- home
- Advanced Search
- Energy Research
- The Cryosphere
- Energy Research
- The Cryosphere
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 16 Jul 2024 SwitzerlandPublisher:Copernicus GmbH Funded by:RCN | MASSIVE - MAchine learnin..., SNSF | Process-based modelling o..., +1 projectsRCN| MASSIVE - MAchine learning, Surface mass balance of glaciers, Snow cover, In-situ data, Volume change, Earth observation ,SNSF| Process-based modelling of global glacier changes (PROGGRES) ,[no funder available] ,RCN| SNOWDEPTH - Global snow depths from spaceborne remote sensing for permafrost, high-elevation precipitation, and climate reanalysesAuthors:Livia Piermattei;
Livia Piermattei
Livia Piermattei in OpenAIREMichael Zemp;
Michael Zemp
Michael Zemp in OpenAIREChristian Sommer;
Christian Sommer
Christian Sommer in OpenAIREFanny Brun;
+31 AuthorsFanny Brun
Fanny Brun in OpenAIRELivia Piermattei;
Livia Piermattei
Livia Piermattei in OpenAIREMichael Zemp;
Michael Zemp
Michael Zemp in OpenAIREChristian Sommer;
Christian Sommer
Christian Sommer in OpenAIREFanny Brun;
Fanny Brun
Fanny Brun in OpenAIREMatthias Braun;
Matthias Braun
Matthias Braun in OpenAIRELiss M. Andreassen;
Liss M. Andreassen
Liss M. Andreassen in OpenAIREJoaquín M. C. Belart;
Joaquín M. C. Belart
Joaquín M. C. Belart in OpenAIREÉtienne Berthier;
Étienne Berthier
Étienne Berthier in OpenAIREAtanu Bhattacharya;
Atanu Bhattacharya
Atanu Bhattacharya in OpenAIRELaura Boehm;
Laura Boehm
Laura Boehm in OpenAIRETobias Bolch;
Tobias Bolch
Tobias Bolch in OpenAIREAmaury Dehecq;
Amaury Dehecq
Amaury Dehecq in OpenAIREInès Dussaillant;
Inès Dussaillant
Inès Dussaillant in OpenAIREDaniel Falaschi;
Daniel Falaschi
Daniel Falaschi in OpenAIRECaitlyn Florentine;
Caitlyn Florentine
Caitlyn Florentine in OpenAIREDana Floricioiu;
Dana Floricioiu
Dana Floricioiu in OpenAIREChristian Ginzler;
Christian Ginzler
Christian Ginzler in OpenAIREGrégoire Guillet;
Grégoire Guillet
Grégoire Guillet in OpenAIRERomain Hugonnet;
Romain Hugonnet
Romain Hugonnet in OpenAIREMatthias Huss;
Matthias Huss
Matthias Huss in OpenAIREAndreas Kääb;
Andreas Kääb
Andreas Kääb in OpenAIREOwen King;
Owen King
Owen King in OpenAIREChristoph Klug;
Christoph Klug
Christoph Klug in OpenAIREFriedrich Knuth;
Friedrich Knuth
Friedrich Knuth in OpenAIRELukas Krieger;
Jeff La Frenierre;Lukas Krieger
Lukas Krieger in OpenAIRERobert McNabb;
Robert McNabb
Robert McNabb in OpenAIREChristopher McNeil;
Christopher McNeil
Christopher McNeil in OpenAIRERainer Prinz;
Rainer Prinz
Rainer Prinz in OpenAIRELouis Sass;
Louis Sass
Louis Sass in OpenAIREThorsten Seehaus;
Thorsten Seehaus
Thorsten Seehaus in OpenAIREDavid Shean;
David Shean
David Shean in OpenAIREDésirée Treichler;
Anja Wendt;Désirée Treichler
Désirée Treichler in OpenAIRERuitang Yang;
Ruitang Yang
Ruitang Yang in OpenAIREAbstract. Observations of glacier mass changes are key to understanding the response of glaciers to climate change and related impacts, such as regional runoff, ecosystem changes, and global sea level rise. Spaceborne optical and radar sensors make it possible to quantify glacier elevation changes, and thus multi-annual mass changes, on a regional and global scale. However, estimates from a growing number of studies show a wide range of results with differences often beyond uncertainty bounds. Here, we present the outcome of a community-based inter-comparison experiment using spaceborne optical stereo (ASTER) and synthetic aperture radar interferometry (TanDEM-X) data to estimate elevation changes for defined glaciers and target periods that pose different assessment challenges. Using provided or self-processed digital elevation models (DEMs) for five test sites, 12 research groups provided a total of 97 spaceborne elevation-change datasets using various processing approaches. Validation with airborne data showed that using an ensemble estimate is promising to reduce random errors from different instruments and processing methods but still requires a more comprehensive investigation and correction of systematic errors. We found that scene selection, DEM processing, and co-registration have the biggest impact on the results. Other processing steps, such as treating spatial data voids, differences in survey periods, or radar penetration, can still be important for individual cases. Future research should focus on testing different implementations of individual processing steps (e.g. co-registration) and addressing issues related to temporal corrections, radar penetration, glacier area changes, and density conversion. Finally, there is a clear need for our community to develop best practices, use open, reproducible software, and assess overall uncertainty to enhance inter-comparison and empower physical process insights across glacier elevation-change studies.
The Cryosphere arrow_drop_down https://doi.org/10.5194/egusph...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/tc-18-3195-2024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert The Cryosphere arrow_drop_down https://doi.org/10.5194/egusph...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/tc-18-3195-2024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu