- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Funder
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Georgios Goudelis; Pavlos I. Lazaridis; Mahmoud Dhimish;doi: 10.3390/en15124303
The accurate prediction of the performance output of photovoltaic (PV) installations is becoming ever more prominent. Its success can provide a considerable economic benefit, which can be adopted in maintenance, installation, and when calculating levelized cost. However, modelling the long-term performance output of PV modules is quite complex, particularly because multiple factors are involved. This article investigates the available literature relevant to the modelling of PV module performance drop and failure. A particular focus is placed on cracks and hotspots, as these are deemed to be the most influential. Thus, the key aspects affecting the accuracy of performance simulations were identified and the perceived relevant gaps in the literature were outlined. One of the findings demonstrates that microcrack position, orientation, and the severity of a microcrack determines its impact on the PV cell’s performance. Therefore, this aspect needs to be categorized and considered accordingly, for achieving accurate predictions. Additionally, it has been identified that physical modelling of microcracks is currently a considerable challenge that can provide beneficial results if executed appropriately. As a result, suggestions have been made towards achieving this, through the use of methods and software such as XFEM and Griddler.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 8visibility views 8 download downloads 81 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Part of book or chapter of book , Article 2015 United KingdomPublisher:IEEE Zhang, Y.; Upton, D.; Jaber, A.; Ahmed, H.; Khan, U.; Saeed, B.; Mather, P.; Lazaridis, P.; Atkinson, R.; Vieira, M. F Q; Glover, I. A.;This paper studies novel localization methods of multiple partial discharge sources in electrical substations. The three compressive sensing algorithms of Orthogonal Matching Pursuit (OMP), Homotopy technique, and Dichotomous coordinate descent (DCD) are presented. The simulation results demonstrate excellent performance with the compressive sensing methods.
CORE arrow_drop_down StrathprintsPart of book or chapter of book . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/lapc.2015.7366001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
visibility 1visibility views 1 download downloads 34 Powered bymore_vert CORE arrow_drop_down StrathprintsPart of book or chapter of book . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/lapc.2015.7366001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:EC | SANCUS, EC | 5GENESIS, EC | 5G-DRIVE +1 projectsEC| SANCUS ,EC| 5GENESIS ,EC| 5G-DRIVE ,EC| PALANTIRAuthors: Ioannis P. Chochliouros; Michail-Alexandros Kourtis; Anastasia S. Spiliopoulou; Pavlos Lazaridis; +3 AuthorsIoannis P. Chochliouros; Michail-Alexandros Kourtis; Anastasia S. Spiliopoulou; Pavlos Lazaridis; Zaharias Zaharis; Charilaos Zarakovitis; Anastasios Kourtis;doi: 10.3390/en14175392
Energy efficiency is a huge opportunity for both the developed and the developing world, and ICT will be the key enabler towards realising this challenge, in a huge variety of ways across the full range of industries. In the telecommunications space in particular, power consumption and the resulting energy-related pollution are becoming major operational and economical concerns. The exponential increases in network traffic and the number of connected devices both make energy efficiency an increasingly important concern for the mobile networks of the (near) future. More specifically, as 5G is being deployed at a time when energy efficiency appears as a significant matter for the network ability to take into account and to serve societal and environmental issues, this can play a major role in helping industries to achieve sustainability goals. Within this scope, energy efficiency has recently gained its own role as a performance measure and design constraint for 5G communication networks and this has identified new challenges for the future. In particular, the inclusion of AI/ML techniques will further enhance 5G’s capabilities to achieve lower power consumption and, most importantly, dynamic adaption of the network elements to any sort of energy requirements, to ensure effective functioning.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175392&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175392&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Funded by:FCT | D4FCT| D4Authors: Mahmoud Dhimish; Pavlos I. Lazaridis;doi: 10.3390/en15218201
In recent years, a determined shading ratio of photovoltaic (PV) systems has been broadly reviewed and explained. Observing the shading ratio of PV systems allows us to navigate for PV faults and helps to recognize possible degradation mechanisms. Therefore, this work introduces a novel approximation shading ratio technique using an all-sky imaging system. The proposed solution has the following structure: (i) we determined four all-sky imagers for a region of 25 km2, (ii) computed the cloud images using our new proposed model, called color-adjusted (CA), (iii) computed the shading ratio, and (iv) estimated the global horizontal irradiance (GHI) and consequently, obtained the predicted output power of the PV system. The estimation of the GHI was empirically compared with captured data from two different weather stations; we found that the average accuracy of the proposed technique was within a maximum ±12.7% error rate. In addition, the PV output power approximation accuracy was as high as 97.5% when the shading was zero and reduced to the lowest value of 83% when overcasting conditions affected the examined PV system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15218201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15218201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:EC | MOTOR5GEC| MOTOR5GChristos Milias; Rasmus B. Andersen; Pavlos I. Lazaridis; Zaharias D. Zaharis; Bilal Muhammad; Jes T. B. Kristensen; Albena Mihovska; Dan D. S. Hermansen;Metamaterials are artificial structures with the ability of exhibiting unusual and exotic electromagnetic properties such as the realisation of negative permittivity and permeability. Due to their unique characteristics, metamaterials have drawn broad interest and are considered to be a promising solution for improving the performance and overcoming the limitations of microwave components and especially antennas. This paper presents a detailed review of the most recent advancements associated with the design of metamaterial-based antennas. A brief introduction to the theory of metamaterials is provided in order to gain an insight into their working principle. Furthermore, the current state-of-the-art regarding antenna miniaturisation, gain and isolation enhancement with metamaterials is investigated. Emphasis is primarily placed on practical metamaterial antenna applications that outperform conventional methods and are anticipated to play an active role in future wireless communications. The paper also presents and discusses various design challenges that demand further research and development efforts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3091479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3091479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Georgios Goudelis; Pavlos I. Lazaridis; Mahmoud Dhimish;doi: 10.3390/en15124303
The accurate prediction of the performance output of photovoltaic (PV) installations is becoming ever more prominent. Its success can provide a considerable economic benefit, which can be adopted in maintenance, installation, and when calculating levelized cost. However, modelling the long-term performance output of PV modules is quite complex, particularly because multiple factors are involved. This article investigates the available literature relevant to the modelling of PV module performance drop and failure. A particular focus is placed on cracks and hotspots, as these are deemed to be the most influential. Thus, the key aspects affecting the accuracy of performance simulations were identified and the perceived relevant gaps in the literature were outlined. One of the findings demonstrates that microcrack position, orientation, and the severity of a microcrack determines its impact on the PV cell’s performance. Therefore, this aspect needs to be categorized and considered accordingly, for achieving accurate predictions. Additionally, it has been identified that physical modelling of microcracks is currently a considerable challenge that can provide beneficial results if executed appropriately. As a result, suggestions have been made towards achieving this, through the use of methods and software such as XFEM and Griddler.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 8visibility views 8 download downloads 81 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Part of book or chapter of book , Article 2015 United KingdomPublisher:IEEE Zhang, Y.; Upton, D.; Jaber, A.; Ahmed, H.; Khan, U.; Saeed, B.; Mather, P.; Lazaridis, P.; Atkinson, R.; Vieira, M. F Q; Glover, I. A.;This paper studies novel localization methods of multiple partial discharge sources in electrical substations. The three compressive sensing algorithms of Orthogonal Matching Pursuit (OMP), Homotopy technique, and Dichotomous coordinate descent (DCD) are presented. The simulation results demonstrate excellent performance with the compressive sensing methods.
CORE arrow_drop_down StrathprintsPart of book or chapter of book . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/lapc.2015.7366001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
visibility 1visibility views 1 download downloads 34 Powered bymore_vert CORE arrow_drop_down StrathprintsPart of book or chapter of book . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/lapc.2015.7366001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:EC | SANCUS, EC | 5GENESIS, EC | 5G-DRIVE +1 projectsEC| SANCUS ,EC| 5GENESIS ,EC| 5G-DRIVE ,EC| PALANTIRAuthors: Ioannis P. Chochliouros; Michail-Alexandros Kourtis; Anastasia S. Spiliopoulou; Pavlos Lazaridis; +3 AuthorsIoannis P. Chochliouros; Michail-Alexandros Kourtis; Anastasia S. Spiliopoulou; Pavlos Lazaridis; Zaharias Zaharis; Charilaos Zarakovitis; Anastasios Kourtis;doi: 10.3390/en14175392
Energy efficiency is a huge opportunity for both the developed and the developing world, and ICT will be the key enabler towards realising this challenge, in a huge variety of ways across the full range of industries. In the telecommunications space in particular, power consumption and the resulting energy-related pollution are becoming major operational and economical concerns. The exponential increases in network traffic and the number of connected devices both make energy efficiency an increasingly important concern for the mobile networks of the (near) future. More specifically, as 5G is being deployed at a time when energy efficiency appears as a significant matter for the network ability to take into account and to serve societal and environmental issues, this can play a major role in helping industries to achieve sustainability goals. Within this scope, energy efficiency has recently gained its own role as a performance measure and design constraint for 5G communication networks and this has identified new challenges for the future. In particular, the inclusion of AI/ML techniques will further enhance 5G’s capabilities to achieve lower power consumption and, most importantly, dynamic adaption of the network elements to any sort of energy requirements, to ensure effective functioning.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175392&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175392&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Funded by:FCT | D4FCT| D4Authors: Mahmoud Dhimish; Pavlos I. Lazaridis;doi: 10.3390/en15218201
In recent years, a determined shading ratio of photovoltaic (PV) systems has been broadly reviewed and explained. Observing the shading ratio of PV systems allows us to navigate for PV faults and helps to recognize possible degradation mechanisms. Therefore, this work introduces a novel approximation shading ratio technique using an all-sky imaging system. The proposed solution has the following structure: (i) we determined four all-sky imagers for a region of 25 km2, (ii) computed the cloud images using our new proposed model, called color-adjusted (CA), (iii) computed the shading ratio, and (iv) estimated the global horizontal irradiance (GHI) and consequently, obtained the predicted output power of the PV system. The estimation of the GHI was empirically compared with captured data from two different weather stations; we found that the average accuracy of the proposed technique was within a maximum ±12.7% error rate. In addition, the PV output power approximation accuracy was as high as 97.5% when the shading was zero and reduced to the lowest value of 83% when overcasting conditions affected the examined PV system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15218201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15218201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:EC | MOTOR5GEC| MOTOR5GChristos Milias; Rasmus B. Andersen; Pavlos I. Lazaridis; Zaharias D. Zaharis; Bilal Muhammad; Jes T. B. Kristensen; Albena Mihovska; Dan D. S. Hermansen;Metamaterials are artificial structures with the ability of exhibiting unusual and exotic electromagnetic properties such as the realisation of negative permittivity and permeability. Due to their unique characteristics, metamaterials have drawn broad interest and are considered to be a promising solution for improving the performance and overcoming the limitations of microwave components and especially antennas. This paper presents a detailed review of the most recent advancements associated with the design of metamaterial-based antennas. A brief introduction to the theory of metamaterials is provided in order to gain an insight into their working principle. Furthermore, the current state-of-the-art regarding antenna miniaturisation, gain and isolation enhancement with metamaterials is investigated. Emphasis is primarily placed on practical metamaterial antenna applications that outperform conventional methods and are anticipated to play an active role in future wireless communications. The paper also presents and discusses various design challenges that demand further research and development efforts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3091479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3091479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu