Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Qingguo Li; Shuozhi Yang; Brenda Brouwer; Alison C. Novak;

    A decline in walking capacity and high energy cost can limit mobility following stroke. Mechanical energy exchange between lower limb and trunk segments can reflect gait inefficiencies, but reveals little about active energy flow between adjacent segments through muscle actions. This study evaluated mechanical energy expenditures (MEEs) during walking in stroke and healthy groups to understand movement control and explore the impact of walking speed on mechanical energy exchanges.Thirteen adults with hemiparesis and six healthy controls walked at self-selected speed. Power curves for each lower limb joint were segmented into concentric and eccentric sources of muscle power and transfer/no-transfer modes to calculate MEEs during stance.MEEs were lower in the stroke group on the affected side compared to the less affected side and compared to controls. Specifically, the affected plantarflexors transferred less energy distally via concentric action in late stance compared to the less affected side. However, the stroke group generated greater energy at the ankle in the absence of transfer compared to controls. Less concentrically transferred energy through midstance and absorbed in late stance was evident by the knee extensors bilaterally in stroke. At the hip, the total energy (no transfer) was reduced on the affected side. Classifying stroke subjects by walking speed (.6m/s) revealed disruptions in harnessing energy through motion and transfer energy across segments in the slower group.The limited ability of those with stroke to exploit intersegmental energy transfer to optimize efficiency may limit endurance and functional independence.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Gait & Posturearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Gait & Posture
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    9
    citations9
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Gait & Posturearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Gait & Posture
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Alison C. Novak; Brenda Brouwer; Shuozhi Yang; Qingguo Li;

    Older adults present with altered movement patterns during stair negotiation although the extent to which modifications in pattern and speed influence mechanical efficiency is unknown. This study evaluated mechanical energy transfers attributed to active force production during stair negotiation in young and older adults to provide insight into age-related changes in mechanical efficiency. Secondary analysis on data obtained from 23 young (23.7±3.0 years) and 32 older adults (67.0±8.2 years) during self-paced stair ascent and descent was conducted. Mechanical energy expenditures (MEE) during concentric transfer, eccentric transfer and no-transfer phases were determined for the ankle, knee and hip power profiles in the sagittal plane. Mechanical energy compensations (MEC) were also determined at each joint. During ascent, MEEs were similar for young and older adults although older adults compensated ankle muscles to a lesser extent during concentric muscle action. Controlling for cadence eliminated this difference. During descent, older adults demonstrated lower energy expenditures at the ankle and hip and similar expenditures at the knee compared to young adults. Changes in joint MEE in the older group resulted in reduced energy compensation at the ankle during concentric and eccentric activity and at the knee during eccentric activity. These age-related differences in mechanical energy transfers and related adjustments in MEC were not a function of the slower cadence in older adults and suggest a loss in mechanical efficiency. These results provide a benchmark against which physical impairments in older adults may be explored.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Gait & Posturearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Gait & Posture
    Article . 2011 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    20
    citations20
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Gait & Posturearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Gait & Posture
      Article . 2011 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Qingguo Li; Shuozhi Yang; Brenda Brouwer; Alison C. Novak;

    A decline in walking capacity and high energy cost can limit mobility following stroke. Mechanical energy exchange between lower limb and trunk segments can reflect gait inefficiencies, but reveals little about active energy flow between adjacent segments through muscle actions. This study evaluated mechanical energy expenditures (MEEs) during walking in stroke and healthy groups to understand movement control and explore the impact of walking speed on mechanical energy exchanges.Thirteen adults with hemiparesis and six healthy controls walked at self-selected speed. Power curves for each lower limb joint were segmented into concentric and eccentric sources of muscle power and transfer/no-transfer modes to calculate MEEs during stance.MEEs were lower in the stroke group on the affected side compared to the less affected side and compared to controls. Specifically, the affected plantarflexors transferred less energy distally via concentric action in late stance compared to the less affected side. However, the stroke group generated greater energy at the ankle in the absence of transfer compared to controls. Less concentrically transferred energy through midstance and absorbed in late stance was evident by the knee extensors bilaterally in stroke. At the hip, the total energy (no transfer) was reduced on the affected side. Classifying stroke subjects by walking speed (.6m/s) revealed disruptions in harnessing energy through motion and transfer energy across segments in the slower group.The limited ability of those with stroke to exploit intersegmental energy transfer to optimize efficiency may limit endurance and functional independence.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Gait & Posturearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Gait & Posture
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    9
    citations9
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Gait & Posturearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Gait & Posture
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Alison C. Novak; Brenda Brouwer; Shuozhi Yang; Qingguo Li;

    Older adults present with altered movement patterns during stair negotiation although the extent to which modifications in pattern and speed influence mechanical efficiency is unknown. This study evaluated mechanical energy transfers attributed to active force production during stair negotiation in young and older adults to provide insight into age-related changes in mechanical efficiency. Secondary analysis on data obtained from 23 young (23.7±3.0 years) and 32 older adults (67.0±8.2 years) during self-paced stair ascent and descent was conducted. Mechanical energy expenditures (MEE) during concentric transfer, eccentric transfer and no-transfer phases were determined for the ankle, knee and hip power profiles in the sagittal plane. Mechanical energy compensations (MEC) were also determined at each joint. During ascent, MEEs were similar for young and older adults although older adults compensated ankle muscles to a lesser extent during concentric muscle action. Controlling for cadence eliminated this difference. During descent, older adults demonstrated lower energy expenditures at the ankle and hip and similar expenditures at the knee compared to young adults. Changes in joint MEE in the older group resulted in reduced energy compensation at the ankle during concentric and eccentric activity and at the knee during eccentric activity. These age-related differences in mechanical energy transfers and related adjustments in MEC were not a function of the slower cadence in older adults and suggest a loss in mechanical efficiency. These results provide a benchmark against which physical impairments in older adults may be explored.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Gait & Posturearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Gait & Posture
    Article . 2011 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    20
    citations20
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Gait & Posturearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Gait & Posture
      Article . 2011 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph