results in the emission of large amounts of nonmethane organic compounds (NMOCs), including intermediate-volatility compounds (IVOCs) and semivolatile organic compounds (SVOCs). This conceptual picture is reasonably well established, however, quantitative assessment of I/SVOC emissions from household stoves is rare. We used a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) to quantify the emissions of organic gases from a typical Chinese household coal stove operated with anthracite and bituminous coals. Most NMOCs (approximately 64-88%) were dominated by hydrocarbons and emitted during the ignition and flaming phases. The ratio of oxidized hydrocarbons increased during the flaming and smoldering stages due to the elevated combustion efficiency. The average emission factors of NMOCs were 121 ± 25.7 and 3690 ± 930 mg/kg for anthracite and bituminous coals, respectively. I/SVOCs contributed to approximately 30% of the total emitted NMOC mass during bituminous coal combustion, much higher than the contribution of biomass burning (approximately 1.5%). Furthermore, I/SVOCs may contribute over 70% of the secondary organic aerosol (SOA) mass formed from gaseous organic species emitted as a result of bituminous coal combustion. This study highlights the importance of inventorying coal-originated I/SVOCs when conducting SOA formation simulation studies.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.9b00734&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.9b00734&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu