- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Embargo end date: 08 Dec 2021Publisher:Elsevier BV Funded by:FCT | PD/BD/135194/2017FCT| PD/BD/135194/2017Resalati, Shahaboddin; Okoroafor, Tobechi; Henshall, Paul; Simões, Nuno; Gonçalves, Márcio; Alam, Mahmood;Abstract The global market trend for Vacuum Insulation Panels (VIPs) is projecting a significant increase in their uptake in the construction sector. This is mainly due to the uniquely high-performance properties of the ultra-thin insulation materials. This uptake, however, can potentially be hindered by the VIPs’ higher cost and environmental impacts when compared with conventional insulation materials. This paper, for the first time, presents a detailed evaluation of the environmental impact of the most common type of VIPs currently used in different applications with a focus on alternating the core material as the main contributing component to their footprint. Pyrogenic silica, glass fibre, expanded polystyrene, aerogel and a silica/sawdust hybrid core were analysed from cradle to gate. The study, on a comparative basis, demonstrates the sensitivity of the various environmental impact categories to the internal vacuum pressure and the subsequent thermal conductivity values. The results show a lower environmental impact for glass fibre and low density expanded polystyrene compared to the other alternatives. Pyrogenic silica, the most common core material, had the highest environmental impact out of the core materials considered. The higher environmental impacts of pyrogenic silica suggest that measures such as the recycling of the core material alongside the deployment of eco-friendlier manufacturing techniques should be considered if the material is to compete environmentally with the other alternative materials.
Building and Environ... arrow_drop_down Oxford Brookes University: RADAROther literature type . 2020License: CC BY NC NDData sources: Oxford Brookes University: RADAROxford Brookes University: RADARArticle . 2020License: CC BY NC NDData sources: Oxford Brookes University: RADARadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2020.107501&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Building and Environ... arrow_drop_down Oxford Brookes University: RADAROther literature type . 2020License: CC BY NC NDData sources: Oxford Brookes University: RADAROxford Brookes University: RADARArticle . 2020License: CC BY NC NDData sources: Oxford Brookes University: RADARadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2020.107501&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Funded by:EC | POWERSKIN PLUS, EC | CUSTOM-ARTEC| POWERSKIN PLUS ,EC| CUSTOM-ARTMaalouf, Amani; Okoroafor, Tobechi; Jehl, Zacharie; Babu, Vivek; Resalati, Shahaboddin;handle: 2108/413223
Thin film solar cells offer several benefits over conventional first-generation technologies including lighter weight, flexibility, and a wider range of optoelectronic tunability. Their environmental impact however needs to be investigated comprehensively to provide a clear comparison point with the first generation photovoltaics currently dominating the market. The main objective of this review is to evaluate current Life Cycle Assessment (LCA) studies conducted on thin film solar cells, highlighting the key parameters considered including life cycle stages, impact categories, and geographical locations. This included both commercially available thin film solar cells (a-Si, CIGS, CIS, CdTe, GaAs and GaAs tandem) as well as emerging (PSC, PSC tandem, DSSC, OPV, CZTS, QD) ones. A critical assessment of the results of 58 LCA studies was conducted and compared with traditional silicon based solar cells. Results indicate that emerging thin film solar cells hold great promise, as they tend to perform better than commercially available ones in the specified indicators, especially for CZTS and OPV. The assessment demonstrated that overall thin film solar cells had less energy requirement and better environmental performance than conventional crystalline silicon solar cell systems. However, due to their lower efficiencies their energy payback time was higher. This review provides a benchmark for the environmental LCA of different thin film solar cell technologies in order to highlight the relevance of these devices for sustainable energy generation and to give manufacturers and LCA experts information and a basis for future evaluation of solar cells.
Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2023License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2023Full-Text: https://hdl.handle.net/2108/413223Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefOxford Brookes University: RADARArticle . 2023License: CC BYData sources: Oxford Brookes University: RADARRenewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2023.113652&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 48 citations 48 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 7visibility views 7 download downloads 5 Powered bymore_vert Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2023License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2023Full-Text: https://hdl.handle.net/2108/413223Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefOxford Brookes University: RADARArticle . 2023License: CC BYData sources: Oxford Brookes University: RADARRenewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2023.113652&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Elsevier BV Funded by:EC | CUSTOM-ART, EC | SENSATEEC| CUSTOM-ART ,EC| SENSATEAuthors: Resalati, Shahaboddin; Okoroafor, Tobechi; Maalouf, Amani; Saucedo Silva, Edgardo Ademar; +1 AuthorsResalati, Shahaboddin; Okoroafor, Tobechi; Maalouf, Amani; Saucedo Silva, Edgardo Ademar; Placidi, Marcel Jose;handle: 2117/370823
Thin-film photovoltaics (PV) cells offer several benefits over conventional first-generation PV technologies, including lighter weight, flexibility, and lower power generation cost. Among the competing thin-film technologies, chalcogenide solar cells offer promising performance on efficiency and technological maturity level. However, in order to appraise the performance of the technology thoroughly, issues such as raw materials scarcity, toxicity, and environmental impacts need to be investigated in detail. This paper therefore, for the first time, presents a cradle to gate life cycle assessment for four different emerging chalcogenide PV cells, and compares their results with copper zinc tin sulfide (CZTS) and the commercially available CIGS to examine their effectiveness in reducing the environmental impacts associated with PV technologies. To allow for a full range of indicators, life cycle assessment methods CML 2001, IMPACT 2002+, and ILCD 2011 were used to analyse the results. The results identify environmental hotspots associated with different materials and components and demonstrate that using current efficiencies, the environmental impact of copper indium gallium selenide (CIGS) for generating 1kWh electricity was lower than that of the other studied cells. However, at comparable efficiencies the antimony-based cells offered the lowest environmental impacts in all impact categories. The effect of materials used was also found to be lower than the impact of electricity consumed throughout the manufacturing process, with the absorber layer contributing the most to the majority of the impact categories examined. In terms of chemicals consumed, cadmium acetate contributed significantly to the majority of the environmental impacts. Stainless steel in the substrate/insulating layer and molybdenum in the back contact both contributed considerably to the toxicity and ozone depletion impact categories. This paper demonstrates considerable environmental benefits associated with non-toxic chalcogenide PV cells suggesting that the current environmental concerns can be addressed effectively using alternative materials and manufacturing techniques if current efficiencies are improved. Peer Reviewed
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118888&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 113visibility views 113 download downloads 122 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118888&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Funded by:EC | CUSTOM-ARTEC| CUSTOM-ARTMaalouf, Amani; Okoroafor, Tobechi; Gahr, Stefan; Ernits, Kaia; Meissner, Dieter; Resalati, Shahaboddin;Kesterite-based structures are being extensively studied for solar module productions due to their earth abundant and nontoxic nature, high absorption coefficient, and a wide variety of scalable deposition methods. Kesterites are mostly manufactured using thin-film technology. However, in the last decade, the monograin approach has gained further attention, providing a third alternative to mono-crystalline wafer and thin film methods. This is due to its high throughput, low-cost deposition techniques, flexibility, and light weight. Despite the technical advancements in the monograin technology, their environmental impacts have not been studied in the literature. This paper, for the first time, presents a cradle to gate environmental life cycle assessment of CZTS monograin module production. The analysis is designed to identify the environmental hotspots associated with materials, energy usage, and manufacturing processes. The results were compared to CZTS thin-film and the commercially available CIGS technologies. The analyses suggested that the front contact accounted for the majority of impact in all categories due to the use of silver. The normalisation results showed that the marine aquatic ecotoxicity impact category dominated the overall impact results. A comparison of CZTS monograin and thin film production demonstrated that monograin outperformed the thin film technology when silver was substituted with alternative materials and was proximate to CIGS even considering their higher achieved efficiency. The analysis presents considerable environmental benefits associated with the monograin technology. Further savings in emissions could be achieved with improved conversion efficiency and usage of renewable energy sources in the manufacturing stages.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefOxford Brookes University: RADARArticle . 2023License: CC BYData sources: Oxford Brookes University: RADARActa Colombiana de Cuidado IntensivoArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2022.112161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 4 Powered bymore_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefOxford Brookes University: RADARArticle . 2023License: CC BYData sources: Oxford Brookes University: RADARActa Colombiana de Cuidado IntensivoArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2022.112161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Embargo end date: 08 Dec 2021Publisher:Elsevier BV Funded by:FCT | PD/BD/135194/2017FCT| PD/BD/135194/2017Resalati, Shahaboddin; Okoroafor, Tobechi; Henshall, Paul; Simões, Nuno; Gonçalves, Márcio; Alam, Mahmood;Abstract The global market trend for Vacuum Insulation Panels (VIPs) is projecting a significant increase in their uptake in the construction sector. This is mainly due to the uniquely high-performance properties of the ultra-thin insulation materials. This uptake, however, can potentially be hindered by the VIPs’ higher cost and environmental impacts when compared with conventional insulation materials. This paper, for the first time, presents a detailed evaluation of the environmental impact of the most common type of VIPs currently used in different applications with a focus on alternating the core material as the main contributing component to their footprint. Pyrogenic silica, glass fibre, expanded polystyrene, aerogel and a silica/sawdust hybrid core were analysed from cradle to gate. The study, on a comparative basis, demonstrates the sensitivity of the various environmental impact categories to the internal vacuum pressure and the subsequent thermal conductivity values. The results show a lower environmental impact for glass fibre and low density expanded polystyrene compared to the other alternatives. Pyrogenic silica, the most common core material, had the highest environmental impact out of the core materials considered. The higher environmental impacts of pyrogenic silica suggest that measures such as the recycling of the core material alongside the deployment of eco-friendlier manufacturing techniques should be considered if the material is to compete environmentally with the other alternative materials.
Building and Environ... arrow_drop_down Oxford Brookes University: RADAROther literature type . 2020License: CC BY NC NDData sources: Oxford Brookes University: RADAROxford Brookes University: RADARArticle . 2020License: CC BY NC NDData sources: Oxford Brookes University: RADARadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2020.107501&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Building and Environ... arrow_drop_down Oxford Brookes University: RADAROther literature type . 2020License: CC BY NC NDData sources: Oxford Brookes University: RADAROxford Brookes University: RADARArticle . 2020License: CC BY NC NDData sources: Oxford Brookes University: RADARadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2020.107501&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Funded by:EC | POWERSKIN PLUS, EC | CUSTOM-ARTEC| POWERSKIN PLUS ,EC| CUSTOM-ARTMaalouf, Amani; Okoroafor, Tobechi; Jehl, Zacharie; Babu, Vivek; Resalati, Shahaboddin;handle: 2108/413223
Thin film solar cells offer several benefits over conventional first-generation technologies including lighter weight, flexibility, and a wider range of optoelectronic tunability. Their environmental impact however needs to be investigated comprehensively to provide a clear comparison point with the first generation photovoltaics currently dominating the market. The main objective of this review is to evaluate current Life Cycle Assessment (LCA) studies conducted on thin film solar cells, highlighting the key parameters considered including life cycle stages, impact categories, and geographical locations. This included both commercially available thin film solar cells (a-Si, CIGS, CIS, CdTe, GaAs and GaAs tandem) as well as emerging (PSC, PSC tandem, DSSC, OPV, CZTS, QD) ones. A critical assessment of the results of 58 LCA studies was conducted and compared with traditional silicon based solar cells. Results indicate that emerging thin film solar cells hold great promise, as they tend to perform better than commercially available ones in the specified indicators, especially for CZTS and OPV. The assessment demonstrated that overall thin film solar cells had less energy requirement and better environmental performance than conventional crystalline silicon solar cell systems. However, due to their lower efficiencies their energy payback time was higher. This review provides a benchmark for the environmental LCA of different thin film solar cell technologies in order to highlight the relevance of these devices for sustainable energy generation and to give manufacturers and LCA experts information and a basis for future evaluation of solar cells.
Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2023License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2023Full-Text: https://hdl.handle.net/2108/413223Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefOxford Brookes University: RADARArticle . 2023License: CC BYData sources: Oxford Brookes University: RADARRenewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2023.113652&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 48 citations 48 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 7visibility views 7 download downloads 5 Powered bymore_vert Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2023License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2023Full-Text: https://hdl.handle.net/2108/413223Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefOxford Brookes University: RADARArticle . 2023License: CC BYData sources: Oxford Brookes University: RADARRenewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2023.113652&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Elsevier BV Funded by:EC | CUSTOM-ART, EC | SENSATEEC| CUSTOM-ART ,EC| SENSATEAuthors: Resalati, Shahaboddin; Okoroafor, Tobechi; Maalouf, Amani; Saucedo Silva, Edgardo Ademar; +1 AuthorsResalati, Shahaboddin; Okoroafor, Tobechi; Maalouf, Amani; Saucedo Silva, Edgardo Ademar; Placidi, Marcel Jose;handle: 2117/370823
Thin-film photovoltaics (PV) cells offer several benefits over conventional first-generation PV technologies, including lighter weight, flexibility, and lower power generation cost. Among the competing thin-film technologies, chalcogenide solar cells offer promising performance on efficiency and technological maturity level. However, in order to appraise the performance of the technology thoroughly, issues such as raw materials scarcity, toxicity, and environmental impacts need to be investigated in detail. This paper therefore, for the first time, presents a cradle to gate life cycle assessment for four different emerging chalcogenide PV cells, and compares their results with copper zinc tin sulfide (CZTS) and the commercially available CIGS to examine their effectiveness in reducing the environmental impacts associated with PV technologies. To allow for a full range of indicators, life cycle assessment methods CML 2001, IMPACT 2002+, and ILCD 2011 were used to analyse the results. The results identify environmental hotspots associated with different materials and components and demonstrate that using current efficiencies, the environmental impact of copper indium gallium selenide (CIGS) for generating 1kWh electricity was lower than that of the other studied cells. However, at comparable efficiencies the antimony-based cells offered the lowest environmental impacts in all impact categories. The effect of materials used was also found to be lower than the impact of electricity consumed throughout the manufacturing process, with the absorber layer contributing the most to the majority of the impact categories examined. In terms of chemicals consumed, cadmium acetate contributed significantly to the majority of the environmental impacts. Stainless steel in the substrate/insulating layer and molybdenum in the back contact both contributed considerably to the toxicity and ozone depletion impact categories. This paper demonstrates considerable environmental benefits associated with non-toxic chalcogenide PV cells suggesting that the current environmental concerns can be addressed effectively using alternative materials and manufacturing techniques if current efficiencies are improved. Peer Reviewed
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118888&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 113visibility views 113 download downloads 122 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118888&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Funded by:EC | CUSTOM-ARTEC| CUSTOM-ARTMaalouf, Amani; Okoroafor, Tobechi; Gahr, Stefan; Ernits, Kaia; Meissner, Dieter; Resalati, Shahaboddin;Kesterite-based structures are being extensively studied for solar module productions due to their earth abundant and nontoxic nature, high absorption coefficient, and a wide variety of scalable deposition methods. Kesterites are mostly manufactured using thin-film technology. However, in the last decade, the monograin approach has gained further attention, providing a third alternative to mono-crystalline wafer and thin film methods. This is due to its high throughput, low-cost deposition techniques, flexibility, and light weight. Despite the technical advancements in the monograin technology, their environmental impacts have not been studied in the literature. This paper, for the first time, presents a cradle to gate environmental life cycle assessment of CZTS monograin module production. The analysis is designed to identify the environmental hotspots associated with materials, energy usage, and manufacturing processes. The results were compared to CZTS thin-film and the commercially available CIGS technologies. The analyses suggested that the front contact accounted for the majority of impact in all categories due to the use of silver. The normalisation results showed that the marine aquatic ecotoxicity impact category dominated the overall impact results. A comparison of CZTS monograin and thin film production demonstrated that monograin outperformed the thin film technology when silver was substituted with alternative materials and was proximate to CIGS even considering their higher achieved efficiency. The analysis presents considerable environmental benefits associated with the monograin technology. Further savings in emissions could be achieved with improved conversion efficiency and usage of renewable energy sources in the manufacturing stages.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefOxford Brookes University: RADARArticle . 2023License: CC BYData sources: Oxford Brookes University: RADARActa Colombiana de Cuidado IntensivoArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2022.112161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 4 Powered bymore_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefOxford Brookes University: RADARArticle . 2023License: CC BYData sources: Oxford Brookes University: RADARActa Colombiana de Cuidado IntensivoArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2022.112161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu