- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 Australia, United States, India, Brazil, India, Netherlands, China (People's Republic of), Brazil, China (People's Republic of), United KingdomPublisher:Wiley Funded by:EC | GEM-TRAITEC| GEM-TRAITAuthors:Alexandre Adalardo de Oliveira;
Xihua Wang; Jonathan Myers;Alexandre Adalardo de Oliveira
Alexandre Adalardo de Oliveira in OpenAIREGeoffrey G. Parker;
+116 AuthorsGeoffrey G. Parker
Geoffrey G. Parker in OpenAIREAlexandre Adalardo de Oliveira;
Xihua Wang; Jonathan Myers;Alexandre Adalardo de Oliveira
Alexandre Adalardo de Oliveira in OpenAIREGeoffrey G. Parker;
Geoffrey G. Parker
Geoffrey G. Parker in OpenAIRENorman A. Bourg;
Norman A. Bourg
Norman A. Bourg in OpenAIREJill Thompson;
Margaret F. Kinnaird; Keith Clay; Xiaojun Du; Dairon Cárdenas;Jill Thompson
Jill Thompson in OpenAIREVojtech Novotny;
Vojtech Novotny
Vojtech Novotny in OpenAIREJitendra Kumar;
Christine Fletcher; Raman Sukumar; George B. Chuyong; Billy C.H. Hau;Jitendra Kumar
Jitendra Kumar in OpenAIREPatrick A. Jansen;
Patrick A. Jansen;Patrick A. Jansen
Patrick A. Jansen in OpenAIRENathalie Butt;
Nathalie Butt;Nathalie Butt
Nathalie Butt in OpenAIRESarayudh Bunyavejchewin;
Han Xu; Stuart J. Davies; Stuart J. Davies; Keping Ma;Sarayudh Bunyavejchewin
Sarayudh Bunyavejchewin in OpenAIRERebecca Ostertag;
Xiaobao Deng; Yide Li;Rebecca Ostertag
Rebecca Ostertag in OpenAIREWilliam W. Hargrove;
George D. Weiblen; Gregory S. Gilbert; Gregory S. Gilbert; Christian P. Giardina; Rafizah Mat Serudin; Takashi Mizuno; Michael D. Morecroft; Gunter A. Fischer;William W. Hargrove
William W. Hargrove in OpenAIREJean-Remy Makana;
Stephen P. Hubbell; Stephen P. Hubbell; Faith Inman-Narahari; Moses N. Sainge;Jean-Remy Makana
Jean-Remy Makana in OpenAIREYves Basset;
Xiangcheng Mi;Yves Basset
Yves Basset in OpenAIREDaniel J. Johnson;
Daniel J. Johnson
Daniel J. Johnson in OpenAIRERichard P. Phillips;
Fangliang He; David F. R. P. Burslem; Mingxi Jiang; H. S. Suresh; Matteo Detto; Witchaphart Sungpalee;Richard P. Phillips
Richard P. Phillips in OpenAIREYadvinder Malhi;
Yadvinder Malhi
Yadvinder Malhi in OpenAIREXugao Wang;
Min Cao; Robert W. Howe; Sean M. McMahon; Sean M. McMahon; Shawn K. Y. Lum;Xugao Wang
Xugao Wang in OpenAIREDavid Kenfack;
David Kenfack;David Kenfack
David Kenfack in OpenAIREJames A. Lutz;
Amy Wolf; Kamariah Abu Salim; Warren Y. Brockelman;James A. Lutz
James A. Lutz in OpenAIREPerry S. Ong;
H. S. Dattaraja; Tomáš Vrška; David L. Erikson; Corneille E. N. Ewango; I-Fang Sun; Lisa Korte;Perry S. Ong
Perry S. Ong in OpenAIRES. Joseph Wright;
Susan Cordell; Jan den Ouden;S. Joseph Wright
S. Joseph Wright in OpenAIRELawren Sack;
Lawren Sack
Lawren Sack in OpenAIREAndrew J. Larson;
Sandra L. Yap;Andrew J. Larson
Andrew J. Larson in OpenAIREBenjamin L. Turner;
Jess K. Zimmerman; Abdul Rahman Kassim;Benjamin L. Turner
Benjamin L. Turner in OpenAIREAmy C. Bennett;
Sylvester Tan;Amy C. Bennett
Amy C. Bennett in OpenAIREAngelica M. Almeyda Zambrano;
Angelica M. Almeyda Zambrano; Angelica M. Almeyda Zambrano; Shirong Liu; Staline Kibet;Angelica M. Almeyda Zambrano
Angelica M. Almeyda Zambrano in OpenAIREHelene C. Muller-Landau;
María Uriarte;Helene C. Muller-Landau
Helene C. Muller-Landau in OpenAIRERenato Valencia;
Nimal Gunatilleke; Alfonso Alonso; Savitri Gunatilleke; Marta I. Vallejo; Duncan W. Thomas;Renato Valencia
Renato Valencia in OpenAIREKristina J. Anderson-Teixeira;
Kristina J. Anderson-Teixeira; Zhanqing Hao; Robin B. Foster; Erika Gonzalez-Akre; Kriangsak Sri-ngernyuang;Kristina J. Anderson-Teixeira
Kristina J. Anderson-Teixeira in OpenAIREEben N. Broadbent;
Eben N. Broadbent; Eben N. Broadbent; Weiguo Sang; Hervé Memiaghe;Eben N. Broadbent
Eben N. Broadbent in OpenAIREForrest M. Hoffman;
Terese B. Hart; Alvaro Duque; Sean C. Thomas;Forrest M. Hoffman
Forrest M. Hoffman in OpenAIREAlberto Vicentini;
Mamoru Kanzaki; Xiankun Li;Alberto Vicentini
Alberto Vicentini in OpenAIREDavid A. Orwig;
Jennifer L. Baltzer; Toby R. Marthews; Damian M. Maddalena;David A. Orwig
David A. Orwig in OpenAIREKamil Král;
Kamil Král
Kamil Král in OpenAIREWilliam J. McShea;
William J. McShea
William J. McShea in OpenAIREAbstractGlobal change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long‐term forest dynamics research sites (CTFS‐ForestGEO) useful for characterizing forest responses to global change. Within very large plots (median size 25 ha), all stems ≥1 cm diameter are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS‐ForestGEO spans 25°S–61°N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to each of the world's major forest biomes. Supplementary standardized measurements at subsets of the sites provide additional information on plants, animals, and ecosystem and environmental variables. CTFS‐ForestGEO sites are experiencing multifaceted anthropogenic global change pressures including warming (average 0.61 °C), changes in precipitation (up to ±30% change), atmospheric deposition of nitrogen and sulfur compounds (up to 3.8 g N m−2 yr−1 and 3.1 g S m−2 yr−1), and forest fragmentation in the surrounding landscape (up to 88% reduced tree cover within 5 km). The broad suite of measurements made at CTFS‐ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics. Ongoing research across the CTFS‐ForestGEO network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/3rs0b0skData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiahttp://dx.doi.org/10.1111/gcb....Article . Peer-reviewedData sources: European Union Open Data PortalThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 505 citations 505 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/3rs0b0skData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of Californiahttp://dx.doi.org/10.1111/gcb....Article . Peer-reviewedData sources: European Union Open Data PortalThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 Brazil, United Kingdom, Germany, United Kingdom, Netherlands, BrazilPublisher:American Association for the Advancement of Science (AAAS) Funded by:EC | ROBIN, NSF | CAREER: Ecosystem process..., NSF | COLLABORATIVE RESEARCH: M... +7 projectsEC| ROBIN ,NSF| CAREER: Ecosystem processes in regenerating tropical dry forests: linking plant functional traits, stands, and landscapes ,NSF| COLLABORATIVE RESEARCH: MODELING SUCCESSIONAL VEGETATION DYNAMICS IN WET TROPICAL FORESTS AT MULTIPLE SCALES: INTEGRATING NEIGHBORHOOD EFFECTS, FUNCTIONAL TRAITS, AND PHYLOGENY ,NSF| Collaborative Research/LTREB Successional pathways and rates of change in tropical forests of Brazil, Costa Rica, and Mexico ,NSF| Collaborative Research/LTREB Renewal: Successional Pathways and Rates of Change in Tropical Forests of Brazil, Costa Rica and Mexico ,NSF| Controls on the Storage and Loss of Soil Organic Carbon with Reforestation of Abandoned Pastures ,NSF| Collaborative Research/LTREB Successional pathways and rates of change in tropical forests of Brazil, Costa Rica, and Mexico ,NSF| CNH-RCN: Tropical Reforestation Network: Building a Socioecological Understanding of Tropical Reforestation ,NSF| Collaborative Research/LTREB Renewal: Successional Pathways and Rates of Change in Tropical Forests of Brazil, Costa Rica and Mexico ,NSF| CAREER: Land Use and Environmental Controls on Soil Carbon in Human-Dominated Tropical LandscapesAuthors: Robin L. Chazdon; Robin L. Chazdon;Yule Roberta Ferreira Nunes;
Danaë M. A. Rozendaal; +70 AuthorsYule Roberta Ferreira Nunes
Yule Roberta Ferreira Nunes in OpenAIRERobin L. Chazdon; Robin L. Chazdon;Yule Roberta Ferreira Nunes;
Danaë M. A. Rozendaal; Danaë M. A. Rozendaal; Danaë M. A. Rozendaal;Yule Roberta Ferreira Nunes
Yule Roberta Ferreira Nunes in OpenAIREHans van der Wal;
Hans van der Wal;Hans van der Wal
Hans van der Wal in OpenAIREPaulo Eduardo dos Santos Massoca;
Paulo Eduardo dos Santos Massoca
Paulo Eduardo dos Santos Massoca in OpenAIREMadelon Lohbeck;
Madelon Lohbeck; Hans F. M. Vester;Madelon Lohbeck
Madelon Lohbeck in OpenAIREEben N. Broadbent;
Eben N. Broadbent
Eben N. Broadbent in OpenAIREJorge A. Meave;
Jorge A. Meave
Jorge A. Meave in OpenAIREJarcilene S. Almeida-Cortez;
Jarcilene S. Almeida-Cortez
Jarcilene S. Almeida-Cortez in OpenAIREIma Célia Guimarães Vieira;
Jorge Rodríguez-Velázquez; José Luis Hernández-Stefanoni;Ima Célia Guimarães Vieira
Ima Célia Guimarães Vieira in OpenAIREArturo Sanchez-Azofeifa;
Ben de Jong; María Uriarte;Arturo Sanchez-Azofeifa
Arturo Sanchez-Azofeifa in OpenAIREJefferson S. Hall;
Jefferson S. Hall
Jefferson S. Hall in OpenAIREFrans Bongers;
Frans Bongers
Frans Bongers in OpenAIREIsabel Eunice Romero-Pérez;
María C. Fandiño;Isabel Eunice Romero-Pérez
Isabel Eunice Romero-Pérez in OpenAIREAngelica M. Almeyda Zambrano;
Angelica M. Almeyda Zambrano
Angelica M. Almeyda Zambrano in OpenAIRERobert Muscarella;
Robert Muscarella;Robert Muscarella
Robert Muscarella in OpenAIRERicardo Gomes César;
Ricardo Gomes César
Ricardo Gomes César in OpenAIREMarc K. Steininger;
T. Mitchell Aide;Marc K. Steininger
Marc K. Steininger in OpenAIREPedro H. S. Brancalion;
Justin M. Becknell;Pedro H. S. Brancalion
Pedro H. S. Brancalion in OpenAIRELourens Poorter;
Lourens Poorter
Lourens Poorter in OpenAIRESusana Ochoa-Gaona;
G. Bruce Williamson; G. Bruce Williamson;Susana Ochoa-Gaona
Susana Ochoa-Gaona in OpenAIREEduardo A. Pérez-García;
Eduardo A. Pérez-García
Eduardo A. Pérez-García in OpenAIRERodrigo Muñoz;
Rodrigo Muñoz
Rodrigo Muñoz in OpenAIREAndré Braga Junqueira;
André Braga Junqueira;André Braga Junqueira
André Braga Junqueira in OpenAIRESusan G. Letcher;
Susan G. Letcher
Susan G. Letcher in OpenAIREVanessa K. Boukili;
Vanessa K. Boukili
Vanessa K. Boukili in OpenAIREGeorge A. L. Cabral;
Edith Orihuela-Belmonte;George A. L. Cabral
George A. L. Cabral in OpenAIREPatricia Balvanera;
Patricia Balvanera
Patricia Balvanera in OpenAIREMarielos Peña-Claros;
Marielos Peña-Claros
Marielos Peña-Claros in OpenAIREFrancisco Mora;
Francisco Mora
Francisco Mora in OpenAIREMiguel Martínez-Ramos;
Miguel Martínez-Ramos
Miguel Martínez-Ramos in OpenAIRESandra M. Durán;
Sandra M. Durán
Sandra M. Durán in OpenAIREJuan Saldarriaga;
Mário M. Espírito-Santo;Juan Saldarriaga
Juan Saldarriaga in OpenAIREMichiel van Breugel;
Michiel van Breugel; Michiel van Breugel; Nathan G. Swenson; Saara J. DeWalt;Michiel van Breugel
Michiel van Breugel in OpenAIREJorge Ruiz;
Jorge Ruiz;Jorge Ruiz
Jorge Ruiz in OpenAIREMaria das Dores Magalhães Veloso;
Maria das Dores Magalhães Veloso
Maria das Dores Magalhães Veloso in OpenAIREDylan Craven;
Dylan Craven;Dylan Craven
Dylan Craven in OpenAIREDeborah K. Kennard;
Deborah K. Kennard
Deborah K. Kennard in OpenAIRERita C. G. Mesquita;
Rita C. G. Mesquita
Rita C. G. Mesquita in OpenAIREJulie S. Denslow;
Jennifer S. Powers;Julie S. Denslow
Julie S. Denslow in OpenAIRENaomi B. Schwartz;
Naomi B. Schwartz
Naomi B. Schwartz in OpenAIRECatarina C. Jakovac;
Catarina C. Jakovac;Catarina C. Jakovac
Catarina C. Jakovac in OpenAIREDaisy H. Dent;
Daisy H. Dent;Daisy H. Dent
Daisy H. Dent in OpenAIREDaniel Piotto;
Daniel Piotto
Daniel Piotto in OpenAIRETony Vizcarra Bentos;
Tony Vizcarra Bentos
Tony Vizcarra Bentos in OpenAIREJuan Manuel Dupuy;
Juan Manuel Dupuy
Juan Manuel Dupuy in OpenAIREModels reveal the high carbon mitigation potential of tropical forest regeneration.
Repositório do INPA arrow_drop_down Repositório do INPAArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2016License: CC BY NCFull-Text: http://hdl.handle.net/1893/24020Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Wageningen Staff PublicationsArticle . 2016License: CC BY NCData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.1501639&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 500 citations 500 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Repositório do INPA arrow_drop_down Repositório do INPAArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2016License: CC BY NCFull-Text: http://hdl.handle.net/1893/24020Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Wageningen Staff PublicationsArticle . 2016License: CC BY NCData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.1501639&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United StatesPublisher:Wiley Susan Cordell; D. L. Burke; D. L. Burke; Ty Kennedy-Bowdoin; Christopher B. Field; David E. Knapp;Eben N. Broadbent;
Eben N. Broadbent; Eben N. Broadbent;Eben N. Broadbent
Eben N. Broadbent in OpenAIREBrad E. Rosenheim;
Brad E. Rosenheim
Brad E. Rosenheim in OpenAIREAngelica M. Almeyda Zambrano;
Angelica M. Almeyda Zambrano; Angelica M. Almeyda Zambrano;Angelica M. Almeyda Zambrano
Angelica M. Almeyda Zambrano in OpenAIREGregory P. Asner;
Christian P. Giardina;Gregory P. Asner
Gregory P. Asner in OpenAIREdoi: 10.1890/es13-00255.1
We develop and validate a high‐resolution three‐dimensional model of light and air temperature for a tropical forest interior in Hawaii along an elevation gradient varying greatly in structure but maintaining a consistent species composition. Our microclimate models integrate high‐resolution airborne waveform light detection and ranging data (LiDAR) and hyperspectral imagery with detailed microclimate measurements. We then use modeled microclimate and forest structural and compositional variables to explain variation in spatially explicit measurements of leaf traits, including gas exchange and structure. Our results highlight the importance of: (1) species differences in leaf traits, with species explaining up to 65% of the variation in some leaf traits; (2) differences between exotic and native species, with exotic species having greater maximum rates of assimilation and foliar δ15N values; (3) structural factors, with foliar %N and light saturation of photosynthesis decreasing in mid‐canopy locations; (4) microclimate factors, with foliar %N and light saturation increasing with growth environment illumination; and (5) decreases in mean annual temperature with elevation resulting in closure of the nitrogen cycle, as indicated through decreases in foliar δ15N values. The dominant overstory species (Metrosideros polymorpha) did not show plasticity in photosynthetic capacity, whereas the dominant understory species (Cibotium glaucum) had higher maximum rates of assimilation in more illuminated growth environments. The approach developed in this study highlights the potential of new airborne sensors to quantify forest productivity at spatial and temporal scales not previously possible. Our results provide insight into the function of a Hawaiian forest dominated by native species undergoing simultaneous biological invasion and climatic change.
Digital Commons Univ... arrow_drop_down Digital Commons University of South Florida (USF)Article . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of South Florida St. Petersburg: Digital USFSPArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/es13-00255.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Digital Commons Univ... arrow_drop_down Digital Commons University of South Florida (USF)Article . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of South Florida St. Petersburg: Digital USFSPArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/es13-00255.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 Netherlands, United StatesPublisher:Public Library of Science (PLoS) Authors:Marielos Peña-Claros;
Marielos Peña-Claros
Marielos Peña-Claros in OpenAIREEben N. Broadbent;
Eben N. Broadbent; Eben N. Broadbent; +11 AuthorsEben N. Broadbent
Eben N. Broadbent in OpenAIREMarielos Peña-Claros;
Marielos Peña-Claros
Marielos Peña-Claros in OpenAIREEben N. Broadbent;
Eben N. Broadbent; Eben N. Broadbent; Marlene Soriano; Harrison Ramos de Souza; Larry Giles; Christopher B. Field; Christopher B. Field;Eben N. Broadbent
Eben N. Broadbent in OpenAIRERachel I. Adams;
Rodolfo Dirzo;Rachel I. Adams
Rachel I. Adams in OpenAIREAngelica M. Almeyda Zambrano;
Angelica M. Almeyda Zambrano; Angelica M. Almeyda Zambrano;Angelica M. Almeyda Zambrano
Angelica M. Almeyda Zambrano in OpenAIREGregory P. Asner;
Gregory P. Asner
Gregory P. Asner in OpenAIRESecondary forests cover large areas of the tropics and play an important role in the global carbon cycle. During secondary forest succession, simultaneous changes occur among stand structural attributes, soil properties, and species composition. Most studies classify tree species into categories based on their regeneration requirements. We use a high-resolution secondary forest chronosequence to assign trees to a continuous gradient in species successional status assigned according to their distribution across the chronosequence. Species successional status, not stand age or differences in stand structure or soil properties, was found to be the best predictor of leaf trait variation. Foliar δ(13)C had a significant positive relationship with species successional status, indicating changes in foliar physiology related to growth and competitive strategy, but was not correlated with stand age, whereas soil δ(13)C dynamics were largely constrained by plant species composition. Foliar δ(15)N had a significant negative correlation with both stand age and species successional status, - most likely resulting from a large initial biomass-burning enrichment in soil (15)N and (13)C and not closure of the nitrogen cycle. Foliar %C was neither correlated with stand age nor species successional status but was found to display significant phylogenetic signal. Results from this study are relevant to understanding the dynamics of tree species growth and competition during forest succession and highlight possibilities of, and potentially confounding signals affecting, the utility of leaf traits to understand community and species dynamics during secondary forest succession.
PLoS ONE arrow_drop_down Digital Access to Scholarship at HarvardArticle . 2014Data sources: Digital Access to Scholarship at HarvardWageningen Staff PublicationsArticle . 2014License: CC BYData sources: Wageningen Staff PublicationsHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0086042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Digital Access to Scholarship at HarvardArticle . 2014Data sources: Digital Access to Scholarship at HarvardWageningen Staff PublicationsArticle . 2014License: CC BYData sources: Wageningen Staff PublicationsHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0086042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United States, BelgiumPublisher:Cold Spring Harbor Laboratory Funded by:EC | TREECLIMBERS, NSF | Collaborative Research: A...EC| TREECLIMBERS ,NSF| Collaborative Research: ABI Development: The PEcAn Project: A Community Platform for Ecological ForecastingAuthors:Helene C. Muller-Landau;
Helene C. Muller-Landau
Helene C. Muller-Landau in OpenAIREHans Verbeeck;
Hans Verbeeck
Hans Verbeeck in OpenAIREG. Arturo Sánchez-Azofeifa;
G. Arturo Sánchez-Azofeifa; +17 AuthorsG. Arturo Sánchez-Azofeifa
G. Arturo Sánchez-Azofeifa in OpenAIREHelene C. Muller-Landau;
Helene C. Muller-Landau
Helene C. Muller-Landau in OpenAIREHans Verbeeck;
Hans Verbeeck
Hans Verbeeck in OpenAIREG. Arturo Sánchez-Azofeifa;
G. Arturo Sánchez-Azofeifa;G. Arturo Sánchez-Azofeifa
G. Arturo Sánchez-Azofeifa in OpenAIREStefan A. Schnitzer;
Stefan A. Schnitzer;Stefan A. Schnitzer
Stefan A. Schnitzer in OpenAIREFélicien Meunier;
Félicien Meunier;Félicien Meunier
Félicien Meunier in OpenAIREMarco D. Visser;
Marco D. Visser;Marco D. Visser
Marco D. Visser in OpenAIREDavid C. Marvin;
David C. Marvin
David C. Marvin in OpenAIREEben N. Broadbent;
Eben N. Broadbent
Eben N. Broadbent in OpenAIREAngelica M. Almeyda Zambrano;
Angelica M. Almeyda Zambrano
Angelica M. Almeyda Zambrano in OpenAIREMatteo Detto;
Matteo Detto;Matteo Detto
Matteo Detto in OpenAIREMarcos Longo;
Marcos Longo
Marcos Longo in OpenAIREMichael Dietze;
Michael Dietze
Michael Dietze in OpenAIREHannes De Deurwaerder;
Hannes De Deurwaerder
Hannes De Deurwaerder in OpenAIRESruthi M. Krishna Moorthy;
Sruthi M. Krishna Moorthy
Sruthi M. Krishna Moorthy in OpenAIREAlexey N. Shiklomanov;
Alexey N. Shiklomanov
Alexey N. Shiklomanov in OpenAIREChang Liu;
Chang Liu
Chang Liu in OpenAIREAbstractLianas are a key growth form in tropical forests. Their lack of self-supporting tissues and their vertical position on top of the canopy make them strong competitors of resources. A few pioneer studies have shown that liana optical traits differ on average from those of colocated tree. Those trait discrepancies were hypothesized to be responsible for the competitive advantage of lianas over trees. Yet, in the absence of reliable modelling tools, it is impossible to unravel their impact on the forest energy balance, light competition and on the liana success in Neotropical forests. To bridge this gap, we performed a meta-analysis of the literature to gather all published liana leaf optical spectra, as well as all canopy spectra measured over different levels of liana infestation. We then used a Bayesian data assimilation framework applied to two radiative transfer models (RTMs) covering the leaf and canopy scales to derive tropical tree and liana trait distributions, which finally informed a full dynamic vegetation model. According to the RTMs inversion, lianas grew thinner, more horizontal leaves with lower pigment concentrations. Those traits made the lianas particularly efficient at light interception and completely modified the forest energy balance and its carbon cycle. While forest albedo increased by 14% in the shortwave, light availability was dramatically reduced in the understory (−30% of the PAR radiation) and soil temperature decreased by 0.5°C. Those liana-specific traits were also responsible for a significant reduction of tree (−19%) and ecosystem (−7%) gross primary productivity (GPP) while lianas benefited from them (their GPP increased by +27%). This study provides a novel mechanistic explanation to the increase in liana abundance, new evidence of the impact of structural parasitism on forest functioning, and paves the way for the evaluation of the large-scale impacts of woody vines on forest biogeochemical cycles.
Caltech Authors arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2022Full-Text: https://doi.org/10.5281/zenodo.5560918Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/0pg20259Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2021.06.08.447067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Caltech Authors arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2022Full-Text: https://doi.org/10.5281/zenodo.5560918Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/0pg20259Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2021.06.08.447067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2022Publisher:OpenAlex Authors:Roberto Cazzolla Gatti;
Roberto Cazzolla Gatti
Roberto Cazzolla Gatti in OpenAIREPeter B. Reich;
Peter B. Reich
Peter B. Reich in OpenAIREJavier G. P. Gamarra;
Javier G. P. Gamarra
Javier G. P. Gamarra in OpenAIREThomas W. Crowther;
+95 AuthorsThomas W. Crowther
Thomas W. Crowther in OpenAIRERoberto Cazzolla Gatti;
Roberto Cazzolla Gatti
Roberto Cazzolla Gatti in OpenAIREPeter B. Reich;
Peter B. Reich
Peter B. Reich in OpenAIREJavier G. P. Gamarra;
Javier G. P. Gamarra
Javier G. P. Gamarra in OpenAIREThomas W. Crowther;
Thomas W. Crowther
Thomas W. Crowther in OpenAIRECang Hui;
Cang Hui
Cang Hui in OpenAIREAlbert Morera;
Jean-François Bastin;Albert Morera
Albert Morera in OpenAIRESergio de‐Miguel;
Sergio de‐Miguel
Sergio de‐Miguel in OpenAIREGert‐Jan Nabuurs;
Gert‐Jan Nabuurs
Gert‐Jan Nabuurs in OpenAIREJens‐Christian Svenning;
Jens‐Christian Svenning
Jens‐Christian Svenning in OpenAIREJosep M. Serra‐Diaz;
Josep M. Serra‐Diaz
Josep M. Serra‐Diaz in OpenAIRECory Merow;
Cory Merow
Cory Merow in OpenAIREBrian J. Enquist;
Maria Kamenetsky;Brian J. Enquist
Brian J. Enquist in OpenAIREJun‐Ho Lee;
Jun‐Ho Lee
Jun‐Ho Lee in OpenAIREJun Zhu;
Jun Zhu
Jun Zhu in OpenAIREJinyun Fang;
Jinyun Fang
Jinyun Fang in OpenAIREDouglass F. Jacobs;
Douglass F. Jacobs
Douglass F. Jacobs in OpenAIREBryan C. Pijanowski;
Bryan C. Pijanowski
Bryan C. Pijanowski in OpenAIREArindam Banerjee;
Robert Giaquinto;Arindam Banerjee
Arindam Banerjee in OpenAIREGiorgio Alberti;
Giorgio Alberti
Giorgio Alberti in OpenAIREAngélica M. Almeyda Zambrano;
Angélica M. Almeyda Zambrano
Angélica M. Almeyda Zambrano in OpenAIREEsteban Álvarez-Dávila;
Esteban Álvarez-Dávila
Esteban Álvarez-Dávila in OpenAIREAlejandro Araujo‐Murakami;
Valerio Avitabile; Gerardo Aymard;Alejandro Araujo‐Murakami
Alejandro Araujo‐Murakami in OpenAIRERadomir Bałazy;
Radomir Bałazy
Radomir Bałazy in OpenAIREChristopher Baraloto;
Jorcely Barroso;Christopher Baraloto
Christopher Baraloto in OpenAIREMeredith L. Bastian;
Meredith L. Bastian
Meredith L. Bastian in OpenAIREPhilippe Birnbaum;
Philippe Birnbaum
Philippe Birnbaum in OpenAIRERobert Bitariho;
Jan Bogaert;Robert Bitariho
Robert Bitariho in OpenAIREFrans Bongers;
Frans Bongers
Frans Bongers in OpenAIREOlivier Bouriaud;
Olivier Bouriaud
Olivier Bouriaud in OpenAIREPedro Henrique Santin Brancalion;
Pedro Henrique Santin Brancalion
Pedro Henrique Santin Brancalion in OpenAIREFrancis Q. Brearley;
Francis Q. Brearley
Francis Q. Brearley in OpenAIREEben N. Broadbent;
Eben N. Broadbent
Eben N. Broadbent in OpenAIREFilippo Bussotti;
Filippo Bussotti
Filippo Bussotti in OpenAIREWendeson Castro;
Wendeson Castro
Wendeson Castro in OpenAIRERicardo G. César;
Ricardo G. César
Ricardo G. César in OpenAIREGoran Češljar;
Víctor Chama Moscoso;Goran Češljar
Goran Češljar in OpenAIREHan Y. H. Chen;
Han Y. H. Chen
Han Y. H. Chen in OpenAIREEmil Cienciala;
Connie J. Clark;Emil Cienciala
Emil Cienciala in OpenAIREDavid A. Coomes;
Selvadurai Dayanandan;David A. Coomes
David A. Coomes in OpenAIREMathieu Decuyper;
Mathieu Decuyper
Mathieu Decuyper in OpenAIRELaura E. Dee;
Laura E. Dee
Laura E. Dee in OpenAIREJhon del Aguila‐Pasquel;
Jhon del Aguila‐Pasquel
Jhon del Aguila‐Pasquel in OpenAIREGéraldine Derroire;
Géraldine Derroire
Géraldine Derroire in OpenAIREMarie Noël Kamdem Djuikouo;
Marie Noël Kamdem Djuikouo
Marie Noël Kamdem Djuikouo in OpenAIRETran Van Do;
Tran Van Do
Tran Van Do in OpenAIREJiří Doležal;
Ilija Đorđević;Jiří Doležal
Jiří Doležal in OpenAIREJulien Engel;
Tom Fayle;Julien Engel
Julien Engel in OpenAIRETed R. Feldpausch;
Ted R. Feldpausch
Ted R. Feldpausch in OpenAIREJonas Fridman;
Jonas Fridman
Jonas Fridman in OpenAIREDavid J. Harris;
Andreas Hemp;David J. Harris
David J. Harris in OpenAIREG.M. Hengeveld;
G.M. Hengeveld
G.M. Hengeveld in OpenAIREBruno Hérault;
Bruno Hérault
Bruno Hérault in OpenAIREMartin Herold;
Martin Herold
Martin Herold in OpenAIREThomas Ibanez;
Thomas Ibanez
Thomas Ibanez in OpenAIREAndrzej M. Jagodziński;
Andrzej M. Jagodziński
Andrzej M. Jagodziński in OpenAIREBogdan Jaroszewicz;
Bogdan Jaroszewicz
Bogdan Jaroszewicz in OpenAIREKathryn J. Jeffery;
Kathryn J. Jeffery
Kathryn J. Jeffery in OpenAIREVivian Kvist Johannsen;
Vivian Kvist Johannsen
Vivian Kvist Johannsen in OpenAIRETommaso Jucker;
Tommaso Jucker
Tommaso Jucker in OpenAIREAhto Kangur;
Victor Karminov;Ahto Kangur
Ahto Kangur in OpenAIREKuswata Kartawinata;
Kuswata Kartawinata
Kuswata Kartawinata in OpenAIREDeborah K. Kennard;
Deborah K. Kennard
Deborah K. Kennard in OpenAIRESebastian Kepfer‐Rojas;
Sebastian Kepfer‐Rojas
Sebastian Kepfer‐Rojas in OpenAIREGunnar Keppel;
Mohammed Latif Khan;Gunnar Keppel
Gunnar Keppel in OpenAIREP. K. Khare;
Timothy J Kileen;P. K. Khare
P. K. Khare in OpenAIREHyun Seok Kim;
Hyun Seok Kim
Hyun Seok Kim in OpenAIREHenn Korjus;
Henn Korjus
Henn Korjus in OpenAIREAmit Kumar;
Amit Kumar
Amit Kumar in OpenAIREAshwani Kumar;
Diana Laarmann;Ashwani Kumar
Ashwani Kumar in OpenAIRENicolas Labrière;
Nicolas Labrière
Nicolas Labrière in OpenAIREMait Lang;
Simon L. Lewis;Mait Lang
Mait Lang in OpenAIREBrian S. Maitner;
Brian S. Maitner
Brian S. Maitner in OpenAIREYadvinder Malhi;
Yadvinder Malhi
Yadvinder Malhi in OpenAIREAndrew R. Marshall;
Andrew R. Marshall
Andrew R. Marshall in OpenAIREOlga Martynenko;
Abel L. Monteagudo Mendoza; Petr Ontikov; Edgar Ortiz‐Malavasi; Nadir Carolina Pallqui Camacho;Olga Martynenko
Olga Martynenko in OpenAIREAlain Paquette;
Minjee Park;Alain Paquette
Alain Paquette in OpenAIREL'une des questions les plus fondamentales en écologie est de savoir combien d'espèces habitent la Terre. Cependant, en raison des défis logistiques et financiers massifs et des difficultés taxonomiques liées à la définition du concept d'espèce, le nombre global d'espèces, y compris celles des formes de vie importantes et bien étudiées telles que les arbres, reste encore largement inconnu. Ici, sur la base de données mondiales provenant de sources terrestres, nous estimons la richesse totale des espèces d'arbres aux niveaux mondial, continental et du biome. Nos résultats indiquent qu'il y a environ73 000 espèces d'arbres dans le monde, parmi lesquelles environ9 000 espèces d'arbres n'ont pas encore été découvertes. Environ 40 % des espèces d'arbres non découvertes se trouvent en Amérique du Sud. En outre, près d'un tiers de toutes les espèces d'arbres à découvrir peuvent être rares, avec des populations très faibles et une répartition spatiale limitée (probablement dans les basses terres tropicales et les montagnes éloignées). Ces résultats mettent en évidence la vulnérabilité de la biodiversité forestière mondiale aux changements anthropiques dans l'utilisation des terres et le climat, qui menacent de manière disproportionnée les espèces rares et donc la richesse mondiale en arbres. Una de las preguntas más fundamentales en ecología es cuántas especies habitan la Tierra. Sin embargo, debido a los enormes desafíos logísticos y financieros y a las dificultades taxonómicas relacionadas con la definición del concepto de especie, el número global de especies, incluidas las de formas de vida importantes y bien estudiadas, como los árboles, sigue siendo en gran medida desconocido. Aquí, con base en datos globales de fuentes terrestres, estimamos la riqueza total de especies de árboles a nivel global, continental y de biomas. Nuestros resultados indican que hay ~73,000 especies de árboles a nivel mundial, entre las cuales ~9,000 especies de árboles aún no se han descubierto. Aproximadamente el 40% de las especies de árboles no descubiertas se encuentran en América del Sur. Además, casi un tercio de todas las especies de árboles por descubrir pueden ser raras, con poblaciones muy bajas y una distribución espacial limitada (probablemente en tierras bajas y montañas tropicales remotas). Estos hallazgos ponen de relieve la vulnerabilidad de la biodiversidad forestal mundial a los cambios antropogénicos en el uso de la tierra y el clima, que amenazan desproporcionadamente a las especies raras y, por lo tanto, a la riqueza arbórea mundial. One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness. أحد أهم الأسئلة الأساسية في علم البيئة هو عدد الأنواع التي تعيش على الأرض. ومع ذلك، نظرًا للتحديات اللوجستية والمالية الهائلة والصعوبات التصنيفية المرتبطة بتعريف مفهوم الأنواع، لا تزال الأعداد العالمية للأنواع، بما في ذلك أشكال الحياة المهمة والمدروسة جيدًا مثل الأشجار، غير معروفة إلى حد كبير. هنا، استنادًا إلى البيانات العالمية من مصادر أرضية، نقدر إجمالي ثراء أنواع الأشجار على المستويات العالمية والقارية والبيولوجية. تشير نتائجنا إلى أن هناك 73000 نوع من الأشجار على مستوى العالم، من بينها 9000 نوع من الأشجار لم يتم اكتشافها بعد. يوجد ما يقرب من 40 ٪ من أنواع الأشجار غير المكتشفة في أمريكا الجنوبية. علاوة على ذلك، قد يكون ما يقرب من ثلث جميع أنواع الأشجار التي سيتم اكتشافها نادرًا، مع أعداد قليلة جدًا وتوزيع مكاني محدود (على الأرجح في الأراضي المنخفضة والجبال الاستوائية النائية). تسلط هذه النتائج الضوء على ضعف التنوع البيولوجي العالمي للغابات أمام التغيرات البشرية المنشأ في استخدام الأراضي والمناخ، والتي تهدد بشكل غير متناسب الأنواع النادرة وبالتالي ثراء الأشجار العالمي.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/1vsc4-jjz49&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/1vsc4-jjz49&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Authors:Carla Mere-Roncal;
Carla Mere-Roncal
Carla Mere-Roncal in OpenAIREGabriel Cardoso Carrero;
Gabriel Cardoso Carrero
Gabriel Cardoso Carrero in OpenAIREAndrea Birgit Chavez;
Andrea Birgit Chavez
Andrea Birgit Chavez in OpenAIREAngelica Maria Almeyda Zambrano;
+9 AuthorsAngelica Maria Almeyda Zambrano
Angelica Maria Almeyda Zambrano in OpenAIRECarla Mere-Roncal;
Carla Mere-Roncal
Carla Mere-Roncal in OpenAIREGabriel Cardoso Carrero;
Gabriel Cardoso Carrero
Gabriel Cardoso Carrero in OpenAIREAndrea Birgit Chavez;
Andrea Birgit Chavez
Andrea Birgit Chavez in OpenAIREAngelica Maria Almeyda Zambrano;
Angelica Maria Almeyda Zambrano
Angelica Maria Almeyda Zambrano in OpenAIREBette Loiselle;
Bette Loiselle
Bette Loiselle in OpenAIREFelipe Veluk Gutierrez;
Vanessa Luna-Celino;Felipe Veluk Gutierrez
Felipe Veluk Gutierrez in OpenAIREMarliz Arteaga;
Eduardo Schmitz Bongiolo; André Segura Tomasi; Paul André Van Damme; Dennis Edgar Lizarro Zapata;Marliz Arteaga
Marliz Arteaga in OpenAIREEben North Broadbent;
Eben North Broadbent
Eben North Broadbent in OpenAIREdoi: 10.3390/su132414048
The Amazon region has been viewed as a source of economic growth based on extractive industry and large-scale infrastructure development endeavors, such as roads, dams, oil and gas pipelines and mining. International and national policies advocating for the development of the Amazon often conflict with the environmental sector tasked with conserving its unique ecosystems and peoples through a sustainable development agenda. New practices of environmental governance can help mitigate adverse socio-economic and ecological effects. For example, forming a “community of practice and learning” (CoP-L) is an approach for improving governance via collaboration and knowledge exchange. The Governance and Infrastructure in the Amazon (GIA) project, in which this study is embedded, has proposed that fostering a CoP-L on tools and strategies to improve infrastructure governance can serve as a mechanism to promote learning and action on factors related to governance effectiveness. A particular tool used by the GIA project for generating and sharing knowledge has been participatory mapping (Pmap). This study analyzes Pmap exercises conducted through workshops in four different Amazonian regions. The goal of Pmap was to capture different perspectives from stakeholders based on their experiences and interests to visualize and reflect on (1) areas of value, (2) areas of concern and (3) recommended actions related to reducing impacts of infrastructure development and improvement of governance processes. We used a mixed-methods approach to explore textual analysis, regional multi-iteration discussion with stakeholders, participatory mapping and integration with ancillary geospatial datasets. We believe that by sharing local-knowledge-driven data and strengthening multi-actor dialogue and collaboration, this novel approach can improve day to day practices of CoP-L members and, therefore, the transparency of infrastructure planning and good governance.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132414048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132414048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2022Publisher:OpenAlex Authors:Jingjing Liang;
Jingjing Liang
Jingjing Liang in OpenAIREJavier G. P. Gamarra;
Javier G. P. Gamarra
Javier G. P. Gamarra in OpenAIRENicolas Picard;
Nicolas Picard
Nicolas Picard in OpenAIREMo Zhou;
+96 AuthorsMo Zhou
Mo Zhou in OpenAIREJingjing Liang;
Jingjing Liang
Jingjing Liang in OpenAIREJavier G. P. Gamarra;
Javier G. P. Gamarra
Javier G. P. Gamarra in OpenAIRENicolas Picard;
Nicolas Picard
Nicolas Picard in OpenAIREMo Zhou;
Mo Zhou
Mo Zhou in OpenAIREBryan C. Pijanowski;
Bryan C. Pijanowski
Bryan C. Pijanowski in OpenAIREDouglass F. Jacobs;
Douglass F. Jacobs
Douglass F. Jacobs in OpenAIREPeter B. Reich;
Peter B. Reich
Peter B. Reich in OpenAIREThomas W. Crowther;
Thomas W. Crowther
Thomas W. Crowther in OpenAIREGert‐Jan Nabuurs;
Gert‐Jan Nabuurs
Gert‐Jan Nabuurs in OpenAIRESergio de‐Miguel;
Sergio de‐Miguel
Sergio de‐Miguel in OpenAIREJingyun Fang;
Christopher W. Woodall;Jingyun Fang
Jingyun Fang in OpenAIREJens‐Christian Svenning;
Jens‐Christian Svenning
Jens‐Christian Svenning in OpenAIRETommaso Jucker;
Jean-François Bastin;Tommaso Jucker
Tommaso Jucker in OpenAIRESusan K. Wiser;
Susan K. Wiser
Susan K. Wiser in OpenAIREFerry Slik;
Ferry Slik
Ferry Slik in OpenAIREBruno Hérault;
Bruno Hérault
Bruno Hérault in OpenAIREGiorgio Alberti;
Giorgio Alberti
Giorgio Alberti in OpenAIREGunnar Keppel;
Gunnar Keppel
Gunnar Keppel in OpenAIREG.M. Hengeveld;
G.M. Hengeveld
G.M. Hengeveld in OpenAIREPierre L. Ibisch;
Pierre L. Ibisch
Pierre L. Ibisch in OpenAIRECarlos Antônio da Silva;
Carlos Antônio da Silva
Carlos Antônio da Silva in OpenAIREHans ter Steege;
Hans ter Steege
Hans ter Steege in OpenAIREPablo Luís Peri;
Pablo Luís Peri
Pablo Luís Peri in OpenAIREDavid A. Coomes;
David A. Coomes
David A. Coomes in OpenAIREEric B. Searle;
Eric B. Searle
Eric B. Searle in OpenAIREKlaus von Gadow;
Klaus von Gadow
Klaus von Gadow in OpenAIREBogdan Jaroszewicz;
Bogdan Jaroszewicz
Bogdan Jaroszewicz in OpenAIREAkane Abbasi;
Akane Abbasi
Akane Abbasi in OpenAIREMeinrad Abegg;
Meinrad Abegg
Meinrad Abegg in OpenAIREYves C. Adou Yao;
Yves C. Adou Yao
Yves C. Adou Yao in OpenAIREJesús Aguirre‐Gutiérrez;
Jesús Aguirre‐Gutiérrez
Jesús Aguirre‐Gutiérrez in OpenAIREAngélica M. Almeyda Zambrano;
Angélica M. Almeyda Zambrano
Angélica M. Almeyda Zambrano in OpenAIREJan Altman;
Jan Altman
Jan Altman in OpenAIREEsteban Álvarez-Dávila;
Juan Gabriél Álvarez‐González;Esteban Álvarez-Dávila
Esteban Álvarez-Dávila in OpenAIRELuciana F. Alves;
Luciana F. Alves
Luciana F. Alves in OpenAIREBienvenu H.K. Amani;
Christian Amani;Bienvenu H.K. Amani
Bienvenu H.K. Amani in OpenAIREChristian Ammer;
Christian Ammer
Christian Ammer in OpenAIREBhély Angoboy Ilondea;
Bhély Angoboy Ilondea
Bhély Angoboy Ilondea in OpenAIREClara Antón-Fernández;
Clara Antón-Fernández
Clara Antón-Fernández in OpenAIREValerio Avitabile;
Gerardo Aymard;Valerio Avitabile
Valerio Avitabile in OpenAIREAkomian Fortuné Azihou;
Akomian Fortuné Azihou
Akomian Fortuné Azihou in OpenAIREJohan A. Baard;
Johan A. Baard
Johan A. Baard in OpenAIRETim R. Baker;
Tim R. Baker
Tim R. Baker in OpenAIRERadomir Bałazy;
Radomir Bałazy
Radomir Bałazy in OpenAIREMeredith L. Bastian;
Rodrigue Batumike;Meredith L. Bastian
Meredith L. Bastian in OpenAIREMarijn Bauters;
Marijn Bauters
Marijn Bauters in OpenAIREHans Beeckman;
Nithanel Mikael Hendrik Benu;Hans Beeckman
Hans Beeckman in OpenAIRERobert Bitariho;
Robert Bitariho
Robert Bitariho in OpenAIREPascal Boeckx;
Pascal Boeckx
Pascal Boeckx in OpenAIREJan Bogaert;
Jan Bogaert
Jan Bogaert in OpenAIREFrans Bongers;
Frans Bongers
Frans Bongers in OpenAIREOlivier Bouriaud;
Pedro H. S. Brancalion; Susanne Brandl;Olivier Bouriaud
Olivier Bouriaud in OpenAIREFrancis Q. Brearley;
Jaime Briseno-Reyes;Francis Q. Brearley
Francis Q. Brearley in OpenAIREEben N. Broadbent;
Eben N. Broadbent
Eben N. Broadbent in OpenAIREHelge Bruelheide;
Helge Bruelheide
Helge Bruelheide in OpenAIREErwin Bulte;
Ann Christine Catlin;Erwin Bulte
Erwin Bulte in OpenAIRERoberto Cazzolla Gatti;
Roberto Cazzolla Gatti
Roberto Cazzolla Gatti in OpenAIRERicardo G. César;
Ricardo G. César
Ricardo G. César in OpenAIREHan Y. H. Chen;
Han Y. H. Chen
Han Y. H. Chen in OpenAIREChelsea Chisholm;
Chelsea Chisholm
Chelsea Chisholm in OpenAIREEmil Cienciala;
Emil Cienciala
Emil Cienciala in OpenAIREGabriel Dalla Colletta;
Gabriel Dalla Colletta
Gabriel Dalla Colletta in OpenAIREJosé Javier Corral‐Rivas;
José Javier Corral‐Rivas
José Javier Corral‐Rivas in OpenAIREAníbal Cuchietti;
Aníbal Cuchietti
Aníbal Cuchietti in OpenAIREAida Cuni‐Sanchez;
Aida Cuni‐Sanchez
Aida Cuni‐Sanchez in OpenAIREJavid Ahmad Dar;
Selvadurai Dayanandan; Thalès de Haulleville;Javid Ahmad Dar
Javid Ahmad Dar in OpenAIREMathieu Decuyper;
Mathieu Decuyper
Mathieu Decuyper in OpenAIRESylvain Delabye;
Sylvain Delabye
Sylvain Delabye in OpenAIREGéraldine Derroire;
Géraldine Derroire
Géraldine Derroire in OpenAIREBen DeVries;
John Diisi;Ben DeVries
Ben DeVries in OpenAIRETran Van Do;
Tran Van Do
Tran Van Do in OpenAIREJiří Doležal;
Aurélie Dourdain; Graham Durrheim; Nestor Laurier Engone Obiang;Jiří Doležal
Jiří Doležal in OpenAIRECorneille E. N. Ewango;
Corneille E. N. Ewango
Corneille E. N. Ewango in OpenAIRETeresa J. Eyre;
Tom Fayle; Lethicia Flavine N. Feunang;Teresa J. Eyre
Teresa J. Eyre in OpenAIRELeena Finér;
Leena Finér
Leena Finér in OpenAIREMarkus Fischer;
Markus Fischer
Markus Fischer in OpenAIREJonas Fridman;
Jonas Fridman
Jonas Fridman in OpenAIRELorenzo Frizzera;
Lorenzo Frizzera
Lorenzo Frizzera in OpenAIREAndré Luís de Gasper;
André Luís de Gasper
André Luís de Gasper in OpenAIREDamiano Gianelle;
Damiano Gianelle
Damiano Gianelle in OpenAIREHenry B. Glick;
Henry B. Glick
Henry B. Glick in OpenAIRELe gradient de diversité latitudinale (LDG) est l'un des modèles mondiaux de richesse en espèces les plus reconnus dans un large éventail de taxons. De nombreuses hypothèses ont été proposées au cours des deux derniers siècles pour expliquer le LDG, mais des tests rigoureux des facteurs de LDG ont été limités par un manque de données mondiales de haute qualité sur la richesse en espèces. Ici, nous produisons une carte à haute résolution (0,025° × 0,025°) de la richesse des espèces d'arbres locales à l'aide d'une base de données d'inventaire forestier mondial avec des informations sur les arbres individuels et des caractéristiques biophysiques locales à partir d'environ 1,3 million de placettes-échantillons. Nous quantifions ensuite les moteurs des modèles de richesse des espèces d'arbres locales à travers les latitudes. En général, la température moyenne annuelle était un prédicteur dominant de la richesse des espèces d'arbres, ce qui est le plus conforme à la théorie métabolique de la biodiversité (MTB). Cependant, le MTB a sous-estimé le LDG sous les tropiques, où la richesse élevée en espèces a également été modérée par des facteurs topographiques, pédologiques et anthropiques opérant à l'échelle locale. Étant donné que les variables locales du paysage agissent en synergie avec les facteurs bioclimatiques dans la formation du modèle mondial de LDG, nous suggérons que le MTB soit étendu pour tenir compte de la co-limitation par les conducteurs subordonnés. En examinant les facteurs du gradient latitudinal de biodiversité dans une base de données mondiale sur la richesse des espèces locales d'arbres, les auteurs montrent que la co-limitation par de multiples facteurs environnementaux et anthropiques provoque des augmentations plus importantes de la richesse avec la latitude dans les zones tropicales par rapport aux zones tempérées et boréales. El gradiente de diversidad latitudinal (LDG) es uno de los patrones globales más reconocidos de riqueza de especies que se exhiben en una amplia gama de taxones. Se han propuesto numerosas hipótesis en los últimos dos siglos para explicar la LDG, pero las pruebas rigurosas de los impulsores de las LDG se han visto limitadas por la falta de datos globales de alta calidad sobre la riqueza de especies. Aquí producimos un mapa de alta resolución (0.025° × 0.025°) de la riqueza de especies de árboles locales utilizando una base de datos de inventario forestal global con información de árboles individuales y características biofísicas locales de ~ 1.3 millones de parcelas de muestra. A continuación, cuantificamos los impulsores de los patrones de riqueza de especies arbóreas locales en todas las latitudes. En general, la temperatura media anual fue un predictor dominante de la riqueza de especies de árboles, lo que es más consistente con la teoría metabólica de la biodiversidad (MTB). Sin embargo, el MTB subestimó el LDG en los trópicos, donde la alta riqueza de especies también fue moderada por factores topográficos, del suelo y antropogénicos que operan a escala local. Dado que las variables del paisaje local operan sinérgicamente con factores bioclimáticos en la configuración del patrón global de LDG, sugerimos que el MTB se extienda para tener en cuenta la co-limitación por parte de los conductores subordinados. Al examinar los impulsores del gradiente de biodiversidad latitudinal en una base de datos global de la riqueza de especies de árboles locales, los autores muestran que la co-limitación por múltiples factores ambientales y antropogénicos causa aumentos más pronunciados en la riqueza con latitud en zonas tropicales versus templadas y boreales. The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers. Examining drivers of the latitudinal biodiversity gradient in a global database of local tree species richness, the authors show that co-limitation by multiple environmental and anthropogenic factors causes steeper increases in richness with latitude in tropical versus temperate and boreal zones. يعد تدرج التنوع العرضي (LDG) أحد أكثر الأنماط العالمية المعترف بها لثراء الأنواع المعروضة عبر مجموعة واسعة من الأصناف. تم اقتراح العديد من الفرضيات في القرنين الماضيين لشرح غاز الديزل منخفض الكثافة، لكن الاختبارات الصارمة لمحركات غازات الديزل منخفض الكثافة كانت محدودة بسبب نقص بيانات ثراء الأنواع العالمية عالية الجودة. هنا ننتج خريطة عالية الدقة (0.025درجة × 0.025درجة) لثراء أنواع الأشجار المحلية باستخدام قاعدة بيانات جرد الغابات العالمية مع معلومات الأشجار الفردية والخصائص الفيزيائية الحيوية المحلية من حوالي 1.3 مليون قطعة عينة. ثم نحدد العوامل المحركة لأنماط ثراء أنواع الأشجار المحلية عبر خطوط العرض. بشكل عام، كان متوسط درجة الحرارة السنوية مؤشراً مهيمناً على ثراء أنواع الأشجار، وهو الأكثر اتساقاً مع نظرية التمثيل الغذائي للتنوع البيولوجي (MTB). ومع ذلك، قلل MTB من تقدير غاز التدهور المنخفض في المناطق المدارية، حيث كان ثراء الأنواع المرتفع معتدلاً أيضًا بسبب العوامل الطبوغرافية والتربة والعوامل البشرية المنشأ التي تعمل على المستويات المحلية. بالنظر إلى أن متغيرات المناظر الطبيعية المحلية تعمل بشكل تآزري مع العوامل المناخية الحيوية في تشكيل نمط الغازات المتدهورة عالميًا، فإننا نقترح توسيع نطاق الحد الأقصى للمناظر الطبيعية لمراعاة الحد المشترك من قبل الدوافع الثانوية. عند دراسة دوافع تدرج التنوع البيولوجي العرضي في قاعدة بيانات عالمية لثراء أنواع الأشجار المحلية، يوضح المؤلفون أن الحد المشترك من خلال عوامل بيئية وبشرية متعددة يسبب زيادات أكثر حدة في الثراء مع خط العرض في المناطق الاستوائية مقابل المناطق المعتدلة والشمالية.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/d5pbt-21y84&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/d5pbt-21y84&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 Brazil, Australia, Australia, United Kingdom, Germany, Germany, Brazil, United Kingdom, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:NSF | CNH-RCN: Tropical Refores..., NSF | Collaborative Research/LT..., EC | ROBIN +9 projectsNSF| CNH-RCN: Tropical Reforestation Network: Building a Socioecological Understanding of Tropical Reforestation ,NSF| Collaborative Research/LTREB Renewal: Successional Pathways and Rates of Change in Tropical Forests of Brazil, Costa Rica and Mexico ,EC| ROBIN ,NSF| CAREER: Ecosystem processes in regenerating tropical dry forests: linking plant functional traits, stands, and landscapes ,NSF| COLLABORATIVE RESEARCH: MODELING SUCCESSIONAL VEGETATION DYNAMICS IN WET TROPICAL FORESTS AT MULTIPLE SCALES: INTEGRATING NEIGHBORHOOD EFFECTS, FUNCTIONAL TRAITS, AND PHYLOGENY ,NSF| Controls on the Storage and Loss of Soil Organic Carbon with Reforestation of Abandoned Pastures ,UKRI| RootDetect: Remote Detection and Precision Management of Root Health ,NSF| Collaborative Research/LTREB Successional pathways and rates of change in tropical forests of Brazil, Costa Rica, and Mexico ,NSF| Collaborative Research/LTREB Successional pathways and rates of change in tropical forests of Brazil, Costa Rica, and Mexico ,NSF| Collaborative Research/LTREB Renewal: Successional Pathways and Rates of Change in Tropical Forests of Brazil, Costa Rica and Mexico ,NSF| 3rd Collaborative Research Network Program (CRN3) ,NSF| CAREER: Land Use and Environmental Controls on Soil Carbon in Human-Dominated Tropical LandscapesAuthors:Yule Roberta Ferreira Nunes;
Yule Roberta Ferreira Nunes
Yule Roberta Ferreira Nunes in OpenAIREGeorge A. L. Cabral;
George A. L. Cabral
George A. L. Cabral in OpenAIREAlberto Vicentini;
Alberto Vicentini
Alberto Vicentini in OpenAIRERobin L. Chazdon;
+73 AuthorsRobin L. Chazdon
Robin L. Chazdon in OpenAIREYule Roberta Ferreira Nunes;
Yule Roberta Ferreira Nunes
Yule Roberta Ferreira Nunes in OpenAIREGeorge A. L. Cabral;
George A. L. Cabral
George A. L. Cabral in OpenAIREAlberto Vicentini;
Alberto Vicentini
Alberto Vicentini in OpenAIRERobin L. Chazdon;
José Luis Hernández-Stefanoni;Robin L. Chazdon
Robin L. Chazdon in OpenAIREPaulo Eduardo dos Santos Massoca;
Jefferson S. Hall;Paulo Eduardo dos Santos Massoca
Paulo Eduardo dos Santos Massoca in OpenAIRETony Vizcarra Bentos;
Tony Vizcarra Bentos
Tony Vizcarra Bentos in OpenAIREArturo Sanchez-Azofeifa;
Arturo Sanchez-Azofeifa
Arturo Sanchez-Azofeifa in OpenAIREJuan Manuel Dupuy;
Juan Manuel Dupuy
Juan Manuel Dupuy in OpenAIRERicardo Gomes César;
Jorge Rodríguez-Velázquez;Ricardo Gomes César
Ricardo Gomes César in OpenAIREVanessa K. Boukili;
Marc K. Steininger;Vanessa K. Boukili
Vanessa K. Boukili in OpenAIREMarielos Peña-Claros;
Marielos Peña-Claros
Marielos Peña-Claros in OpenAIREAndré Braga Junqueira;
André Braga Junqueira;André Braga Junqueira
André Braga Junqueira in OpenAIRESusan G. Letcher;
Mário M. Espírito-Santo;Susan G. Letcher
Susan G. Letcher in OpenAIRECatarina C. Jakovac;
Catarina C. Jakovac;Catarina C. Jakovac
Catarina C. Jakovac in OpenAIREDaisy H. Dent;
Daisy H. Dent; Juan Carlos Licona; T. Mitchell Aide;Daisy H. Dent
Daisy H. Dent in OpenAIREDylan Craven;
Dylan Craven; Danaë M. A. Rozendaal; Danaë M. A. Rozendaal; Danaë M. A. Rozendaal;Dylan Craven
Dylan Craven in OpenAIREHans van der Wal;
Michiel van Breugel; Michiel van Breugel; Michiel van Breugel; Hans F. M. Vester; Ben H. J. de Jong;Hans van der Wal
Hans van der Wal in OpenAIREEben N. Broadbent;
Edith Orihuela-Belmonte; Justin M. Becknell;Eben N. Broadbent
Eben N. Broadbent in OpenAIREErika Marin-Spiotta;
Jorge Ruiz; Jorge Ruiz;Erika Marin-Spiotta
Erika Marin-Spiotta in OpenAIREAlexandre Adalardo de Oliveira;
Alexandre Adalardo de Oliveira
Alexandre Adalardo de Oliveira in OpenAIRERobert Muscarella;
Robert Muscarella;Robert Muscarella
Robert Muscarella in OpenAIREI. Eunice Romero-Pérez;
I. Eunice Romero-Pérez
I. Eunice Romero-Pérez in OpenAIRELourens Poorter;
Lourens Poorter
Lourens Poorter in OpenAIRERita C. G. Mesquita;
Julie S. Denslow;Rita C. G. Mesquita
Rita C. G. Mesquita in OpenAIREFrans Bongers;
Jennifer S. Powers;Frans Bongers
Frans Bongers in OpenAIREPedro H. S. Brancalion;
María C. Fandiño;Pedro H. S. Brancalion
Pedro H. S. Brancalion in OpenAIREPatricia Balvanera;
Patricia Balvanera
Patricia Balvanera in OpenAIREMaria das Dores Magalhães Veloso;
Maria das Dores Magalhães Veloso
Maria das Dores Magalhães Veloso in OpenAIREMadelon Lohbeck;
Madelon Lohbeck;Madelon Lohbeck
Madelon Lohbeck in OpenAIREDaniel Piotto;
Jarcilene S. Almeida-Cortez; Susana Ochoa-Gaona; G. Bruce Williamson; G. Bruce Williamson; Marisol Toledo;Daniel Piotto
Daniel Piotto in OpenAIREIma Célia Guimarães Vieira;
Ima Célia Guimarães Vieira
Ima Célia Guimarães Vieira in OpenAIREEduardo A. Pérez-García;
Eduardo A. Pérez-García
Eduardo A. Pérez-García in OpenAIREJorge A. Meave;
María Uriarte; Saara J. DeWalt;Jorge A. Meave
Jorge A. Meave in OpenAIRERodrigo Muñoz;
Rodrigo Muñoz
Rodrigo Muñoz in OpenAIRENaomi B. Schwartz;
Nathan G. Swenson;Naomi B. Schwartz
Naomi B. Schwartz in OpenAIREAngelica M. Almeyda Zambrano;
Angelica M. Almeyda Zambrano
Angelica M. Almeyda Zambrano in OpenAIREFrancisco Mora;
Francisco Mora
Francisco Mora in OpenAIREMiguel Martínez-Ramos;
Miguel Martínez-Ramos
Miguel Martínez-Ramos in OpenAIRESandra M. Durán;
Sandra M. Durán
Sandra M. Durán in OpenAIREJuan Saldarriaga;
Deborah K. Kennard;Juan Saldarriaga
Juan Saldarriaga in OpenAIREpmid: 26840632
handle: 11245/1.539630 , 1893/24717
An analysis of above-ground biomass recovery during secondary succession in forest sites and plots, covering the major environmental gradients in the Neotropics. Plus de la moitié des forêts tropicales du monde sont le produit d'une croissance secondaire, suite à des perturbations anthropiques. Il est donc important de savoir à quelle vitesse ces forêts secondaires se rétablissent suffisamment pour fournir des services écosystémiques équivalents à ceux des forêts anciennes. Ces auteurs se concentrent sur la séquestration du carbone dans les forêts néotropicales et constatent que l'absorption de carbone est beaucoup plus élevée que dans les forêts anciennes, ce qui permet de récupérer 90 % des stocks de carbone en 66 ans en moyenne, mais il existe également une grande variation du potentiel de récupération. Ces connaissances pourraient aider à évaluer les implications de la perte de forêts — et le potentiel de rétablissement — dans différentes zones. Le changement d'affectation des terres ne se produit nulle part plus rapidement que dans les tropiques, où le déséquilibre entre la déforestation et la repousse forestière a des conséquences importantes sur le cycle mondial du carbone1. Cependant, une incertitude considérable demeure quant au taux de récupération de la biomasse dans les forêts secondaires et à la manière dont ces taux sont influencés par le climat, le paysage et l'utilisation antérieure des terres2,3,4. Nous analysons ici la récupération de la biomasse aérienne au cours de la succession secondaire dans 45 sites forestiers et environ 1 500 parcelles forestières couvrant les principaux gradients environnementaux des Néotropiques. Les forêts secondaires étudiées sont très productives et résilientes. La récupération de la biomasse aérienne après 20 ans était en moyenne de 122 mégagrammes par hectare (Mg ha−1), ce qui correspond à une absorption nette de carbone de 3,05 Mg C ha−1 an−1, soit 11 fois le taux d'absorption des forêts anciennes. Les stocks de biomasse aérienne ont pris un temps médian de 66 ans pour se rétablir à 90 % des anciennes valeurs de croissance. La récupération de la biomasse aérienne après 20 ans a varié de 11,3 fois (de 20 à 225 Mg ha−1) d'un site à l'autre, et cette récupération a augmenté avec la disponibilité en eau (pluviométrie locale plus élevée et déficit en eau climatique plus faible). Nous présentons une carte de récupération de la biomasse d'Amérique latine, qui illustre la variation géographique et climatique du potentiel de séquestration du carbone au cours de la repousse forestière. La carte soutiendra les politiques visant à minimiser la perte de forêts dans les zones où la résilience de la biomasse est naturellement faible (telles que les régions forestières saisonnièrement sèches) et à promouvoir la régénération et la restauration des forêts dans les zones tropicales humides de plaine à forte résilience de la biomasse. Un análisis de la recuperación de biomasa sobre el suelo durante la sucesión secundaria en sitios forestales y parcelas, que cubre los principales gradientes ambientales en el Neotrópico. Más de la mitad de los bosques tropicales del mundo son producto de un crecimiento secundario, tras una perturbación antropogénica. Por lo tanto, es importante saber qué tan rápido se recuperan estos bosques secundarios lo suficiente como para proporcionar servicios ecosistémicos equivalentes a los de los bosques primarios. Estos autores se centran en el secuestro de carbono en los bosques neotropicales y encuentran que la absorción de carbono es mucho mayor que en los bosques primarios, lo que permite la recuperación del 90% de las reservas de carbono en un promedio de 66 años, pero también hay una amplia variación en el potencial de recuperación. Este conocimiento podría ayudar a evaluar las implicaciones de la pérdida de bosques, y el potencial de recuperación, en diferentes áreas. El cambio en el uso de la tierra no ocurre en ninguna parte más rápidamente que en los trópicos, donde el desequilibrio entre la deforestación y el rebrote de los bosques tiene grandes consecuencias para el ciclo global del carbono1. Sin embargo, persiste una considerable incertidumbre sobre la tasa de recuperación de biomasa en los bosques secundarios y cómo estas tasas están influenciadas por el clima, el paisaje y el uso previo de la tierra2,3,4. Aquí analizamos la recuperación de biomasa sobre el suelo durante la sucesión secundaria en 45 sitios forestales y alrededor de 1.500 parcelas forestales que cubren los principales gradientes ambientales en el Neotrópico. Los bosques secundarios estudiados son altamente productivos y resilientes. La recuperación de biomasa sobre el suelo después de 20 años fue en promedio de 122 megagramas por hectárea (Mg ha−1), lo que corresponde a una absorción neta de carbono de 3,05 Mg C ha−1 año−1, 11 veces la tasa de absorción de los bosques antiguos. Las existencias de biomasa sobre el suelo tardaron una mediana de 66 años en recuperarse hasta el 90% de los valores de crecimiento antiguo. La recuperación de biomasa sobre el suelo después de 20 años varió 11,3 veces (de 20 a 225 Mg ha-1) entre los sitios, y esta recuperación aumentó con la disponibilidad de agua (mayores precipitaciones locales y menor déficit climático de agua). Presentamos un mapa de recuperación de biomasa de América Latina, que ilustra la variación geográfica y climática en el potencial de secuestro de carbono durante el recrecimiento forestal. El mapa apoyará las políticas para minimizar la pérdida de bosques en áreas donde la resiliencia de la biomasa es naturalmente baja (como las regiones forestales estacionalmente secas) y promoverá la regeneración y restauración de bosques en áreas tropicales húmedas de tierras bajas con alta resiliencia a la biomasa. An analysis of above-ground biomass recovery during secondary succession in forest sites and plots, covering the major environmental gradients in the Neotropics. More than half the world's tropical forests are the product of secondary growth, following anthropogenic disturbance. It is therefore important to know how quickly these secondary forests recover sufficiently to provide ecosystem services equivalent to those of old-growth forest. These authors focus on carbon sequestration in Neotropical forests, and find that carbon uptake is much higher than in old-growth forest, allowing recovery to 90% of the carbon stocks in an average of 66 years, but there is also wide variation in recovery potential. This knowledge could help assess the implications of forest loss — and potential for recovery — in different areas. Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle1. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use2,3,4. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha−1), corresponding to a net carbon uptake of 3.05 Mg C ha−1 yr−1, 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha−1) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience. تحليل لاسترداد الكتلة الحيوية فوق الأرض خلال التعاقب الثانوي في مواقع الغابات وقطع الأراضي، والتي تغطي التدرجات البيئية الرئيسية في المناطق المدارية الحديثة. أكثر من نصف الغابات الاستوائية في العالم هي نتاج نمو ثانوي، بعد الاضطرابات البشرية. لذلك من المهم معرفة مدى سرعة تعافي هذه الغابات الثانوية بما يكفي لتوفير خدمات نظام بيئي مكافئة لتلك الموجودة في الغابات القديمة النمو. يركز هؤلاء المؤلفون على عزل الكربون في الغابات المدارية الحديثة، ويجدون أن امتصاص الكربون أعلى بكثير منه في الغابات القديمة النمو، مما يسمح بالتعافي إلى 90 ٪ من مخزونات الكربون في متوسط 66 عامًا، ولكن هناك أيضًا تباينًا كبيرًا في إمكانات الاسترداد. يمكن أن تساعد هذه المعرفة في تقييم الآثار المترتبة على فقدان الغابات — وإمكانية التعافي — في مناطق مختلفة. لا يحدث تغير استخدام الأراضي في أي مكان بسرعة أكبر من المناطق المدارية، حيث يكون للاختلال بين إزالة الغابات وإعادة نمو الغابات عواقب كبيرة على دورة الكربون العالمية1. ومع ذلك، لا يزال هناك قدر كبير من عدم اليقين بشأن معدل استرداد الكتلة الحيوية في الغابات الثانوية، وكيف تتأثر هذه المعدلات بالمناخ والمناظر الطبيعية والاستخدام السابق للأراضي 2،3،4. نقوم هنا بتحليل استرداد الكتلة الحيوية فوق الأرض خلال التعاقب الثانوي في 45 موقعًا للغابات وحوالي 1500 قطعة غابات تغطي التدرجات البيئية الرئيسية في المناطق المدارية الحديثة. الغابات الثانوية المدروسة عالية الإنتاجية والمرونة. كان استرداد الكتلة الحيوية فوق الأرض بعد 20 عامًا في المتوسط 122 ميغاغرام لكل هكتار (Mg ha−1)، وهو ما يعادل امتصاصًا صافياً للكربون قدره 3.05 Mg C ha−1 سنة−1، أي 11 ضعف معدل امتصاص الغابات القديمة النمو. استغرقت مخزونات الكتلة الحيوية فوق الأرض وقتًا متوسطًا قدره 66 عامًا للتعافي إلى 90 ٪ من قيم النمو القديمة. تفاوت استرداد الكتلة الحيوية فوق الأرض بعد 20 عامًا 11.3 ضعفًا (من 20 إلى 225 ملليغرام هكتار−1) عبر المواقع، وزاد هذا الانتعاش مع توافر المياه (ارتفاع هطول الأمطار المحلية وانخفاض العجز المائي المناخي). نقدم خريطة استرداد الكتلة الحيوية لأمريكا اللاتينية، والتي توضح التباين الجغرافي والمناخي في إمكانات عزل الكربون أثناء إعادة نمو الغابات. ستدعم الخريطة السياسات الرامية إلى تقليل فقدان الغابات في المناطق التي تكون فيها مرونة الكتلة الحيوية منخفضة بشكل طبيعي (مثل مناطق الغابات الجافة الموسمية) وتعزيز تجديد الغابات واستعادتها في المناطق المنخفضة الاستوائية الرطبة ذات المرونة العالية للكتلة الحيوية.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2016License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Göttingen Research Online PublicationsArticle . 2020Data sources: Göttingen Research Online PublicationsUniversity of Stirling: Stirling Digital Research RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature16512&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 848 citations 848 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2016License: rioxx Under Embargo All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020Göttingen Research Online PublicationsArticle . 2020Data sources: Göttingen Research Online PublicationsUniversity of Stirling: Stirling Digital Research RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature16512&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu