- home
- Advanced Search
Filters
Year range
-chevron_right GOCountry
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 01 Feb 2021Publisher:Frontiers Media SA Authors:Michael Zemp;
Michael Zemp
Michael Zemp in OpenAIREMatthias Braun;
Fanny Brun; Laura I. Thomson;Matthias Braun
Matthias Braun in OpenAIREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/feart.2020.641710&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/feart.2020.641710&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2024Publisher:OpenAlex Authors:Livia Piermattei;
Livia Piermattei
Livia Piermattei in OpenAIREMichael Zemp;
Michael Zemp
Michael Zemp in OpenAIREChristian Sommer;
Christian Sommer
Christian Sommer in OpenAIREFanny Brun;
+31 AuthorsFanny Brun
Fanny Brun in OpenAIRELivia Piermattei;
Livia Piermattei
Livia Piermattei in OpenAIREMichael Zemp;
Michael Zemp
Michael Zemp in OpenAIREChristian Sommer;
Christian Sommer
Christian Sommer in OpenAIREFanny Brun;
Fanny Brun
Fanny Brun in OpenAIREMatthias Braun;
Matthias Braun
Matthias Braun in OpenAIRELiss M. Andreassen;
Joaquín M. C. Belart;Liss M. Andreassen
Liss M. Andreassen in OpenAIREÉtienne Berthier;
Étienne Berthier
Étienne Berthier in OpenAIREAtanu Bhattacharya;
Atanu Bhattacharya
Atanu Bhattacharya in OpenAIRELaura Boehm;
Laura Boehm
Laura Boehm in OpenAIRETobias Bolch;
Tobias Bolch
Tobias Bolch in OpenAIREAmaury Dehecq;
Amaury Dehecq
Amaury Dehecq in OpenAIREInès Dussaillant;
Inès Dussaillant
Inès Dussaillant in OpenAIREDaniel Falaschi;
Daniel Falaschi
Daniel Falaschi in OpenAIRECaitlyn Florentine;
Caitlyn Florentine
Caitlyn Florentine in OpenAIREDana Floricioiu;
Dana Floricioiu
Dana Floricioiu in OpenAIREChristian Ginzler;
Christian Ginzler
Christian Ginzler in OpenAIREGrégoire Guillet;
Grégoire Guillet
Grégoire Guillet in OpenAIRERomain Hugonnet;
Romain Hugonnet
Romain Hugonnet in OpenAIREMatthias Huss;
Matthias Huss
Matthias Huss in OpenAIREAndreas Kääb;
Andreas Kääb
Andreas Kääb in OpenAIREOwen King;
Owen King
Owen King in OpenAIREChristoph Klug;
Christoph Klug
Christoph Klug in OpenAIREFriedrich Knuth;
Friedrich Knuth
Friedrich Knuth in OpenAIRELukas Krieger;
Jeff La Frenierre;Lukas Krieger
Lukas Krieger in OpenAIRERobert McNabb;
Robert McNabb
Robert McNabb in OpenAIREChristopher McNeil;
Christopher McNeil
Christopher McNeil in OpenAIRERainer Prinz;
Rainer Prinz
Rainer Prinz in OpenAIRELouis Sass;
Louis Sass
Louis Sass in OpenAIREThorsten Seehaus;
Thorsten Seehaus
Thorsten Seehaus in OpenAIREDavid Shean;
David Shean
David Shean in OpenAIREDésirée Treichler;
Anja Wendt;Désirée Treichler
Désirée Treichler in OpenAIRERuitang Yang;
Ruitang Yang
Ruitang Yang in OpenAIRERésumé. Les observations des changements de masse des glaciers sont essentielles pour comprendre la réponse des glaciers au changement climatique et aux impacts connexes, tels que le ruissellement régional, les changements écosystémiques et l'élévation du niveau de la mer à l'échelle mondiale. Les capteurs optiques et radar spatiaux permettent de quantifier les changements d'élévation des glaciers, et donc les changements de masse pluriannuels, à l'échelle régionale et mondiale. Cependant, les estimations d'un nombre croissant d'études montrent un large éventail de résultats avec des différences souvent au-delà des limites d'incertitude. Ici, nous présentons les résultats d'une expérience intercomparaison communautaire utilisant des données d'interférométrie stéréo optique spatiale (ASTER) et radar à ouverture synthétique (TanDEM-X) pour estimer les changements d'altitude pour des glaciers définis et des périodes cibles qui posent différents défis d'évaluation. En utilisant des modèles d'élévation numériques (DEM) fournis ou autotraités pour cinq sites de test, 12 groupes de recherche ont fourni un total de 97 ensembles de données de changement d'altitude spatiaux en utilisant diverses stratégies de traitement. La validation avec des données aéroportées a montré que l'utilisation d'une estimation d'ensemble promet de réduire les erreurs aléatoires provenant de différents instruments et méthodes de traitement, mais nécessite toujours une enquête et une correction plus complètes des erreurs systématiques. Nous avons constaté que la sélection de la scène, le traitement DEM et le co-enregistrement ont le plus grand impact sur les résultats. D'autres étapes de traitement, telles que le traitement des vides de données spatiales, les différences de périodes d'enquête ou la pénétration radar, peuvent toujours être importantes pour des cas individuels. Les recherches futures devraient se concentrer sur la mise à l'essai de différentes implémentations d'étapes de traitement individuelles (par exemple, le co-enregistrement) et aborder les questions liées aux corrections temporelles, à la pénétration radar, aux changements de zone glaciaire et à la conversion de densité. Enfin, notre communauté a clairement besoin de développer les meilleures pratiques, d'utiliser des logiciels ouverts et reproductibles et d'évaluer l'incertitude globale afin d'améliorer les comparaisons et de renforcer les connaissances sur les processus physiques dans les études de changement d'altitude des glaciers. Resumen. Observar los cambios en la masa de los glaciares es clave para comprender la respuesta de los glaciares al cambio climático y los impactos relacionados, como la escorrentía regional, los cambios en los ecosistemas y el aumento global del nivel del mar. Los sensores ópticos y de radar transportados por el espacio permiten cuantificar los cambios de elevación de los glaciares y, por lo tanto, los cambios de masa plurianuales, a escala regional y global. Sin embargo, las estimaciones de un número creciente de estudios muestran una amplia gama de resultados con diferencias que a menudo van más allá de los límites de incertidumbre. Aquí, presentamos el resultado de un experimento de intercomparación basado en la comunidad que utiliza datos estéreo óptico a bordo del espacio (ASTER) e interferometría de radar de apertura sintética (TanDEM-X) para estimar los cambios de elevación para glaciares definidos y períodos objetivo que plantean diferentes desafíos de evaluación. Utilizando modelos digitales de elevación (DEM) proporcionados o autoprocesados para cinco sitios de prueba, 12 grupos de investigación proporcionaron un total de 97 conjuntos de datos de cambio de elevación a bordo del espacio utilizando varias estrategias de procesamiento. La validación con datos aéreos mostró que el uso de una estimación de conjunto es prometedor para reducir los errores aleatorios de diferentes instrumentos y métodos de procesamiento, pero aún requiere una investigación y corrección más exhaustivas de los errores sistemáticos. Descubrimos que la selección de escenas, el procesamiento de DEM y el corregistro tienen el mayor impacto en los resultados. Otros pasos de procesamiento, como el tratamiento de vacíos de datos espaciales, las diferencias en los períodos de encuesta o la penetración del radar, aún pueden ser importantes para casos individuales. La investigación futura debe centrarse en probar diferentes implementaciones de pasos de procesamiento individuales (por ejemplo, registro conjunto) y abordar cuestiones relacionadas con correcciones temporales, penetración de radar, cambios en el área de los glaciares y conversión de densidad. Finalmente, existe una clara necesidad de que nuestra comunidad desarrolle las mejores prácticas, use software abierto y reproducible y evalúe la incertidumbre general para mejorar la intercomparación y potenciar los conocimientos de los procesos físicos en los estudios de cambio de elevación de glaciares. Abstract. Observations of glacier mass changes are key to understanding the response of glaciers to climate change and related impacts, such as regional runoff, ecosystem changes, and global sea-level rise. Spaceborne optical and radar sensors make it possible to quantify glacier elevation changes, and thus multi-annual mass changes, on a regional and global scale. However, estimates from a growing number of studies show a wide range of results with differences often beyond uncertainty bounds. Here, we present the outcome of a community-based inter-comparison experiment using spaceborne optical stereo (ASTER) and synthetic aperture radar interferometry (TanDEM-X) data to estimate elevation changes for defined glaciers and target periods that pose different assessment challenges. Using provided or self-processed digital elevation models (DEMs) for five test sites, 12 research groups provided a total of 97 spaceborne elevation-change datasets using various processing strategies. Validation with airborne data showed that using an ensemble estimate is promising to reduce random errors from different instruments and processing methods, but still requires a more comprehensive investigation and correction of systematic errors. We found that scene selection, DEM processing, and co-registration have the biggest impact on the results. Other processing steps, such as treating spatial data voids, differences in survey periods, or radar penetration, can still be important for individual cases. Future research should focus on testing different implementations of individual processing steps (e.g. co-registration) and addressing issues related to temporal corrections, radar penetration, glacier area changes, and density conversion. Finally, there is a clear need for our community to develop best practices, use open, reproducible software, and assess overall uncertainty in order to enhance inter-comparison and empower physical process insights across glacier elevation-change studies. الخلاصة. تعتبر ملاحظات التغيرات في كتلة الأنهار الجليدية أساسية لفهم استجابة الأنهار الجليدية لتغير المناخ والآثار ذات الصلة، مثل الجريان السطحي الإقليمي وتغيرات النظام الإيكولوجي وارتفاع مستوى سطح البحر العالمي. تتيح أجهزة الاستشعار البصرية والرادارية المحمولة في الفضاء قياس التغيرات في ارتفاع الأنهار الجليدية، وبالتالي التغيرات الكتلية متعددة السنوات، على نطاق إقليمي وعالمي. ومع ذلك، تظهر التقديرات من عدد متزايد من الدراسات مجموعة واسعة من النتائج مع وجود اختلافات غالبًا ما تتجاوز حدود عدم اليقين. هنا، نقدم نتائج تجربة مقارنة مجتمعية باستخدام بيانات الاستريو البصري المحمول في الفضاء (ASTER) وبيانات قياس التداخل بالرادار ذي الفتحة الاصطناعية (TanDEM - X) لتقدير تغيرات الارتفاع للأنهار الجليدية المحددة والفترات المستهدفة التي تشكل تحديات تقييم مختلفة. باستخدام نماذج الارتفاع الرقمية المقدمة أو ذاتية المعالجة (DEMs) لخمسة مواقع اختبار، قدمت 12 مجموعة بحثية ما مجموعه 97 مجموعة بيانات لتغيير الارتفاع المحمول في الفضاء باستخدام استراتيجيات معالجة مختلفة. أظهر التحقق من البيانات المحمولة جواً أن استخدام تقدير المجموعة يعد بتقليل الأخطاء العشوائية من الأدوات وطرق المعالجة المختلفة، ولكنه لا يزال يتطلب تحقيقًا أكثر شمولاً وتصحيحًا للأخطاء المنهجية. وجدنا أن اختيار المشهد ومعالجة DEM والتسجيل المشترك لها أكبر تأثير على النتائج. يمكن أن تظل خطوات المعالجة الأخرى، مثل معالجة فراغات البيانات المكانية أو الاختلافات في فترات المسح أو اختراق الرادار، مهمة للحالات الفردية. يجب أن تركز الأبحاث المستقبلية على اختبار التطبيقات المختلفة لخطوات المعالجة الفردية (مثل التسجيل المشترك) ومعالجة القضايا المتعلقة بالتصحيحات الزمنية واختراق الرادار وتغيرات المنطقة الجليدية وتحويل الكثافة. أخيرًا، هناك حاجة واضحة لمجتمعنا لتطوير أفضل الممارسات، واستخدام برامج مفتوحة وقابلة للتكرار، وتقييم عدم اليقين العام من أجل تعزيز المقارنة البينية وتمكين رؤى العمليات المادية عبر دراسات تغيير ارتفاع الأنهار الجليدية.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/36pgy-59e30&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/36pgy-59e30&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2019Publisher:MDPI AG Funded by:[no funder available]Authors:Stefan Lippl;
Stefan Lippl
Stefan Lippl in OpenAIREPeter Friedl;
Peter Friedl
Peter Friedl in OpenAIREChristoph Kittel;
Christoph Kittel
Christoph Kittel in OpenAIRESebastián Marinsek;
+2 AuthorsSebastián Marinsek
Sebastián Marinsek in OpenAIREStefan Lippl;
Stefan Lippl
Stefan Lippl in OpenAIREPeter Friedl;
Peter Friedl
Peter Friedl in OpenAIREChristoph Kittel;
Christoph Kittel
Christoph Kittel in OpenAIRESebastián Marinsek;
Sebastián Marinsek
Sebastián Marinsek in OpenAIREThorsten Seehaus;
Thorsten Seehaus
Thorsten Seehaus in OpenAIREMatthias Braun;
Matthias Braun
Matthias Braun in OpenAIREThe northern Antarctic Peninsula was affected by a significant warming over the second half of the 20th century and the collapse of several ice shelves. Local climate conditions on James Ross Island on the northeastern coast can differ strongly from the main part of the Antarctic Peninsula. This paper reports the spatial and temporal variability of glacier surface velocities and the area of their outlets throughout James Ross Island, and evaluates potential relationships with atmospheric and oceanic conditions. Velocity estimates were retrieved from intensity feature tracking of scenes from satellite synthetic aperture radar sensors TerraSAR-X and TanDEM-X between 2014 and 2018, which were validated against ground observations. Calving front positions back to 1945 were used to calculate outlet area changes for the glaciers by using a common-box approach. The annual recession rates of almost all investigated glacier calving fronts decelerated for the time periods 2009–2014 and 2014–2018 in comparison to the period 1988–2009, but their velocity patterns differed. Analysis of atmospheric conditions failed to explain the different patterns in velocity and area changes. We suggest a strong influence from local bathymetric conditions. Future investigations of the oceanic conditions would be necessary for a profound understanding of the super-position of different influencing factors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences9090374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences9090374&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FinlandPublisher:Elsevier BV Authors: Achim Bräuning; A.K. Franke;Matthias Braun;
Matthias Braun
Matthias Braun in OpenAIREHannes Feilhauer;
+2 AuthorsHannes Feilhauer
Hannes Feilhauer in OpenAIREAchim Bräuning; A.K. Franke;Matthias Braun;
Matthias Braun
Matthias Braun in OpenAIREHannes Feilhauer;
Hannes Feilhauer; Pasi Rautio;Hannes Feilhauer
Hannes Feilhauer in OpenAIREAbstract Global warming is predicted to affect ecosystems, particularly in high-latitude regions where polar amplification accelerates temperature rise and environmental changes. Here, where plants grow under adverse conditions, a warmer climate provides more favourable conditions for growth and regeneration. At the alpine and polar tree line in Finnish Lapland, rising temperatures are assumed to promote densification and expansion of conifers towards fell tops and treeless boreal heathlands beyond the recent tree-line position. In this study, we analysed vegetation changes in the pine treeline ecotone in six study sites in Finnish Lapland using multi-spectral satellite data during 1984–2017. All of the six sites were established in fell areas, covering the transition from closed forest stands of the lower elevations to the open fell tops beyond the treeline position. The southern sites were located in pine dominated-stands, where treelines were of alpine character. The northern sites were located in the polar treeline ecotone where mountain birch forests already dominate the landscape. We assessed shifts in the vegetation pattern of the fell sites using the normalized difference vegetation index (NDVI) and a RandomForest land-cover classification as indicators of potential change. We did not find clear trends for advancing coniferous tree lines towards open fell tops or treeless heath vegetation, neither by NDVI change detection nor by the land-cover classification. However, we found evidence for densification of open forest stands and sparse vegetation cover in lower elevations and the expansion of deciduous vegetation in higher elevations of previously vegetation-free or sparsely covered fell tops. Increasing stand density was detected mostly in the southern, pine-dominated sites, while the northern sites indicated increasing biomass near the fell tops. Prominent changes in vegetation patterns originated rather from human impact in the southern sites appearing as recent roads, clear-cuttings or infrastructure constructions in skiing areas. In the northern sites, distinctive changes arose from human impact or from biotic disturbance events such as moth outbreaks defoliating mountain birch stands at site Karigasniemi.
Forest Ecology and M... arrow_drop_down Forest Ecology and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2019.117668&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Forest Ecology and M... arrow_drop_down Forest Ecology and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2019.117668&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 16 Jul 2024 SwitzerlandPublisher:Copernicus GmbH Funded by:RCN | MASSIVE - MAchine learnin..., SNSF | Process-based modelling o..., +1 projectsRCN| MASSIVE - MAchine learning, Surface mass balance of glaciers, Snow cover, In-situ data, Volume change, Earth observation ,SNSF| Process-based modelling of global glacier changes (PROGGRES) ,[no funder available] ,RCN| SNOWDEPTH - Global snow depths from spaceborne remote sensing for permafrost, high-elevation precipitation, and climate reanalysesAuthors:Livia Piermattei;
Livia Piermattei
Livia Piermattei in OpenAIREMichael Zemp;
Michael Zemp
Michael Zemp in OpenAIREChristian Sommer;
Christian Sommer
Christian Sommer in OpenAIREFanny Brun;
+31 AuthorsFanny Brun
Fanny Brun in OpenAIRELivia Piermattei;
Livia Piermattei
Livia Piermattei in OpenAIREMichael Zemp;
Michael Zemp
Michael Zemp in OpenAIREChristian Sommer;
Christian Sommer
Christian Sommer in OpenAIREFanny Brun;
Fanny Brun
Fanny Brun in OpenAIREMatthias Braun;
Matthias Braun
Matthias Braun in OpenAIRELiss M. Andreassen;
Liss M. Andreassen
Liss M. Andreassen in OpenAIREJoaquín M. C. Belart;
Joaquín M. C. Belart
Joaquín M. C. Belart in OpenAIREÉtienne Berthier;
Étienne Berthier
Étienne Berthier in OpenAIREAtanu Bhattacharya;
Atanu Bhattacharya
Atanu Bhattacharya in OpenAIRELaura Boehm;
Laura Boehm
Laura Boehm in OpenAIRETobias Bolch;
Tobias Bolch
Tobias Bolch in OpenAIREAmaury Dehecq;
Amaury Dehecq
Amaury Dehecq in OpenAIREInès Dussaillant;
Inès Dussaillant
Inès Dussaillant in OpenAIREDaniel Falaschi;
Daniel Falaschi
Daniel Falaschi in OpenAIRECaitlyn Florentine;
Caitlyn Florentine
Caitlyn Florentine in OpenAIREDana Floricioiu;
Dana Floricioiu
Dana Floricioiu in OpenAIREChristian Ginzler;
Christian Ginzler
Christian Ginzler in OpenAIREGrégoire Guillet;
Grégoire Guillet
Grégoire Guillet in OpenAIRERomain Hugonnet;
Romain Hugonnet
Romain Hugonnet in OpenAIREMatthias Huss;
Matthias Huss
Matthias Huss in OpenAIREAndreas Kääb;
Andreas Kääb
Andreas Kääb in OpenAIREOwen King;
Owen King
Owen King in OpenAIREChristoph Klug;
Christoph Klug
Christoph Klug in OpenAIREFriedrich Knuth;
Friedrich Knuth
Friedrich Knuth in OpenAIRELukas Krieger;
Jeff La Frenierre;Lukas Krieger
Lukas Krieger in OpenAIRERobert McNabb;
Robert McNabb
Robert McNabb in OpenAIREChristopher McNeil;
Christopher McNeil
Christopher McNeil in OpenAIRERainer Prinz;
Rainer Prinz
Rainer Prinz in OpenAIRELouis Sass;
Louis Sass
Louis Sass in OpenAIREThorsten Seehaus;
Thorsten Seehaus
Thorsten Seehaus in OpenAIREDavid Shean;
David Shean
David Shean in OpenAIREDésirée Treichler;
Anja Wendt;Désirée Treichler
Désirée Treichler in OpenAIRERuitang Yang;
Ruitang Yang
Ruitang Yang in OpenAIREAbstract. Observations of glacier mass changes are key to understanding the response of glaciers to climate change and related impacts, such as regional runoff, ecosystem changes, and global sea level rise. Spaceborne optical and radar sensors make it possible to quantify glacier elevation changes, and thus multi-annual mass changes, on a regional and global scale. However, estimates from a growing number of studies show a wide range of results with differences often beyond uncertainty bounds. Here, we present the outcome of a community-based inter-comparison experiment using spaceborne optical stereo (ASTER) and synthetic aperture radar interferometry (TanDEM-X) data to estimate elevation changes for defined glaciers and target periods that pose different assessment challenges. Using provided or self-processed digital elevation models (DEMs) for five test sites, 12 research groups provided a total of 97 spaceborne elevation-change datasets using various processing approaches. Validation with airborne data showed that using an ensemble estimate is promising to reduce random errors from different instruments and processing methods but still requires a more comprehensive investigation and correction of systematic errors. We found that scene selection, DEM processing, and co-registration have the biggest impact on the results. Other processing steps, such as treating spatial data voids, differences in survey periods, or radar penetration, can still be important for individual cases. Future research should focus on testing different implementations of individual processing steps (e.g. co-registration) and addressing issues related to temporal corrections, radar penetration, glacier area changes, and density conversion. Finally, there is a clear need for our community to develop best practices, use open, reproducible software, and assess overall uncertainty to enhance inter-comparison and empower physical process insights across glacier elevation-change studies.
The Cryosphere arrow_drop_down https://doi.org/10.5194/egusph...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/tc-18-3195-2024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert The Cryosphere arrow_drop_down https://doi.org/10.5194/egusph...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/tc-18-3195-2024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu