- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2025 United KingdomPublisher:Royal Society of Chemistry (RSC) Funded by:UKRI | EPSRC Centre for Doctoral...UKRI| EPSRC Centre for Doctoral Training in Sustainable and Functional NanoLun, Z; Merryweather, AJ; Mahadevegowda, A; Pandurangi, SS; Xu, C; Fairclough, S; Deshpande, VS; Fleck, NA; Ducati, C; Schnedermann, C; Rao, A; Grey, CP;Using an operando optical scattering technique, we identify markedly asymmetric Li-ion flux in aged single crystalline NMC cathodes, primarily caused by an uneven growth of rocksalt phase across the particle surface.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d5ee00267b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d5ee00267b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 22 Sep 2022 United KingdomPublisher:American Chemical Society (ACS) Funded by:EC | BATNMR, EC | SOLARX, UKRI | EPSRC Centre for Doctoral... +1 projectsEC| BATNMR ,EC| SOLARX ,UKRI| EPSRC Centre for Doctoral Training in Sustainable and Functional Nano ,EC| MULTILATChao Xu; Alice J. Merryweather; Shrinidhi S. Pandurangi; Zhengyan Lun; David S. Hall; Vikram S. Deshpande; Norman A. Fleck; Christoph Schnedermann; Akshay Rao; Clare P. Grey;Understanding how lithium-ion dynamics affect the (de)lithiation mechanisms of state-of-the-art nickel-rich layered oxide cathodes is crucial to improving electrochemical performance. Here, we directly observe two distinct kinetically-induced lithium heterogeneities within single-crystal LiNixMnyCo(1-x-y)O2 (NMC) particles using recently developed operando optical microscopy, challenging the notion that uniform (de)lithiation occurs within individual particles. Upon delithiation, a rapid increase in lithium diffusivity at the beginning of charge results in particles with lithium-poor peripheries and lithium-rich cores. The slow ion diffusion at near-full lithiation states – and slow charge transfer kinetics – also leads to heterogeneity at the end of discharge, with a lithium-rich surface preventing complete lithiation. Finite-element modelling confirms that concentration-dependent diffusivity is necessary to reproduce these phenomena. Our results show that diffusion limitations cause first-cycle capacity losses in Ni-rich cathodes.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.26434/chemr...Article . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefhttps://doi.org/10.26434/chemr...Article . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26434/chemrxiv-2022-qb80n&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu60 citations 60 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.26434/chemr...Article . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefhttps://doi.org/10.26434/chemr...Article . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26434/chemrxiv-2022-qb80n&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Royal Society of Chemistry (RSC) Wenda Li; Zhaoyue Li; Lizhi Li; Alice J. Merryweather; Yilin Chen; Shaoyu Yang; Hao Shi; Yang Lu; Yixiao Qiu; Guangsu Tan; Zhipeng Chen; Weiwei Wang; Yuzhu Wang; Yi-Fan Huang; Zhengyan Lun; Christoph Schnedermann; Xiangwen Gao; Jingyang Wang; Clare P. Grey; Chao Xu;doi: 10.1039/d5ee00422e
Sodium-ion batteries (SIBs) offer a sustainable alternative to lithium-ion batteries but face cathode instability. This work emphasizes the low state of charge phase transition and shows improved cycling performance via calcium substitution.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d5ee00422e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d5ee00422e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Wiley Peng Zhang; Torbjörn Gustafsson; Maria Strømme; Zhaohui Wang; Petter Tammela; Leif Nyholm; Chao Xu; Kristina Edström;AbstractConducting polymers have been considered for use as cathode materials in rechargeable lithium‐ion batteries (LIBs) since 1981 but problems with poor cycling stability, rapid self‐discharge, and low energy and power densities have so far limited their applicability. Herein it is shown that nanostructured freestanding conducting polymer composites [e.g., polypyrrole (PPy) and polyaniline (PANI)] can be used to circumvent these shortcomings. Freestanding and binder‐free PPy and cellulose‐based composites can straightforwardly be used as versatile organic cathode materials for LIBs. The composite, reinforced with chopped carbon filaments (CCFs), exhibited a large active mass loading of approximately 10 mg cm−2, an areal capacity of 1.0 mAh cm−2(corresponding to 102 mAh g−1), and stable cycling. With an active mass loading of 4.4 mg cm−2, a capacity of 0.22 mAh cm−2(corresponding to 58 mAh g−1) was found for current densities of 5 A g−1yielding discharge times of approximately 40 seconds, and a capacity retention of 91 % over 100 cycles was obtained at 0.2 A g−1. The present method constitutes a straightforward approach for the manufacturing of high‐performance freestanding electroactive conducting‐polymer‐based paper‐like electrodes for use in inexpensive and sustainable, high‐performance organic LIBs.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201402224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201402224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SwedenPublisher:MDPI AG Gabriel Oltean; Nareerat Plylahan; Charlotte Ihrfors; Wei Wei; Chao Xu; Kristina Edström; Leif Nyholm; Patrik Johansson; Torbjörn Gustafsson;Li-ion battery (LIB) full cells comprised of TiO2-nanotube (TiO2-nt) and LiFePO4 (LFP) electrodes and either a conventional organic solvent based liquid electrolyte or an ionic liquid based electrolyte have been cycled at 80 °C. While the cell containing the ionic liquid based electrolyte exhibited good capacity retention and rate capability during 100 cycles, rapid capacity fading was found for the corresponding cell with the organic electrolyte. Results obtained for TiO2-nt and LFP half-cells indicate an oxidative degradation of the organic electrolyte at 80 °C. In all, ionic liquid based electrolytes can be used to significantly improve the performance of LIBs operating at 80 °C.
Batteries arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2018 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2018 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries4010002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2018 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2018 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries4010002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2025 United KingdomPublisher:Royal Society of Chemistry (RSC) Funded by:UKRI | EPSRC Centre for Doctoral...UKRI| EPSRC Centre for Doctoral Training in Sustainable and Functional NanoLun, Z; Merryweather, AJ; Mahadevegowda, A; Pandurangi, SS; Xu, C; Fairclough, S; Deshpande, VS; Fleck, NA; Ducati, C; Schnedermann, C; Rao, A; Grey, CP;Using an operando optical scattering technique, we identify markedly asymmetric Li-ion flux in aged single crystalline NMC cathodes, primarily caused by an uneven growth of rocksalt phase across the particle surface.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d5ee00267b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d5ee00267b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 22 Sep 2022 United KingdomPublisher:American Chemical Society (ACS) Funded by:EC | BATNMR, EC | SOLARX, UKRI | EPSRC Centre for Doctoral... +1 projectsEC| BATNMR ,EC| SOLARX ,UKRI| EPSRC Centre for Doctoral Training in Sustainable and Functional Nano ,EC| MULTILATChao Xu; Alice J. Merryweather; Shrinidhi S. Pandurangi; Zhengyan Lun; David S. Hall; Vikram S. Deshpande; Norman A. Fleck; Christoph Schnedermann; Akshay Rao; Clare P. Grey;Understanding how lithium-ion dynamics affect the (de)lithiation mechanisms of state-of-the-art nickel-rich layered oxide cathodes is crucial to improving electrochemical performance. Here, we directly observe two distinct kinetically-induced lithium heterogeneities within single-crystal LiNixMnyCo(1-x-y)O2 (NMC) particles using recently developed operando optical microscopy, challenging the notion that uniform (de)lithiation occurs within individual particles. Upon delithiation, a rapid increase in lithium diffusivity at the beginning of charge results in particles with lithium-poor peripheries and lithium-rich cores. The slow ion diffusion at near-full lithiation states – and slow charge transfer kinetics – also leads to heterogeneity at the end of discharge, with a lithium-rich surface preventing complete lithiation. Finite-element modelling confirms that concentration-dependent diffusivity is necessary to reproduce these phenomena. Our results show that diffusion limitations cause first-cycle capacity losses in Ni-rich cathodes.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.26434/chemr...Article . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefhttps://doi.org/10.26434/chemr...Article . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26434/chemrxiv-2022-qb80n&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu60 citations 60 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.26434/chemr...Article . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefhttps://doi.org/10.26434/chemr...Article . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26434/chemrxiv-2022-qb80n&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Royal Society of Chemistry (RSC) Wenda Li; Zhaoyue Li; Lizhi Li; Alice J. Merryweather; Yilin Chen; Shaoyu Yang; Hao Shi; Yang Lu; Yixiao Qiu; Guangsu Tan; Zhipeng Chen; Weiwei Wang; Yuzhu Wang; Yi-Fan Huang; Zhengyan Lun; Christoph Schnedermann; Xiangwen Gao; Jingyang Wang; Clare P. Grey; Chao Xu;doi: 10.1039/d5ee00422e
Sodium-ion batteries (SIBs) offer a sustainable alternative to lithium-ion batteries but face cathode instability. This work emphasizes the low state of charge phase transition and shows improved cycling performance via calcium substitution.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d5ee00422e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d5ee00422e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Wiley Peng Zhang; Torbjörn Gustafsson; Maria Strømme; Zhaohui Wang; Petter Tammela; Leif Nyholm; Chao Xu; Kristina Edström;AbstractConducting polymers have been considered for use as cathode materials in rechargeable lithium‐ion batteries (LIBs) since 1981 but problems with poor cycling stability, rapid self‐discharge, and low energy and power densities have so far limited their applicability. Herein it is shown that nanostructured freestanding conducting polymer composites [e.g., polypyrrole (PPy) and polyaniline (PANI)] can be used to circumvent these shortcomings. Freestanding and binder‐free PPy and cellulose‐based composites can straightforwardly be used as versatile organic cathode materials for LIBs. The composite, reinforced with chopped carbon filaments (CCFs), exhibited a large active mass loading of approximately 10 mg cm−2, an areal capacity of 1.0 mAh cm−2(corresponding to 102 mAh g−1), and stable cycling. With an active mass loading of 4.4 mg cm−2, a capacity of 0.22 mAh cm−2(corresponding to 58 mAh g−1) was found for current densities of 5 A g−1yielding discharge times of approximately 40 seconds, and a capacity retention of 91 % over 100 cycles was obtained at 0.2 A g−1. The present method constitutes a straightforward approach for the manufacturing of high‐performance freestanding electroactive conducting‐polymer‐based paper‐like electrodes for use in inexpensive and sustainable, high‐performance organic LIBs.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201402224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201402224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SwedenPublisher:MDPI AG Gabriel Oltean; Nareerat Plylahan; Charlotte Ihrfors; Wei Wei; Chao Xu; Kristina Edström; Leif Nyholm; Patrik Johansson; Torbjörn Gustafsson;Li-ion battery (LIB) full cells comprised of TiO2-nanotube (TiO2-nt) and LiFePO4 (LFP) electrodes and either a conventional organic solvent based liquid electrolyte or an ionic liquid based electrolyte have been cycled at 80 °C. While the cell containing the ionic liquid based electrolyte exhibited good capacity retention and rate capability during 100 cycles, rapid capacity fading was found for the corresponding cell with the organic electrolyte. Results obtained for TiO2-nt and LFP half-cells indicate an oxidative degradation of the organic electrolyte at 80 °C. In all, ionic liquid based electrolytes can be used to significantly improve the performance of LIBs operating at 80 °C.
Batteries arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2018 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2018 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries4010002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Batteries arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2018 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2018 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries4010002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu