- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Wiley Gerald C. Nelson; William W. L. Cheung; Rachel Bezner Kerr; James Franke; Francisco Meza; Muhammed A. Oyinlola; Philip Thornton; Florian Zabel;doi: 10.1111/gcb.17489
pmid: 39239722
Are there limits to our ability to adapt food systems to climate change? This overview paper for the special issue highlights results of research on potential limits and responses by food system actors. Responses are shaped by the critical interactions among the physical, chemical, biological, and social impacts in food systems arising from climate change. Food grains, temperate perennials, livestock, and oceanic capture fisheries and farming are covered. Climate change impacts on the biology of plants, animals, and humans, as well as the options for societal responses are explored. The results show where and how possible adaptations will be limited.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Wiley Gerald C. Nelson; William W. L. Cheung; Rachel Bezner Kerr; James Franke; Francisco Meza; Muhammed A. Oyinlola; Philip Thornton; Florian Zabel;doi: 10.1111/gcb.17489
pmid: 39239722
Are there limits to our ability to adapt food systems to climate change? This overview paper for the special issue highlights results of research on potential limits and responses by food system actors. Responses are shaped by the critical interactions among the physical, chemical, biological, and social impacts in food systems arising from climate change. Food grains, temperate perennials, livestock, and oceanic capture fisheries and farming are covered. Climate change impacts on the biology of plants, animals, and humans, as well as the options for societal responses are explored. The results show where and how possible adaptations will be limited.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:Wiley Funded by:NSERCNSERCAuthors: Muhammed A. Oyinlola; Gabriel Reygondeau; Colette C. C. Wabnitz; Thomas L. Frölicher; +2 AuthorsMuhammed A. Oyinlola; Gabriel Reygondeau; Colette C. C. Wabnitz; Thomas L. Frölicher; Vicky W. Y. Lam; William W. L. Cheung;doi: 10.1111/gcb.15991 , 10.48350/166660
pmid: 34902203
AbstractThe sustainability of global seafood supply to meet increasing demand is facing several challenges, including increasing consumption levels due to a growing human population, fisheries resources over‐exploitation and climate change. Whilst growth in seafood production from capture fisheries is limited, global mariculture production is expanding. However, climate change poses risks to the potential seafood production from mariculture. Here, we apply a global mariculture production model that accounts for changing ocean conditions, suitable marine area for farming, fishmeal and fish oil production, farmed species dietary demand, farmed fish price and global seafood demand to project mariculture production under two climate and socio‐economic scenarios. We include 85 farmed marine fish and mollusc species, representing about 70% of all mariculture production in 2015. Results show positive global mariculture production changes by the mid and end of the 21st century relative to the 2000s under the SSP1‐2.6 scenario with an increase of 17%±5 and 33%±6, respectively. However, under the SSP5‐8.5 scenario, an increase of 8%±5 is projected, with production peaking by mid‐century and declining by 16%±5 towards the end of the 21st century. More than 25% of mariculture‐producing nations are projected to lose 40%–90% of their current mariculture production potential under SSP5‐8.5 by mid‐century. Projected impacts are mainly due to the direct ocean warming effects on farmed species and suitable marine areas, and the indirect impacts of changing availability of forage fishes supplies to produce aquafeed. Fishmeal replacement with alternative protein can lower climate impacts on a subset of finfish production. However, such adaptation measures do not apply to regions dominated by non‐feed‐based farming (i.e. molluscs) and regions losing substantial marine areas suitable for mariculture. Our study highlights the importance of strong mitigation efforts and the need for different climate adaptation options tailored to the diversity of mariculture systems, to support climate‐resilient mariculture development.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:Wiley Funded by:NSERCNSERCAuthors: Muhammed A. Oyinlola; Gabriel Reygondeau; Colette C. C. Wabnitz; Thomas L. Frölicher; +2 AuthorsMuhammed A. Oyinlola; Gabriel Reygondeau; Colette C. C. Wabnitz; Thomas L. Frölicher; Vicky W. Y. Lam; William W. L. Cheung;doi: 10.1111/gcb.15991 , 10.48350/166660
pmid: 34902203
AbstractThe sustainability of global seafood supply to meet increasing demand is facing several challenges, including increasing consumption levels due to a growing human population, fisheries resources over‐exploitation and climate change. Whilst growth in seafood production from capture fisheries is limited, global mariculture production is expanding. However, climate change poses risks to the potential seafood production from mariculture. Here, we apply a global mariculture production model that accounts for changing ocean conditions, suitable marine area for farming, fishmeal and fish oil production, farmed species dietary demand, farmed fish price and global seafood demand to project mariculture production under two climate and socio‐economic scenarios. We include 85 farmed marine fish and mollusc species, representing about 70% of all mariculture production in 2015. Results show positive global mariculture production changes by the mid and end of the 21st century relative to the 2000s under the SSP1‐2.6 scenario with an increase of 17%±5 and 33%±6, respectively. However, under the SSP5‐8.5 scenario, an increase of 8%±5 is projected, with production peaking by mid‐century and declining by 16%±5 towards the end of the 21st century. More than 25% of mariculture‐producing nations are projected to lose 40%–90% of their current mariculture production potential under SSP5‐8.5 by mid‐century. Projected impacts are mainly due to the direct ocean warming effects on farmed species and suitable marine areas, and the indirect impacts of changing availability of forage fishes supplies to produce aquafeed. Fishmeal replacement with alternative protein can lower climate impacts on a subset of finfish production. However, such adaptation measures do not apply to regions dominated by non‐feed‐based farming (i.e. molluscs) and regions losing substantial marine areas suitable for mariculture. Our study highlights the importance of strong mitigation efforts and the need for different climate adaptation options tailored to the diversity of mariculture systems, to support climate‐resilient mariculture development.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Funded by:SSHRC, SNSF | Ocean extremes in a warme..., EC | COMFORT +1 projectsSSHRC ,SNSF| Ocean extremes in a warmer world: Discovering risks for marine ecosystems (OceanX) - Phase 2 ,EC| COMFORT ,NSERCAuthors: Cheung, William W L; Palacios-Abrantes, Juliano; Frölicher, Thomas L; Palomares, Maria Lourdes; +8 AuthorsCheung, William W L; Palacios-Abrantes, Juliano; Frölicher, Thomas L; Palomares, Maria Lourdes; Clarke, Tayler; Lam, Vicky W Y; Oyinlola, Muhammed A; Pauly, Daniel; Reygondeau, Gabriel; Sumaila, U Rashid; Teh, Lydia C L; Wabnitz, Colette C C;doi: 10.1111/gcb.16368 , 10.48350/172627
pmid: 36047439
AbstractRebuilding overexploited marine populations is an important step to achieve the United Nations' Sustainable Development Goal 14—Life Below Water. Mitigating major human pressures is required to achieve rebuilding goals. Climate change is one such key pressure, impacting fish and invertebrate populations by changing their biomass and biogeography. Here, combining projection from a dynamic bioclimate envelope model with published estimates of status of exploited populations from a catch‐based analysis, we analyze the effects of different global warming and fishing levels on biomass rebuilding for the exploited species in 226 marine ecoregions of the world. Fifty three percent (121) of the marine ecoregions have significant (at 5% level) relationship between biomass and global warming level. Without climate change and under a target fishing mortality rate relative to the level required for maximum sustainable yield of 0.75, we project biomass rebuilding of 1.7–2.7 times (interquartile range) of current (average 2014–2018) levels across marine ecoregions. When global warming level is at 1.5 and 2.6°C, respectively, such biomass rebuilding drops to 1.4–2.0 and 1.1–1.5 times of current levels, with 10% and 25% of the ecoregions showing no biomass rebuilding, respectively. Marine ecoregions where biomass rebuilding is largely impacted by climate change are in West Africa, the Indo‐Pacific, the central and south Pacific, and the Eastern Tropical Pacific. Coastal communities in these ecoregions are highly dependent on fisheries for livelihoods and nutrition security. Lowering the targeted fishing level and keeping global warming below 1.5°C are projected to enable more climate‐sensitive ecoregions to rebuild biomass. However, our findings also underscore the need to resolve trade‐offs between climate‐resilient biomass rebuilding and the high near‐term demand for seafood to support the well‐being of coastal communities across the tropics.
https://doi.org/10.4... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.4... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Funded by:SSHRC, SNSF | Ocean extremes in a warme..., EC | COMFORT +1 projectsSSHRC ,SNSF| Ocean extremes in a warmer world: Discovering risks for marine ecosystems (OceanX) - Phase 2 ,EC| COMFORT ,NSERCAuthors: Cheung, William W L; Palacios-Abrantes, Juliano; Frölicher, Thomas L; Palomares, Maria Lourdes; +8 AuthorsCheung, William W L; Palacios-Abrantes, Juliano; Frölicher, Thomas L; Palomares, Maria Lourdes; Clarke, Tayler; Lam, Vicky W Y; Oyinlola, Muhammed A; Pauly, Daniel; Reygondeau, Gabriel; Sumaila, U Rashid; Teh, Lydia C L; Wabnitz, Colette C C;doi: 10.1111/gcb.16368 , 10.48350/172627
pmid: 36047439
AbstractRebuilding overexploited marine populations is an important step to achieve the United Nations' Sustainable Development Goal 14—Life Below Water. Mitigating major human pressures is required to achieve rebuilding goals. Climate change is one such key pressure, impacting fish and invertebrate populations by changing their biomass and biogeography. Here, combining projection from a dynamic bioclimate envelope model with published estimates of status of exploited populations from a catch‐based analysis, we analyze the effects of different global warming and fishing levels on biomass rebuilding for the exploited species in 226 marine ecoregions of the world. Fifty three percent (121) of the marine ecoregions have significant (at 5% level) relationship between biomass and global warming level. Without climate change and under a target fishing mortality rate relative to the level required for maximum sustainable yield of 0.75, we project biomass rebuilding of 1.7–2.7 times (interquartile range) of current (average 2014–2018) levels across marine ecoregions. When global warming level is at 1.5 and 2.6°C, respectively, such biomass rebuilding drops to 1.4–2.0 and 1.1–1.5 times of current levels, with 10% and 25% of the ecoregions showing no biomass rebuilding, respectively. Marine ecoregions where biomass rebuilding is largely impacted by climate change are in West Africa, the Indo‐Pacific, the central and south Pacific, and the Eastern Tropical Pacific. Coastal communities in these ecoregions are highly dependent on fisheries for livelihoods and nutrition security. Lowering the targeted fishing level and keeping global warming below 1.5°C are projected to enable more climate‐sensitive ecoregions to rebuild biomass. However, our findings also underscore the need to resolve trade‐offs between climate‐resilient biomass rebuilding and the high near‐term demand for seafood to support the well‐being of coastal communities across the tropics.
https://doi.org/10.4... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.4... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 CanadaPublisher:Springer Science and Business Media LLC Funded by:NSERCNSERCMuhammed A. Oyinlola; Mostafa Khorsandi; Noa B. Mayer; Natalie Butler; Jacey C. Van Wert; Erika J. Eliason; Richard Arsenault; Colin J. Brauner; Scott G. Hinch; Andre St-Hilaire;Abstract Climate change is affecting freshwater systems, leading to increased water temperatures, which is posing a threat to freshwater ecological communities. In the Nechako River, a water management program has been in place since the 1980s to maintain water temperatures at 20°C during the migration of Sockeye salmon. However, the program's effectiveness in mitigating the impacts of climate change on resident species like Chinook salmon's thermal exposure is uncertain. In this study, we utilised the CEQUEAU hydrological model and life stage-specific physiological data to evaluate the consequences of the current program on Chinook salmon's thermal exposure under two contrasting climate change and socio-economic scenarios (SSP2-4.5 and SSP5-8.5). The results indicate that the thermal exposure risk is projected to be above the optimal threshold for parr and adult life stages under both scenarios relative to the 1980s. These life stages could face an increase in thermal exposure ranging from up to 2 and 5 times by 2090s relative to the 1980s during the months they occurred under the SSP5-8.5 scenario, including when the program is active (July 20th to August 20th). Additionally, our study shows that climate change will result in a substantial rise in cumulative heat degree days, ranging from 1.9 to 5.8 times (2050s) and 2.9 to 12.9 times (2090s) in comparison to the 1980s under SSP5-8.5. Our study highlights the need for a holistic approach to review the current Nechako management plan and consider all species in the Nechako River system in the face of climate change.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefInstitut national de la recherche scientifique, Québec: Espace INRSArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-4102931/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefInstitut national de la recherche scientifique, Québec: Espace INRSArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-4102931/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 CanadaPublisher:Springer Science and Business Media LLC Funded by:NSERCNSERCMuhammed A. Oyinlola; Mostafa Khorsandi; Noa B. Mayer; Natalie Butler; Jacey C. Van Wert; Erika J. Eliason; Richard Arsenault; Colin J. Brauner; Scott G. Hinch; Andre St-Hilaire;Abstract Climate change is affecting freshwater systems, leading to increased water temperatures, which is posing a threat to freshwater ecological communities. In the Nechako River, a water management program has been in place since the 1980s to maintain water temperatures at 20°C during the migration of Sockeye salmon. However, the program's effectiveness in mitigating the impacts of climate change on resident species like Chinook salmon's thermal exposure is uncertain. In this study, we utilised the CEQUEAU hydrological model and life stage-specific physiological data to evaluate the consequences of the current program on Chinook salmon's thermal exposure under two contrasting climate change and socio-economic scenarios (SSP2-4.5 and SSP5-8.5). The results indicate that the thermal exposure risk is projected to be above the optimal threshold for parr and adult life stages under both scenarios relative to the 1980s. These life stages could face an increase in thermal exposure ranging from up to 2 and 5 times by 2090s relative to the 1980s during the months they occurred under the SSP5-8.5 scenario, including when the program is active (July 20th to August 20th). Additionally, our study shows that climate change will result in a substantial rise in cumulative heat degree days, ranging from 1.9 to 5.8 times (2050s) and 2.9 to 12.9 times (2090s) in comparison to the 1980s under SSP5-8.5. Our study highlights the need for a holistic approach to review the current Nechako management plan and consider all species in the Nechako River system in the face of climate change.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefInstitut national de la recherche scientifique, Québec: Espace INRSArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-4102931/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefInstitut national de la recherche scientifique, Québec: Espace INRSArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-4102931/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Wiley Gerald C. Nelson; William W. L. Cheung; Rachel Bezner Kerr; James Franke; Francisco Meza; Muhammed A. Oyinlola; Philip Thornton; Florian Zabel;doi: 10.1111/gcb.17489
pmid: 39239722
Are there limits to our ability to adapt food systems to climate change? This overview paper for the special issue highlights results of research on potential limits and responses by food system actors. Responses are shaped by the critical interactions among the physical, chemical, biological, and social impacts in food systems arising from climate change. Food grains, temperate perennials, livestock, and oceanic capture fisheries and farming are covered. Climate change impacts on the biology of plants, animals, and humans, as well as the options for societal responses are explored. The results show where and how possible adaptations will be limited.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Wiley Gerald C. Nelson; William W. L. Cheung; Rachel Bezner Kerr; James Franke; Francisco Meza; Muhammed A. Oyinlola; Philip Thornton; Florian Zabel;doi: 10.1111/gcb.17489
pmid: 39239722
Are there limits to our ability to adapt food systems to climate change? This overview paper for the special issue highlights results of research on potential limits and responses by food system actors. Responses are shaped by the critical interactions among the physical, chemical, biological, and social impacts in food systems arising from climate change. Food grains, temperate perennials, livestock, and oceanic capture fisheries and farming are covered. Climate change impacts on the biology of plants, animals, and humans, as well as the options for societal responses are explored. The results show where and how possible adaptations will be limited.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:Wiley Funded by:NSERCNSERCAuthors: Muhammed A. Oyinlola; Gabriel Reygondeau; Colette C. C. Wabnitz; Thomas L. Frölicher; +2 AuthorsMuhammed A. Oyinlola; Gabriel Reygondeau; Colette C. C. Wabnitz; Thomas L. Frölicher; Vicky W. Y. Lam; William W. L. Cheung;doi: 10.1111/gcb.15991 , 10.48350/166660
pmid: 34902203
AbstractThe sustainability of global seafood supply to meet increasing demand is facing several challenges, including increasing consumption levels due to a growing human population, fisheries resources over‐exploitation and climate change. Whilst growth in seafood production from capture fisheries is limited, global mariculture production is expanding. However, climate change poses risks to the potential seafood production from mariculture. Here, we apply a global mariculture production model that accounts for changing ocean conditions, suitable marine area for farming, fishmeal and fish oil production, farmed species dietary demand, farmed fish price and global seafood demand to project mariculture production under two climate and socio‐economic scenarios. We include 85 farmed marine fish and mollusc species, representing about 70% of all mariculture production in 2015. Results show positive global mariculture production changes by the mid and end of the 21st century relative to the 2000s under the SSP1‐2.6 scenario with an increase of 17%±5 and 33%±6, respectively. However, under the SSP5‐8.5 scenario, an increase of 8%±5 is projected, with production peaking by mid‐century and declining by 16%±5 towards the end of the 21st century. More than 25% of mariculture‐producing nations are projected to lose 40%–90% of their current mariculture production potential under SSP5‐8.5 by mid‐century. Projected impacts are mainly due to the direct ocean warming effects on farmed species and suitable marine areas, and the indirect impacts of changing availability of forage fishes supplies to produce aquafeed. Fishmeal replacement with alternative protein can lower climate impacts on a subset of finfish production. However, such adaptation measures do not apply to regions dominated by non‐feed‐based farming (i.e. molluscs) and regions losing substantial marine areas suitable for mariculture. Our study highlights the importance of strong mitigation efforts and the need for different climate adaptation options tailored to the diversity of mariculture systems, to support climate‐resilient mariculture development.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:Wiley Funded by:NSERCNSERCAuthors: Muhammed A. Oyinlola; Gabriel Reygondeau; Colette C. C. Wabnitz; Thomas L. Frölicher; +2 AuthorsMuhammed A. Oyinlola; Gabriel Reygondeau; Colette C. C. Wabnitz; Thomas L. Frölicher; Vicky W. Y. Lam; William W. L. Cheung;doi: 10.1111/gcb.15991 , 10.48350/166660
pmid: 34902203
AbstractThe sustainability of global seafood supply to meet increasing demand is facing several challenges, including increasing consumption levels due to a growing human population, fisheries resources over‐exploitation and climate change. Whilst growth in seafood production from capture fisheries is limited, global mariculture production is expanding. However, climate change poses risks to the potential seafood production from mariculture. Here, we apply a global mariculture production model that accounts for changing ocean conditions, suitable marine area for farming, fishmeal and fish oil production, farmed species dietary demand, farmed fish price and global seafood demand to project mariculture production under two climate and socio‐economic scenarios. We include 85 farmed marine fish and mollusc species, representing about 70% of all mariculture production in 2015. Results show positive global mariculture production changes by the mid and end of the 21st century relative to the 2000s under the SSP1‐2.6 scenario with an increase of 17%±5 and 33%±6, respectively. However, under the SSP5‐8.5 scenario, an increase of 8%±5 is projected, with production peaking by mid‐century and declining by 16%±5 towards the end of the 21st century. More than 25% of mariculture‐producing nations are projected to lose 40%–90% of their current mariculture production potential under SSP5‐8.5 by mid‐century. Projected impacts are mainly due to the direct ocean warming effects on farmed species and suitable marine areas, and the indirect impacts of changing availability of forage fishes supplies to produce aquafeed. Fishmeal replacement with alternative protein can lower climate impacts on a subset of finfish production. However, such adaptation measures do not apply to regions dominated by non‐feed‐based farming (i.e. molluscs) and regions losing substantial marine areas suitable for mariculture. Our study highlights the importance of strong mitigation efforts and the need for different climate adaptation options tailored to the diversity of mariculture systems, to support climate‐resilient mariculture development.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Funded by:SSHRC, SNSF | Ocean extremes in a warme..., EC | COMFORT +1 projectsSSHRC ,SNSF| Ocean extremes in a warmer world: Discovering risks for marine ecosystems (OceanX) - Phase 2 ,EC| COMFORT ,NSERCAuthors: Cheung, William W L; Palacios-Abrantes, Juliano; Frölicher, Thomas L; Palomares, Maria Lourdes; +8 AuthorsCheung, William W L; Palacios-Abrantes, Juliano; Frölicher, Thomas L; Palomares, Maria Lourdes; Clarke, Tayler; Lam, Vicky W Y; Oyinlola, Muhammed A; Pauly, Daniel; Reygondeau, Gabriel; Sumaila, U Rashid; Teh, Lydia C L; Wabnitz, Colette C C;doi: 10.1111/gcb.16368 , 10.48350/172627
pmid: 36047439
AbstractRebuilding overexploited marine populations is an important step to achieve the United Nations' Sustainable Development Goal 14—Life Below Water. Mitigating major human pressures is required to achieve rebuilding goals. Climate change is one such key pressure, impacting fish and invertebrate populations by changing their biomass and biogeography. Here, combining projection from a dynamic bioclimate envelope model with published estimates of status of exploited populations from a catch‐based analysis, we analyze the effects of different global warming and fishing levels on biomass rebuilding for the exploited species in 226 marine ecoregions of the world. Fifty three percent (121) of the marine ecoregions have significant (at 5% level) relationship between biomass and global warming level. Without climate change and under a target fishing mortality rate relative to the level required for maximum sustainable yield of 0.75, we project biomass rebuilding of 1.7–2.7 times (interquartile range) of current (average 2014–2018) levels across marine ecoregions. When global warming level is at 1.5 and 2.6°C, respectively, such biomass rebuilding drops to 1.4–2.0 and 1.1–1.5 times of current levels, with 10% and 25% of the ecoregions showing no biomass rebuilding, respectively. Marine ecoregions where biomass rebuilding is largely impacted by climate change are in West Africa, the Indo‐Pacific, the central and south Pacific, and the Eastern Tropical Pacific. Coastal communities in these ecoregions are highly dependent on fisheries for livelihoods and nutrition security. Lowering the targeted fishing level and keeping global warming below 1.5°C are projected to enable more climate‐sensitive ecoregions to rebuild biomass. However, our findings also underscore the need to resolve trade‐offs between climate‐resilient biomass rebuilding and the high near‐term demand for seafood to support the well‐being of coastal communities across the tropics.
https://doi.org/10.4... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.4... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Funded by:SSHRC, SNSF | Ocean extremes in a warme..., EC | COMFORT +1 projectsSSHRC ,SNSF| Ocean extremes in a warmer world: Discovering risks for marine ecosystems (OceanX) - Phase 2 ,EC| COMFORT ,NSERCAuthors: Cheung, William W L; Palacios-Abrantes, Juliano; Frölicher, Thomas L; Palomares, Maria Lourdes; +8 AuthorsCheung, William W L; Palacios-Abrantes, Juliano; Frölicher, Thomas L; Palomares, Maria Lourdes; Clarke, Tayler; Lam, Vicky W Y; Oyinlola, Muhammed A; Pauly, Daniel; Reygondeau, Gabriel; Sumaila, U Rashid; Teh, Lydia C L; Wabnitz, Colette C C;doi: 10.1111/gcb.16368 , 10.48350/172627
pmid: 36047439
AbstractRebuilding overexploited marine populations is an important step to achieve the United Nations' Sustainable Development Goal 14—Life Below Water. Mitigating major human pressures is required to achieve rebuilding goals. Climate change is one such key pressure, impacting fish and invertebrate populations by changing their biomass and biogeography. Here, combining projection from a dynamic bioclimate envelope model with published estimates of status of exploited populations from a catch‐based analysis, we analyze the effects of different global warming and fishing levels on biomass rebuilding for the exploited species in 226 marine ecoregions of the world. Fifty three percent (121) of the marine ecoregions have significant (at 5% level) relationship between biomass and global warming level. Without climate change and under a target fishing mortality rate relative to the level required for maximum sustainable yield of 0.75, we project biomass rebuilding of 1.7–2.7 times (interquartile range) of current (average 2014–2018) levels across marine ecoregions. When global warming level is at 1.5 and 2.6°C, respectively, such biomass rebuilding drops to 1.4–2.0 and 1.1–1.5 times of current levels, with 10% and 25% of the ecoregions showing no biomass rebuilding, respectively. Marine ecoregions where biomass rebuilding is largely impacted by climate change are in West Africa, the Indo‐Pacific, the central and south Pacific, and the Eastern Tropical Pacific. Coastal communities in these ecoregions are highly dependent on fisheries for livelihoods and nutrition security. Lowering the targeted fishing level and keeping global warming below 1.5°C are projected to enable more climate‐sensitive ecoregions to rebuild biomass. However, our findings also underscore the need to resolve trade‐offs between climate‐resilient biomass rebuilding and the high near‐term demand for seafood to support the well‐being of coastal communities across the tropics.
https://doi.org/10.4... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.4... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 CanadaPublisher:Springer Science and Business Media LLC Funded by:NSERCNSERCMuhammed A. Oyinlola; Mostafa Khorsandi; Noa B. Mayer; Natalie Butler; Jacey C. Van Wert; Erika J. Eliason; Richard Arsenault; Colin J. Brauner; Scott G. Hinch; Andre St-Hilaire;Abstract Climate change is affecting freshwater systems, leading to increased water temperatures, which is posing a threat to freshwater ecological communities. In the Nechako River, a water management program has been in place since the 1980s to maintain water temperatures at 20°C during the migration of Sockeye salmon. However, the program's effectiveness in mitigating the impacts of climate change on resident species like Chinook salmon's thermal exposure is uncertain. In this study, we utilised the CEQUEAU hydrological model and life stage-specific physiological data to evaluate the consequences of the current program on Chinook salmon's thermal exposure under two contrasting climate change and socio-economic scenarios (SSP2-4.5 and SSP5-8.5). The results indicate that the thermal exposure risk is projected to be above the optimal threshold for parr and adult life stages under both scenarios relative to the 1980s. These life stages could face an increase in thermal exposure ranging from up to 2 and 5 times by 2090s relative to the 1980s during the months they occurred under the SSP5-8.5 scenario, including when the program is active (July 20th to August 20th). Additionally, our study shows that climate change will result in a substantial rise in cumulative heat degree days, ranging from 1.9 to 5.8 times (2050s) and 2.9 to 12.9 times (2090s) in comparison to the 1980s under SSP5-8.5. Our study highlights the need for a holistic approach to review the current Nechako management plan and consider all species in the Nechako River system in the face of climate change.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefInstitut national de la recherche scientifique, Québec: Espace INRSArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-4102931/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefInstitut national de la recherche scientifique, Québec: Espace INRSArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-4102931/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 CanadaPublisher:Springer Science and Business Media LLC Funded by:NSERCNSERCMuhammed A. Oyinlola; Mostafa Khorsandi; Noa B. Mayer; Natalie Butler; Jacey C. Van Wert; Erika J. Eliason; Richard Arsenault; Colin J. Brauner; Scott G. Hinch; Andre St-Hilaire;Abstract Climate change is affecting freshwater systems, leading to increased water temperatures, which is posing a threat to freshwater ecological communities. In the Nechako River, a water management program has been in place since the 1980s to maintain water temperatures at 20°C during the migration of Sockeye salmon. However, the program's effectiveness in mitigating the impacts of climate change on resident species like Chinook salmon's thermal exposure is uncertain. In this study, we utilised the CEQUEAU hydrological model and life stage-specific physiological data to evaluate the consequences of the current program on Chinook salmon's thermal exposure under two contrasting climate change and socio-economic scenarios (SSP2-4.5 and SSP5-8.5). The results indicate that the thermal exposure risk is projected to be above the optimal threshold for parr and adult life stages under both scenarios relative to the 1980s. These life stages could face an increase in thermal exposure ranging from up to 2 and 5 times by 2090s relative to the 1980s during the months they occurred under the SSP5-8.5 scenario, including when the program is active (July 20th to August 20th). Additionally, our study shows that climate change will result in a substantial rise in cumulative heat degree days, ranging from 1.9 to 5.8 times (2050s) and 2.9 to 12.9 times (2090s) in comparison to the 1980s under SSP5-8.5. Our study highlights the need for a holistic approach to review the current Nechako management plan and consider all species in the Nechako River system in the face of climate change.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefInstitut national de la recherche scientifique, Québec: Espace INRSArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-4102931/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefInstitut national de la recherche scientifique, Québec: Espace INRSArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-4102931/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu