- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Authors: Nicola J. Nelson; Susan N. Keall; Jeanine M. Refsnider; Anna L. Carter;doi: 10.1002/jez.2196
pmid: 29939491
AbstractThe nest environment for eggs of reptiles has lifelong implications for offspring performance and success, and, ultimately, for population viability and species distributions. However, understanding the various abiotic and biotic drivers of nesting is complex, particularly regarding variation in nesting behavior of females and consequences for sex ratios in species with temperature‐dependent sex determination (TSD). We investigated how nest construction and nesting phenology affect the incubation environment of a reptile with TSD, the tuatara (Sphenodon punctatus), a species that is at risk from climate‐mediated male bias in population sex ratios. Using longitudinal behavioral data, we addressed the following questions. (1) Does nesting behavior vary with seasonal or location cues? (2) Does variation in nesting phenology or nest construction affect the incubation environment? We aimed to investigate whether female tuatara could modify nesting behavior to respond to novel environments, including a warming climate, allowing for successful incubation and balanced population sex ratios, maintaining population viability throughout their historic range. We predicted that earlier nesting after warm winters increased the likelihood that females will be produced, despite the sex determining system where males are produced from warmer temperatures. Further research is needed to understand the extent to which nesting behavior varies by individual through time, and across the range of tuatara, and the importance of habitat variability in maintaining production of females under future climate warming.
Journal of Experimen... arrow_drop_down Journal of Experimental Zoology Part A Ecological and Integrative PhysiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJournal of Experimental Zoology Part A Ecological and Integrative PhysiologyArticle . 2019Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jez.2196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Experimen... arrow_drop_down Journal of Experimental Zoology Part A Ecological and Integrative PhysiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJournal of Experimental Zoology Part A Ecological and Integrative PhysiologyArticle . 2019Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jez.2196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley Authors: Alex R. Gunderson; A. Z. Andis Arietta; Martha M. Muñoz; Gustavo A. Agudelo-Cantero; +4 AuthorsAlex R. Gunderson; A. Z. Andis Arietta; Martha M. Muñoz; Gustavo A. Agudelo-Cantero; Gustavo A. Agudelo-Cantero; Brooke L. Bodensteiner; Eric J. Gangloff; Jeanine M. Refsnider;doi: 10.1002/jez.2414
pmid: 32970931
AbstractEctothermic animals, such as amphibians and reptiles, are particularly sensitive to rapidly warming global temperatures. One response in these organisms may be to evolve aspects of their thermal physiology. If this response is adaptive and can occur on the appropriate time scale, it may facilitate population or species persistence in the changed environments. However, thermal physiological traits have classically been thought to evolve too slowly to keep pace with environmental change in longer‐lived vertebrates. Even as empirical work of the mid‐20th century offers mixed support for conservatism in thermal physiological traits, the generalization of low evolutionary potential in thermal traits is commonly invoked. Here, we revisit this hypothesis to better understand the mechanisms guiding the timing and patterns of physiological evolution. Characterizing the potential interactions among evolution, plasticity, behavior, and ontogenetic shifts in thermal physiology is critical for accurate prediction of how organisms will respond to our rapidly warming world. Recent work provides evidence that thermal physiological traits are not as evolutionarily rigid as once believed, with many examples of divergence in several aspects of thermal physiology at multiple phylogenetic scales. However, slow rates of evolution are often still observed, particularly at the warm end of the thermal performance curve. Furthermore, the context‐specificity of many responses makes broad generalizations about the potential evolvability of traits tenuous. We outline potential factors and considerations that require closer scrutiny to understand and predict reptile and amphibian evolutionary responses to climate change, particularly regarding the underlying genetic architecture facilitating or limiting thermal evolution.
PURE Aarhus Universi... arrow_drop_down Journal of Experimental Zoology Part A Ecological and Integrative PhysiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJournal of Experimental Zoology Part A Ecological and Integrative PhysiologyArticle . 2021Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jez.2414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu127 citations 127 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down Journal of Experimental Zoology Part A Ecological and Integrative PhysiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJournal of Experimental Zoology Part A Ecological and Integrative PhysiologyArticle . 2021Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jez.2414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Authors: Nicola J. Nelson; Susan N. Keall; Jeanine M. Refsnider; Anna L. Carter;doi: 10.1002/jez.2196
pmid: 29939491
AbstractThe nest environment for eggs of reptiles has lifelong implications for offspring performance and success, and, ultimately, for population viability and species distributions. However, understanding the various abiotic and biotic drivers of nesting is complex, particularly regarding variation in nesting behavior of females and consequences for sex ratios in species with temperature‐dependent sex determination (TSD). We investigated how nest construction and nesting phenology affect the incubation environment of a reptile with TSD, the tuatara (Sphenodon punctatus), a species that is at risk from climate‐mediated male bias in population sex ratios. Using longitudinal behavioral data, we addressed the following questions. (1) Does nesting behavior vary with seasonal or location cues? (2) Does variation in nesting phenology or nest construction affect the incubation environment? We aimed to investigate whether female tuatara could modify nesting behavior to respond to novel environments, including a warming climate, allowing for successful incubation and balanced population sex ratios, maintaining population viability throughout their historic range. We predicted that earlier nesting after warm winters increased the likelihood that females will be produced, despite the sex determining system where males are produced from warmer temperatures. Further research is needed to understand the extent to which nesting behavior varies by individual through time, and across the range of tuatara, and the importance of habitat variability in maintaining production of females under future climate warming.
Journal of Experimen... arrow_drop_down Journal of Experimental Zoology Part A Ecological and Integrative PhysiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJournal of Experimental Zoology Part A Ecological and Integrative PhysiologyArticle . 2019Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jez.2196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Experimen... arrow_drop_down Journal of Experimental Zoology Part A Ecological and Integrative PhysiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJournal of Experimental Zoology Part A Ecological and Integrative PhysiologyArticle . 2019Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jez.2196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley Authors: Alex R. Gunderson; A. Z. Andis Arietta; Martha M. Muñoz; Gustavo A. Agudelo-Cantero; +4 AuthorsAlex R. Gunderson; A. Z. Andis Arietta; Martha M. Muñoz; Gustavo A. Agudelo-Cantero; Gustavo A. Agudelo-Cantero; Brooke L. Bodensteiner; Eric J. Gangloff; Jeanine M. Refsnider;doi: 10.1002/jez.2414
pmid: 32970931
AbstractEctothermic animals, such as amphibians and reptiles, are particularly sensitive to rapidly warming global temperatures. One response in these organisms may be to evolve aspects of their thermal physiology. If this response is adaptive and can occur on the appropriate time scale, it may facilitate population or species persistence in the changed environments. However, thermal physiological traits have classically been thought to evolve too slowly to keep pace with environmental change in longer‐lived vertebrates. Even as empirical work of the mid‐20th century offers mixed support for conservatism in thermal physiological traits, the generalization of low evolutionary potential in thermal traits is commonly invoked. Here, we revisit this hypothesis to better understand the mechanisms guiding the timing and patterns of physiological evolution. Characterizing the potential interactions among evolution, plasticity, behavior, and ontogenetic shifts in thermal physiology is critical for accurate prediction of how organisms will respond to our rapidly warming world. Recent work provides evidence that thermal physiological traits are not as evolutionarily rigid as once believed, with many examples of divergence in several aspects of thermal physiology at multiple phylogenetic scales. However, slow rates of evolution are often still observed, particularly at the warm end of the thermal performance curve. Furthermore, the context‐specificity of many responses makes broad generalizations about the potential evolvability of traits tenuous. We outline potential factors and considerations that require closer scrutiny to understand and predict reptile and amphibian evolutionary responses to climate change, particularly regarding the underlying genetic architecture facilitating or limiting thermal evolution.
PURE Aarhus Universi... arrow_drop_down Journal of Experimental Zoology Part A Ecological and Integrative PhysiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJournal of Experimental Zoology Part A Ecological and Integrative PhysiologyArticle . 2021Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jez.2414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu127 citations 127 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down Journal of Experimental Zoology Part A Ecological and Integrative PhysiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJournal of Experimental Zoology Part A Ecological and Integrative PhysiologyArticle . 2021Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/jez.2414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu