- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Funder
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Qingguo Li; Shuozhi Yang; Brenda Brouwer; Alison C. Novak;pmid: 25582805
A decline in walking capacity and high energy cost can limit mobility following stroke. Mechanical energy exchange between lower limb and trunk segments can reflect gait inefficiencies, but reveals little about active energy flow between adjacent segments through muscle actions. This study evaluated mechanical energy expenditures (MEEs) during walking in stroke and healthy groups to understand movement control and explore the impact of walking speed on mechanical energy exchanges.Thirteen adults with hemiparesis and six healthy controls walked at self-selected speed. Power curves for each lower limb joint were segmented into concentric and eccentric sources of muscle power and transfer/no-transfer modes to calculate MEEs during stance.MEEs were lower in the stroke group on the affected side compared to the less affected side and compared to controls. Specifically, the affected plantarflexors transferred less energy distally via concentric action in late stance compared to the less affected side. However, the stroke group generated greater energy at the ankle in the absence of transfer compared to controls. Less concentrically transferred energy through midstance and absorbed in late stance was evident by the knee extensors bilaterally in stroke. At the hip, the total energy (no transfer) was reduced on the affected side. Classifying stroke subjects by walking speed (.6m/s) revealed disruptions in harnessing energy through motion and transfer energy across segments in the slower group.The limited ability of those with stroke to exploit intersegmental energy transfer to optimize efficiency may limit endurance and functional independence.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gaitpost.2014.12.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gaitpost.2014.12.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: Alison C. Novak; Brenda Brouwer; Shuozhi Yang; Qingguo Li;pmid: 21733694
Older adults present with altered movement patterns during stair negotiation although the extent to which modifications in pattern and speed influence mechanical efficiency is unknown. This study evaluated mechanical energy transfers attributed to active force production during stair negotiation in young and older adults to provide insight into age-related changes in mechanical efficiency. Secondary analysis on data obtained from 23 young (23.7±3.0 years) and 32 older adults (67.0±8.2 years) during self-paced stair ascent and descent was conducted. Mechanical energy expenditures (MEE) during concentric transfer, eccentric transfer and no-transfer phases were determined for the ankle, knee and hip power profiles in the sagittal plane. Mechanical energy compensations (MEC) were also determined at each joint. During ascent, MEEs were similar for young and older adults although older adults compensated ankle muscles to a lesser extent during concentric muscle action. Controlling for cadence eliminated this difference. During descent, older adults demonstrated lower energy expenditures at the ankle and hip and similar expenditures at the knee compared to young adults. Changes in joint MEE in the older group resulted in reduced energy compensation at the ankle during concentric and eccentric activity and at the knee during eccentric activity. These age-related differences in mechanical energy transfers and related adjustments in MEC were not a function of the slower cadence in older adults and suggest a loss in mechanical efficiency. These results provide a benchmark against which physical impairments in older adults may be explored.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gaitpost.2011.06.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gaitpost.2011.06.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Qingguo Li; Shuozhi Yang; Brenda Brouwer; Alison C. Novak;pmid: 25582805
A decline in walking capacity and high energy cost can limit mobility following stroke. Mechanical energy exchange between lower limb and trunk segments can reflect gait inefficiencies, but reveals little about active energy flow between adjacent segments through muscle actions. This study evaluated mechanical energy expenditures (MEEs) during walking in stroke and healthy groups to understand movement control and explore the impact of walking speed on mechanical energy exchanges.Thirteen adults with hemiparesis and six healthy controls walked at self-selected speed. Power curves for each lower limb joint were segmented into concentric and eccentric sources of muscle power and transfer/no-transfer modes to calculate MEEs during stance.MEEs were lower in the stroke group on the affected side compared to the less affected side and compared to controls. Specifically, the affected plantarflexors transferred less energy distally via concentric action in late stance compared to the less affected side. However, the stroke group generated greater energy at the ankle in the absence of transfer compared to controls. Less concentrically transferred energy through midstance and absorbed in late stance was evident by the knee extensors bilaterally in stroke. At the hip, the total energy (no transfer) was reduced on the affected side. Classifying stroke subjects by walking speed (.6m/s) revealed disruptions in harnessing energy through motion and transfer energy across segments in the slower group.The limited ability of those with stroke to exploit intersegmental energy transfer to optimize efficiency may limit endurance and functional independence.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gaitpost.2014.12.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gaitpost.2014.12.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: Alison C. Novak; Brenda Brouwer; Shuozhi Yang; Qingguo Li;pmid: 21733694
Older adults present with altered movement patterns during stair negotiation although the extent to which modifications in pattern and speed influence mechanical efficiency is unknown. This study evaluated mechanical energy transfers attributed to active force production during stair negotiation in young and older adults to provide insight into age-related changes in mechanical efficiency. Secondary analysis on data obtained from 23 young (23.7±3.0 years) and 32 older adults (67.0±8.2 years) during self-paced stair ascent and descent was conducted. Mechanical energy expenditures (MEE) during concentric transfer, eccentric transfer and no-transfer phases were determined for the ankle, knee and hip power profiles in the sagittal plane. Mechanical energy compensations (MEC) were also determined at each joint. During ascent, MEEs were similar for young and older adults although older adults compensated ankle muscles to a lesser extent during concentric muscle action. Controlling for cadence eliminated this difference. During descent, older adults demonstrated lower energy expenditures at the ankle and hip and similar expenditures at the knee compared to young adults. Changes in joint MEE in the older group resulted in reduced energy compensation at the ankle during concentric and eccentric activity and at the knee during eccentric activity. These age-related differences in mechanical energy transfers and related adjustments in MEC were not a function of the slower cadence in older adults and suggest a loss in mechanical efficiency. These results provide a benchmark against which physical impairments in older adults may be explored.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gaitpost.2011.06.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gaitpost.2011.06.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu