- home
- Advanced Search
Filters
Year range
-chevron_right GOField of Science
SDG [Beta]
Country
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Authorea, Inc. Funded by:NSF | NRT INFEWS: computational..., NSF | Graduate Research Fellows...NSF| NRT INFEWS: computational data science to advance research at the energy-environment nexus ,NSF| Graduate Research Fellowship Program (GRFP)Christoph Müller; Jonas Jägermeyr; James Franke; Alex C. Ruane; Christian Folberth; Philippe Ciais; Marie Dury; Pete Falloon; Christian Folberth; Tobias Hank; Munir Hoffmann; R. C. Izaurralde; Ingrid Jacquemin; Nikolay Khabarov; Wenfeng Liu; Stefan Olin; Thomas A. M. Pugh; Xuhui Wang; Karina Williams; Florian Zabel; Joshua Elliott;Crop models are often used to project future crop yield under climate and global change and typically show a broad range of outcomes. To understand differences in modeled responses, we analysed modeled crop yield response types using impact response surfaces along four drivers of crop yield: carbon dioxide (C), temperature (T), water (W), and nitrogen (N). Crop yield response types help to understand differences in simulated responses per driver and their combinations rather than aggregated changes in yields as the result of simultaneous changes in various drivers. We find that models’ sensitivities to the individual drivers are substantially different and often more different across models than across regions. There is some agreement across models with respect to the spatial patterns of response types but strong differences in the distribution of response types across models and their configurations suggests that models need to undergo further scrutiny. We suggest establishing standards in model evaluation based on emergent functionality not only against historical yield observations but also against dedicated experiments across different drivers to analyze emergent functional patterns of crop models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22541/essoar.168394775.56087254/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22541/essoar.168394775.56087254/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Tatiana Ermolieva; Petr Havlik; Yuri Ermoliev; Nikolay Khabarov; Michael Obersteiner;doi: 10.3390/su13020857
Critical imbalances and threshold exceedances can trigger a disruption in a network of interdependent systems. An insignificant-at-first-glance shock can induce systemic risks with cascading catastrophic impacts. Systemic risks challenge traditional risk assessment and management approaches. These risks are shaped by systemic interactions, risk exposures, and decisions of various agents. The paper discusses the need for the two-stage stochastic optimization (STO) approach that enables the design of a robust portfolio of precautionary strategic and operational adaptive decisions that makes the interdependent systems flexible and robust with respect to risks of all kinds. We established a connection between the robust quantile-based non-smooth estimation problem in statistics and the two-stage non-smooth STO problem of robust strategic–adaptive decision-making. The coexistence of complementary strategic and adaptive decisions induces systemic risk aversion in the form of Value-at-Risk (VaR) quantile-based risk constraints. The two-stage robust decision-making is implemented into a large-scale Global Biosphere Management (GLOBIOM) model, showing that robust management of systemic risks can be addressed by solving a system of probabilistic security equations. Selected numerical results emphasize that a robust combination of interdependent strategic and adaptive solutions presents qualitatively new policy recommendations, if compared to a traditional scenario-by-scenario decision-making analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13020857&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13020857&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Andrey Krasovskii; Nikolay Khabarov; Ruben Lubowski; Michael Obersteiner;doi: 10.3390/en12193792
The reduction of emissions from deforestation and forest degradation (REDD) constitutes part of the international climate agreements and contributes to the Sustainable Development Goals. This research is motivated by the risks associated with the future CO2 price uncertainty in the context of the offsetting of carbon emissions by regulated entities. The research asked whether it is possible to reduce these financial risks. In this study, we consider the bilateral interaction of a REDD supplier and a greenhouse gas (GHG)-emitting energy producer in an incomplete emission offsets market. Within this setting, we explore an innovative financial instrument—flobsion—a flexible option with benefit-sharing. For the quantitative assessment, we used a research method based on a two-stage stochastic technological portfolio optimization model established in earlier studies. First, we obtain an important result that the availability of REDD offsets does not increase the optimal emissions of the electricity producer under any future CO2 price realization. Moreover, addressing concerns about a possible “crowding–out” effect of REDD-based offsets, we demonstrate that the emissions and offsetting cost will decrease and increase, respectively. Second, we demonstrate the flexibility of the proposed instrument by analyzing flobsion contracts with respect to the benefit-sharing ratio and strike price within the risk-adjusted supply and demand framework. Finally, we perform a sensitivity analysis with respect to CO2 price distributions and the opportunity costs of the forest owner supplying REDD offsets. Our results show that flobsion’s flexibility has advantages compared to a standard option, which can help GHG-emitting energy producers with managing their compliance risks, while at the same time facilitating the development of REDD programs. In this study we limited our analysis to the case of the same CO2 price distributions foreseen by both parties; the flobsion pricing under asymmetric information could be considered in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12193792&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12193792&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2019Publisher:Copernicus GmbH Funded by:NSF | DMUU: Center for Robust D..., EC | IMPREX, NSF | Graduate Research Fellows... +2 projectsNSF| DMUU: Center for Robust Decision-Making Tools for Climate and Energy Policy ,EC| IMPREX ,NSF| Graduate Research Fellowship Program (GRFP) ,EC| IMBALANCE-P ,NSF| NRT INFEWS: computational data science to advance research at the energy-environment nexusJames Franke; Christoph Müller; Joshua Elliott; Alex C. Ruane; Jonas Jagermeyr; Juraj Balkovic; Philippe Ciais; Marie Dury; Peter Falloon; Christian Folberth; Louis Francois; Tobias Hank; Munir Hoffmann; R. Cesar Izaurralde; Ingrid Jacquemin; Curtis Jones; Nikolay Khabarov; Marian Koch; Michelle Li; Wenfeng Liu; Stefan Olin; Meridel Phillips; Thomas A. M. Pugh; Ashwan Reddy; Xuhui Wang; Karina Williams; Florian Zabel; Elisabeth Moyer;doi: 10.5194/gmd-2019-237
Abstract. Concerns about food security under climate change motivate efforts to better understand future changes in crop yields. Process-based crop models, which represent plant physiological and soil processes, are necessary tools for this purpose since they allow representing future climate and management conditions not sampled in the historical record and new locations to which cultivation may shift. However, process-based crop models differ in many critical details, and their responses to different interacting factors remain only poorly understood. The Global Gridded Crop Model Intercomparison (GGCMI) Phase II experiment, an activity of the Agricultural Model Intercomparison and Improvement Project (AgMIP), is designed to provide a systematic parameter sweep focused on climate change factors and their interaction with overall soil fertility, to allow both evaluating model behavior and emulating model responses in impact assessment tools. In this paper we describe the GGCMI Phase II experimental protocol and its simulation data archive. Twelve crop models simulate five crops with systematic uniform perturbations of historical climate, varying CO2, temperature, water supply, and applied nitrogen (``CTWN'') for rainfed and irrigated agriculture, and a second set of simulations represents a type of adaptation by allowing the adjustment of growing season length. We present some crop yield results to illustrate general characteristics of the simulations and potential uses of the GGCMI Phase II archive. For example, modeled yields show robust decreases to warmer temperatures in almost all regions, with a nonlinear dependence that indicates yields in warmer baseline locations have greater temperature sensitivity. Inter-model uncertainty is qualitatively similar across all the four input dimensions, but is largest in high-latitude regions where crops may be grown in the future.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/gmd-20...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2019-237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/gmd-20...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2019-237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Research Square Platform LLC Funded by:NSF | DMUU: Center for Robust D..., NSF | Graduate Research Fellows..., EC | EARTH@LTERNATIVES +1 projectsNSF| DMUU: Center for Robust Decision-Making Tools for Climate and Energy Policy ,NSF| Graduate Research Fellowship Program (GRFP) ,EC| EARTH@LTERNATIVES ,NSF| NRT INFEWS: computational data science to advance research at the energy-environment nexusJonas Jaegermeyr; Christoph Müller; Alex Ruane; Joshua Elliott; Juraj Balkovic; Oscar Castillo; Babacar Faye; Ian Foster; Christian Folberth; James Franke; Kathrin Fuchs; Jose Guarin; Jens Heinke; Gerrit Hoogenboom; Toshichika Iizumi; Atul Jain; David Kelly; Nikolay Khabarov; Stefan Lange; Tzu-Shun Lin; Wenfeng Liu; Oleksandr Mialyk; Sara Minoli; Elisabeth Moyer; Masashi Okada; Meridel Phillips; Cheryl Porter; Sam Rabin; Clemens Scheer; Julia Schneider; Joep Schyns; Rastislav Skalský; Andrew Smerald; Tommaso Stella; Haynes Stephens; Heidi Webber; Florian Zabel; Cynthia Rosenzweig;Abstract Potential climate-related impacts on future crop yield are a major societal concern first surveyed in a harmonized multi-model effort in 2014. We report here on new 21st-century projections using ensembles of latest-generation crop and climate models. Results suggest markedly more pessimistic yield responses for maize, soybean, and rice compared to the original ensemble. Mean end-of-century maize productivity is shifted from +5 to -6% (SSP126) and +1 to -24% (SSP585) — explained by warmer climate projections and improved crop model sensitivities. In contrast, wheat shows stronger gains (+9 shifted to +18%, SSP585), linked to higher CO2 concentrations and expanded high-latitude gains. The ‘emergence’ of climate impacts — when the change signal emerges from the noise — consistently occurs earlier in the new projections for several main producing regions before 2040. While future yield estimates remain uncertain, these results suggest that major breadbasket regions will face distinct anthropogenic climatic risks sooner than previously anticipated.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-101657/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-101657/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2019Embargo end date: 16 Mar 2019 Japan, Germany, France, France, France, Japan, Spain, France, Switzerland, United Kingdom, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | HELIX, EC | IMPACT2CEC| HELIX ,EC| IMPACT2CJeroen Steenbeek; Erwin Schmid; Tyler D. Eddy; Tyler D. Eddy; Tyler D. Eddy; Derek P. Tittensor; Derek P. Tittensor; Rene Orth; Rene Orth; Yadu Pokhrel; Joshua Elliott; Yusuke Satoh; Yusuke Satoh; Christian Folberth; Louis François; Andrew D. Friend; Catherine Morfopoulos; Nikolay Khabarov; Peter Lawrence; Naota Hanasaki; Michelle T. H. van Vliet; Akihiko Ito; Sonia I. Seneviratne; Veronika Huber; Thomas A. M. Pugh; Jinfeng Chang; Tobias Stacke; Philippe Ciais; Lila Warszawski; Jan Volkholz; Matthias Büchner; Yoshihide Wada; Christopher P. O. Reyer; Xuhui Wang; Xuhui Wang; Xuhui Wang; Dieter Gerten; Dieter Gerten; Sebastian Ostberg; Qiuhong Tang; Gen Sakurai; David A. Carozza; David A. Carozza; Christoph Müller; Jacob Schewe; Lutz Breuer; Delphine Deryng; Heike K. Lotze; Hannes Müller Schmied; Robert Vautard; Hyungjun Kim; Fang Zhao; Allard de Wit; Jörg Steinkamp; Katja Frieler; Simon N. Gosling; Lukas Gudmundsson; Marta Coll; Hanqin Tian;doi: 10.1038/s41467-019-08745-6 , 10.17863/cam.37807 , 10.60692/8dj48-81382 , 10.3929/ethz-b-000330244 , 10.60692/8mcvk-e7225
pmid: 30824763
pmc: PMC6397256
handle: 10261/181642
doi: 10.1038/s41467-019-08745-6 , 10.17863/cam.37807 , 10.60692/8dj48-81382 , 10.3929/ethz-b-000330244 , 10.60692/8mcvk-e7225
pmid: 30824763
pmc: PMC6397256
handle: 10261/181642
AbstractGlobal impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.
Hyper Article en Lig... arrow_drop_down Université Jean Monnet – Saint-Etienne: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 186 citations 186 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université Jean Monnet – Saint-Etienne: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2023 FinlandPublisher:Elsevier BV Funded by:NSF | Game Theoretic Modeling f..., AKA | EasyDR - Enabling demand ...NSF| Game Theoretic Modeling for Improved Management of Water and Wastewater Resources Using Equilibrium Programming and Feedback Mechanisms ,AKA| EasyDR - Enabling demand response through easy to use open source approachAuthors: Nikita Belyak; Steven A. Gabriel; Nikolay Khabarov; Fabricio Oliveira;arXiv: 2302.10562
This paper investigates the role of a transmission system operator within a carbon footprint reduction strategy incorporating carbon taxes and renewable energy generation subsidies in the decentralised energy market. This is achieved via an optimisation bi-level model in which a welfare-maximizing transmission system operator makes investments in transmission lines at the upper level while considering power market dynamics at the lower level. To account for the deregulated energy market structure, this paper assumes that the generation companies at the lower level make capacity investments as price-takers in perfect competition. Considering alternative transmission infrastructure expansion budgets, carbon emission taxes and monetary incentives for renewable energy generation capacity expansion, the impact of alternative compositions of these factors is analysed against three output factors: the share of renewable energy in the generation mix, total generation amount, and social welfare. The proposed modelling assessment is applied to an illustrative three-node instance and a case study considering a simplified representation of the energy system of the Nordic and Baltic countries. The results highlight that, under certain circumstances, renewable energy generation subsidies may lead to an increase of renewable energy in the generation mix followed by a simultaneous fall in the total generation amount. Nevertheless, when applied together, these three measures demonstrated a positive impact on all output factors within Nordics' and Baltics' energy systems. The experiments additionally suggest that considering the high value of the carbon tax does not have an impact on the output factors while the composition of high values of renewable energy generation subsidies and budget for transmission infrastructure expansion has the strongest effect. 33 pages, 20 Figures, 12 Tables
Journal of Cleaner P... arrow_drop_down Aaltodoc Publication ArchiveArticle . 2024 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2024.141955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Aaltodoc Publication ArchiveArticle . 2024 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2024.141955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 GermanyPublisher:Springer Science and Business Media LLC Funded by:NSF | DMUU: Center for Robust D..., NSF | Graduate Research Fellows..., EC | EARTH@LTERNATIVES +1 projectsNSF| DMUU: Center for Robust Decision-Making Tools for Climate and Energy Policy ,NSF| Graduate Research Fellowship Program (GRFP) ,EC| EARTH@LTERNATIVES ,NSF| NRT INFEWS: computational data science to advance research at the energy-environment nexusHaynes Stephens; Meridel Phillips; Meridel Phillips; Rastislav Skalsky; Jens Heinke; Tommaso Stella; Babacar Faye; Masashi Okada; Jonas Jägermeyr; Jonas Jägermeyr; Jonas Jägermeyr; David Kelly; Juraj Balkovic; Juraj Balkovic; Oleksandr Mialyk; Alex C. Ruane; Toshichika Iizumi; Christoph Müller; Stefan Lange; Oscar Castillo; Gerrit Hoogenboom; Kathrin Fuchs; Joep F. Schyns; James A. Franke; Wenfeng Liu; Sara Minoli; Heidi Webber; Cynthia Rosenzweig; Clemens Scheer; Joshua Elliott; Elisabeth J. Moyer; Sam S. Rabin; Sam S. Rabin; Cheryl Porter; Christian Folberth; Ian Foster; Atul K. Jain; Nikolay Khabarov; Florian Zabel; Tzu-Shun Lin; Andrew Smerald; Julia M. Schneider; Jose R. Guarin; Jose R. Guarin;pmid: 37117503
Potential climate-related impacts on future crop yield are a major societal concern. Previous projections of the Agricultural Model Intercomparison and Improvement Project's Global Gridded Crop Model Intercomparison based on the Coupled Model Intercomparison Project Phase 5 identified substantial climate impacts on all major crops, but associated uncertainties were substantial. Here we report new twenty-first-century projections using ensembles of latest-generation crop and climate models. Results suggest markedly more pessimistic yield responses for maize, soybean and rice compared to the original ensemble. Mean end-of-century maize productivity is shifted from +5% to -6% (SSP126) and from +1% to -24% (SSP585)-explained by warmer climate projections and improved crop model sensitivities. In contrast, wheat shows stronger gains (+9% shifted to +18%, SSP585), linked to higher CO2 concentrations and expanded high-latitude gains. The 'emergence' of climate impacts consistently occurs earlier in the new projections-before 2040 for several main producing regions. While future yield estimates remain uncertain, these results suggest that major breadbasket regions will face distinct anthropogenic climatic risks sooner than previously anticipated.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43016-021-00400-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 375 citations 375 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43016-021-00400-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Authorea, Inc. Funded by:NSF | NRT INFEWS: computational..., NSF | Graduate Research Fellows...NSF| NRT INFEWS: computational data science to advance research at the energy-environment nexus ,NSF| Graduate Research Fellowship Program (GRFP)Christoph Müller; Jonas Jägermeyr; James Franke; Alex C. Ruane; Christian Folberth; Philippe Ciais; Marie Dury; Pete Falloon; Christian Folberth; Tobias Hank; Munir Hoffmann; R. C. Izaurralde; Ingrid Jacquemin; Nikolay Khabarov; Wenfeng Liu; Stefan Olin; Thomas A. M. Pugh; Xuhui Wang; Karina Williams; Florian Zabel; Joshua Elliott;Crop models are often used to project future crop yield under climate and global change and typically show a broad range of outcomes. To understand differences in modeled responses, we analysed modeled crop yield response types using impact response surfaces along four drivers of crop yield: carbon dioxide (C), temperature (T), water (W), and nitrogen (N). Crop yield response types help to understand differences in simulated responses per driver and their combinations rather than aggregated changes in yields as the result of simultaneous changes in various drivers. We find that models’ sensitivities to the individual drivers are substantially different and often more different across models than across regions. There is some agreement across models with respect to the spatial patterns of response types but strong differences in the distribution of response types across models and their configurations suggests that models need to undergo further scrutiny. We suggest establishing standards in model evaluation based on emergent functionality not only against historical yield observations but also against dedicated experiments across different drivers to analyze emergent functional patterns of crop models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22541/essoar.168394775.56087254/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22541/essoar.168394775.56087254/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Tatiana Ermolieva; Petr Havlik; Yuri Ermoliev; Nikolay Khabarov; Michael Obersteiner;doi: 10.3390/su13020857
Critical imbalances and threshold exceedances can trigger a disruption in a network of interdependent systems. An insignificant-at-first-glance shock can induce systemic risks with cascading catastrophic impacts. Systemic risks challenge traditional risk assessment and management approaches. These risks are shaped by systemic interactions, risk exposures, and decisions of various agents. The paper discusses the need for the two-stage stochastic optimization (STO) approach that enables the design of a robust portfolio of precautionary strategic and operational adaptive decisions that makes the interdependent systems flexible and robust with respect to risks of all kinds. We established a connection between the robust quantile-based non-smooth estimation problem in statistics and the two-stage non-smooth STO problem of robust strategic–adaptive decision-making. The coexistence of complementary strategic and adaptive decisions induces systemic risk aversion in the form of Value-at-Risk (VaR) quantile-based risk constraints. The two-stage robust decision-making is implemented into a large-scale Global Biosphere Management (GLOBIOM) model, showing that robust management of systemic risks can be addressed by solving a system of probabilistic security equations. Selected numerical results emphasize that a robust combination of interdependent strategic and adaptive solutions presents qualitatively new policy recommendations, if compared to a traditional scenario-by-scenario decision-making analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13020857&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13020857&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Andrey Krasovskii; Nikolay Khabarov; Ruben Lubowski; Michael Obersteiner;doi: 10.3390/en12193792
The reduction of emissions from deforestation and forest degradation (REDD) constitutes part of the international climate agreements and contributes to the Sustainable Development Goals. This research is motivated by the risks associated with the future CO2 price uncertainty in the context of the offsetting of carbon emissions by regulated entities. The research asked whether it is possible to reduce these financial risks. In this study, we consider the bilateral interaction of a REDD supplier and a greenhouse gas (GHG)-emitting energy producer in an incomplete emission offsets market. Within this setting, we explore an innovative financial instrument—flobsion—a flexible option with benefit-sharing. For the quantitative assessment, we used a research method based on a two-stage stochastic technological portfolio optimization model established in earlier studies. First, we obtain an important result that the availability of REDD offsets does not increase the optimal emissions of the electricity producer under any future CO2 price realization. Moreover, addressing concerns about a possible “crowding–out” effect of REDD-based offsets, we demonstrate that the emissions and offsetting cost will decrease and increase, respectively. Second, we demonstrate the flexibility of the proposed instrument by analyzing flobsion contracts with respect to the benefit-sharing ratio and strike price within the risk-adjusted supply and demand framework. Finally, we perform a sensitivity analysis with respect to CO2 price distributions and the opportunity costs of the forest owner supplying REDD offsets. Our results show that flobsion’s flexibility has advantages compared to a standard option, which can help GHG-emitting energy producers with managing their compliance risks, while at the same time facilitating the development of REDD programs. In this study we limited our analysis to the case of the same CO2 price distributions foreseen by both parties; the flobsion pricing under asymmetric information could be considered in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12193792&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12193792&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2019Publisher:Copernicus GmbH Funded by:NSF | DMUU: Center for Robust D..., EC | IMPREX, NSF | Graduate Research Fellows... +2 projectsNSF| DMUU: Center for Robust Decision-Making Tools for Climate and Energy Policy ,EC| IMPREX ,NSF| Graduate Research Fellowship Program (GRFP) ,EC| IMBALANCE-P ,NSF| NRT INFEWS: computational data science to advance research at the energy-environment nexusJames Franke; Christoph Müller; Joshua Elliott; Alex C. Ruane; Jonas Jagermeyr; Juraj Balkovic; Philippe Ciais; Marie Dury; Peter Falloon; Christian Folberth; Louis Francois; Tobias Hank; Munir Hoffmann; R. Cesar Izaurralde; Ingrid Jacquemin; Curtis Jones; Nikolay Khabarov; Marian Koch; Michelle Li; Wenfeng Liu; Stefan Olin; Meridel Phillips; Thomas A. M. Pugh; Ashwan Reddy; Xuhui Wang; Karina Williams; Florian Zabel; Elisabeth Moyer;doi: 10.5194/gmd-2019-237
Abstract. Concerns about food security under climate change motivate efforts to better understand future changes in crop yields. Process-based crop models, which represent plant physiological and soil processes, are necessary tools for this purpose since they allow representing future climate and management conditions not sampled in the historical record and new locations to which cultivation may shift. However, process-based crop models differ in many critical details, and their responses to different interacting factors remain only poorly understood. The Global Gridded Crop Model Intercomparison (GGCMI) Phase II experiment, an activity of the Agricultural Model Intercomparison and Improvement Project (AgMIP), is designed to provide a systematic parameter sweep focused on climate change factors and their interaction with overall soil fertility, to allow both evaluating model behavior and emulating model responses in impact assessment tools. In this paper we describe the GGCMI Phase II experimental protocol and its simulation data archive. Twelve crop models simulate five crops with systematic uniform perturbations of historical climate, varying CO2, temperature, water supply, and applied nitrogen (``CTWN'') for rainfed and irrigated agriculture, and a second set of simulations represents a type of adaptation by allowing the adjustment of growing season length. We present some crop yield results to illustrate general characteristics of the simulations and potential uses of the GGCMI Phase II archive. For example, modeled yields show robust decreases to warmer temperatures in almost all regions, with a nonlinear dependence that indicates yields in warmer baseline locations have greater temperature sensitivity. Inter-model uncertainty is qualitatively similar across all the four input dimensions, but is largest in high-latitude regions where crops may be grown in the future.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/gmd-20...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2019-237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/gmd-20...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2019-237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Research Square Platform LLC Funded by:NSF | DMUU: Center for Robust D..., NSF | Graduate Research Fellows..., EC | EARTH@LTERNATIVES +1 projectsNSF| DMUU: Center for Robust Decision-Making Tools for Climate and Energy Policy ,NSF| Graduate Research Fellowship Program (GRFP) ,EC| EARTH@LTERNATIVES ,NSF| NRT INFEWS: computational data science to advance research at the energy-environment nexusJonas Jaegermeyr; Christoph Müller; Alex Ruane; Joshua Elliott; Juraj Balkovic; Oscar Castillo; Babacar Faye; Ian Foster; Christian Folberth; James Franke; Kathrin Fuchs; Jose Guarin; Jens Heinke; Gerrit Hoogenboom; Toshichika Iizumi; Atul Jain; David Kelly; Nikolay Khabarov; Stefan Lange; Tzu-Shun Lin; Wenfeng Liu; Oleksandr Mialyk; Sara Minoli; Elisabeth Moyer; Masashi Okada; Meridel Phillips; Cheryl Porter; Sam Rabin; Clemens Scheer; Julia Schneider; Joep Schyns; Rastislav Skalský; Andrew Smerald; Tommaso Stella; Haynes Stephens; Heidi Webber; Florian Zabel; Cynthia Rosenzweig;Abstract Potential climate-related impacts on future crop yield are a major societal concern first surveyed in a harmonized multi-model effort in 2014. We report here on new 21st-century projections using ensembles of latest-generation crop and climate models. Results suggest markedly more pessimistic yield responses for maize, soybean, and rice compared to the original ensemble. Mean end-of-century maize productivity is shifted from +5 to -6% (SSP126) and +1 to -24% (SSP585) — explained by warmer climate projections and improved crop model sensitivities. In contrast, wheat shows stronger gains (+9 shifted to +18%, SSP585), linked to higher CO2 concentrations and expanded high-latitude gains. The ‘emergence’ of climate impacts — when the change signal emerges from the noise — consistently occurs earlier in the new projections for several main producing regions before 2040. While future yield estimates remain uncertain, these results suggest that major breadbasket regions will face distinct anthropogenic climatic risks sooner than previously anticipated.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-101657/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-101657/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2019Embargo end date: 16 Mar 2019 Japan, Germany, France, France, France, Japan, Spain, France, Switzerland, United Kingdom, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | HELIX, EC | IMPACT2CEC| HELIX ,EC| IMPACT2CJeroen Steenbeek; Erwin Schmid; Tyler D. Eddy; Tyler D. Eddy; Tyler D. Eddy; Derek P. Tittensor; Derek P. Tittensor; Rene Orth; Rene Orth; Yadu Pokhrel; Joshua Elliott; Yusuke Satoh; Yusuke Satoh; Christian Folberth; Louis François; Andrew D. Friend; Catherine Morfopoulos; Nikolay Khabarov; Peter Lawrence; Naota Hanasaki; Michelle T. H. van Vliet; Akihiko Ito; Sonia I. Seneviratne; Veronika Huber; Thomas A. M. Pugh; Jinfeng Chang; Tobias Stacke; Philippe Ciais; Lila Warszawski; Jan Volkholz; Matthias Büchner; Yoshihide Wada; Christopher P. O. Reyer; Xuhui Wang; Xuhui Wang; Xuhui Wang; Dieter Gerten; Dieter Gerten; Sebastian Ostberg; Qiuhong Tang; Gen Sakurai; David A. Carozza; David A. Carozza; Christoph Müller; Jacob Schewe; Lutz Breuer; Delphine Deryng; Heike K. Lotze; Hannes Müller Schmied; Robert Vautard; Hyungjun Kim; Fang Zhao; Allard de Wit; Jörg Steinkamp; Katja Frieler; Simon N. Gosling; Lukas Gudmundsson; Marta Coll; Hanqin Tian;doi: 10.1038/s41467-019-08745-6 , 10.17863/cam.37807 , 10.60692/8dj48-81382 , 10.3929/ethz-b-000330244 , 10.60692/8mcvk-e7225
pmid: 30824763
pmc: PMC6397256
handle: 10261/181642
doi: 10.1038/s41467-019-08745-6 , 10.17863/cam.37807 , 10.60692/8dj48-81382 , 10.3929/ethz-b-000330244 , 10.60692/8mcvk-e7225
pmid: 30824763
pmc: PMC6397256
handle: 10261/181642
AbstractGlobal impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.
Hyper Article en Lig... arrow_drop_down Université Jean Monnet – Saint-Etienne: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 186 citations 186 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université Jean Monnet – Saint-Etienne: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2023 FinlandPublisher:Elsevier BV Funded by:NSF | Game Theoretic Modeling f..., AKA | EasyDR - Enabling demand ...NSF| Game Theoretic Modeling for Improved Management of Water and Wastewater Resources Using Equilibrium Programming and Feedback Mechanisms ,AKA| EasyDR - Enabling demand response through easy to use open source approachAuthors: Nikita Belyak; Steven A. Gabriel; Nikolay Khabarov; Fabricio Oliveira;arXiv: 2302.10562
This paper investigates the role of a transmission system operator within a carbon footprint reduction strategy incorporating carbon taxes and renewable energy generation subsidies in the decentralised energy market. This is achieved via an optimisation bi-level model in which a welfare-maximizing transmission system operator makes investments in transmission lines at the upper level while considering power market dynamics at the lower level. To account for the deregulated energy market structure, this paper assumes that the generation companies at the lower level make capacity investments as price-takers in perfect competition. Considering alternative transmission infrastructure expansion budgets, carbon emission taxes and monetary incentives for renewable energy generation capacity expansion, the impact of alternative compositions of these factors is analysed against three output factors: the share of renewable energy in the generation mix, total generation amount, and social welfare. The proposed modelling assessment is applied to an illustrative three-node instance and a case study considering a simplified representation of the energy system of the Nordic and Baltic countries. The results highlight that, under certain circumstances, renewable energy generation subsidies may lead to an increase of renewable energy in the generation mix followed by a simultaneous fall in the total generation amount. Nevertheless, when applied together, these three measures demonstrated a positive impact on all output factors within Nordics' and Baltics' energy systems. The experiments additionally suggest that considering the high value of the carbon tax does not have an impact on the output factors while the composition of high values of renewable energy generation subsidies and budget for transmission infrastructure expansion has the strongest effect. 33 pages, 20 Figures, 12 Tables
Journal of Cleaner P... arrow_drop_down Aaltodoc Publication ArchiveArticle . 2024 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2024.141955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Aaltodoc Publication ArchiveArticle . 2024 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2024.141955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 GermanyPublisher:Springer Science and Business Media LLC Funded by:NSF | DMUU: Center for Robust D..., NSF | Graduate Research Fellows..., EC | EARTH@LTERNATIVES +1 projectsNSF| DMUU: Center for Robust Decision-Making Tools for Climate and Energy Policy ,NSF| Graduate Research Fellowship Program (GRFP) ,EC| EARTH@LTERNATIVES ,NSF| NRT INFEWS: computational data science to advance research at the energy-environment nexusHaynes Stephens; Meridel Phillips; Meridel Phillips; Rastislav Skalsky; Jens Heinke; Tommaso Stella; Babacar Faye; Masashi Okada; Jonas Jägermeyr; Jonas Jägermeyr; Jonas Jägermeyr; David Kelly; Juraj Balkovic; Juraj Balkovic; Oleksandr Mialyk; Alex C. Ruane; Toshichika Iizumi; Christoph Müller; Stefan Lange; Oscar Castillo; Gerrit Hoogenboom; Kathrin Fuchs; Joep F. Schyns; James A. Franke; Wenfeng Liu; Sara Minoli; Heidi Webber; Cynthia Rosenzweig; Clemens Scheer; Joshua Elliott; Elisabeth J. Moyer; Sam S. Rabin; Sam S. Rabin; Cheryl Porter; Christian Folberth; Ian Foster; Atul K. Jain; Nikolay Khabarov; Florian Zabel; Tzu-Shun Lin; Andrew Smerald; Julia M. Schneider; Jose R. Guarin; Jose R. Guarin;pmid: 37117503
Potential climate-related impacts on future crop yield are a major societal concern. Previous projections of the Agricultural Model Intercomparison and Improvement Project's Global Gridded Crop Model Intercomparison based on the Coupled Model Intercomparison Project Phase 5 identified substantial climate impacts on all major crops, but associated uncertainties were substantial. Here we report new twenty-first-century projections using ensembles of latest-generation crop and climate models. Results suggest markedly more pessimistic yield responses for maize, soybean and rice compared to the original ensemble. Mean end-of-century maize productivity is shifted from +5% to -6% (SSP126) and from +1% to -24% (SSP585)-explained by warmer climate projections and improved crop model sensitivities. In contrast, wheat shows stronger gains (+9% shifted to +18%, SSP585), linked to higher CO2 concentrations and expanded high-latitude gains. The 'emergence' of climate impacts consistently occurs earlier in the new projections-before 2040 for several main producing regions. While future yield estimates remain uncertain, these results suggest that major breadbasket regions will face distinct anthropogenic climatic risks sooner than previously anticipated.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43016-021-00400-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 375 citations 375 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43016-021-00400-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu