- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2016 India, India, FrancePublisher:Elsevier BV Olivier Mathieu; Colin S. Everson; Mathieu Thevenot; Khatab Abdalla; Vincent Chaplot; Vincent Chaplot; Pauline Chivenge; Pauline Chivenge;Grasslands have potential to mitigate against climate change because of their large capacity to store soil organic carbon (SOC). However, the long-term impact of grassland management such as burning, which is still common in many areas of the world, on SOC is still a matter of debate. The objective of this study was to quantify the long-term effects of annual burning on CO2 output from soils and SOC stocks. The study was performed on a 62 years old field trial comparing annual burning (AB) to no burning associated with tree encroachment (NB), and to annual mowing (AM) with all treatments laid out in randomized block design with three replicates per treatment. CO2 emissions from soil were continuously measured over two years and were correlated to soil chemical and physical properties. AB and AM produced 30 and 34% greater CO2 emissions from soil than NB (1.80 ± 0.13 vs. 2.34 ± 0.18 and 2.41 ± 0.17 g C-CO2 m− 2 d− 1 for NB, AB and AM respectively). AB and AM also produced greater CO2 emissions from soil and per gram of soil carbon (1.32 ± 0.1 and 1.35 ± 0.1 mg C-CO2 g C− 1 d− 1, respectively) than NB (1.05 ± 0.07 mg C-CO2 g C− 1 d− 1), which corresponded to significant differences of respectively 26% and 29%. Overall, CO2 emissions from soil (per m2) significantly increased with soil water content (r = 0.72) followed by SOC stocks (r = 0.59), SOC content (r = 0.50), soil bulk density (r = 0.49), soil temperature (r = 0.47), C:N ratio (r = 0.46) and mean weight diameter (r = 0.38). These findings suggest that long-term annual burning increases CO2 output from soils. Additional greenhouse gases emissions from burning itself and alternative grassland management techniques were finally discussed.
Geoderma arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverInstitut national des sciences de l'Univers: HAL-INSUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2016.07.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Geoderma arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverInstitut national des sciences de l'Univers: HAL-INSUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2016.07.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 France, BrazilPublisher:Elsevier BV Vania Rosolen; Danilo Amendola; Macdex Mutema; Vincent Chaplot; Vincent Chaplot;handle: 11449/176015
Abstract Wetland soils are an important component of the Global Carbon Cycle because they store about 20–25% of the terrestrial soil organic carbon (SOC). Wetlands occupy about 6% of the global land surface and any change in their use or management has potentially dramatic consequences on greenhouse gases emissions. However, the capacity of wetland soils to store carbon (C) differs from place to place due to reasons still not well understood. The objective of this review was to evaluate the global variations in wetlands SOC content (SOCC) and to relate it to key soil and environmental factors such as soil texture, intensity of soil hydromorphy, metallic element content and climate. A comprehensive data analysis was performed using 122 soil profiles from 29 studies performed under temperate, humid, sub-humid, tropical and sub-arctic conditions. The results point to average SOCC of 53.5 ± 15.8 g C kg−1 with a maximum of 540 g C kg−1. SOCC increased with increase in intensity of soil hydromorphy (r = −0.52), Al (r = 0.19) and Fe content (r = 0.21), and decreased with soil pH (r = −0.24). There was also a surprising tendency for intensity of soil hydromorphy, and thus SOCC, to decrease with increasing mean annual precipitation and soil clay content. These results contribute to a better understanding of the impact of soil hydromorphy in wetlands on organic C stabilization in the soils. However, further studies with additional information on soil bulk density to assess carbon C stocks, still need to be performed.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2018.03.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2018.03.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 India, India, FrancePublisher:Wiley Macdex Mutema; Pauline Chivenge; Fantine Nivet; Christophe Rabouille; Vincent Thieu; Vincent Chaplot;doi: 10.1002/esp.4170
AbstractWater erosion provides major links in global cycles of carbon (C), nitrogen (N) and phosphorus (P). Although significant research on erosion mechanisms has been done, there is still little knowledge on C, N and P fluxes across landscapes to the ocean and their controlling factors in subtropical climates. A four‐year study quantifying and comparing particulate and dissolved C, N and P from multiple scales (microplot, plot, microcatchment, subcatchment, catchment, sub‐basin and basin) was performed in Thukela basin (≈30 000 km2), South Africa. The basin climate was largely subtropical‐humid [mean annual precipitation (MAP) > 980 mm yr‐1], but temperate (MAP >2000 mm yr‐1) on the highlands. Open grassland, cropland and bushland were the major land uses. On average, 65, 24 and 4 g m‐2 yr‐1 C, N and P were displaced from original topsoil positions, but only 0.33, 0.005 and 0.002 mg m‐2 yr‐1 were, respectively, exported to the ocean. The fluxes decreased by 95, 97 and 84%, respectively, from plot to microcatchment outlet; and decreased further in downstream direction by >99% from microcatchment to basin outlet. The hillslope (microplot to microcatchment) fluxes correlated strongly with rainfall parameters. Particulate contributions dominated hillslope fluxes at 73, 81 and 76% of total annual C, N and P, respectively. Although particulate C dominated in the microcatchment‐catchment reach (55%), N (54%) and P (69%) were dominated by dissolved forms. The lower basin zone was dominated by dissolved flux contributions at 93, 81 and 78% for C, N and P for the sub‐basin outlet. These results suggested spatially varying drivers of C, N and P losses from the landscape to the ocean, via the river network. Deposition was envisaged the dominant hillslope level loss process, which gradually gave way to mineralization and biotic uptake in the river network as flux contributions shifted from being predominantly particulate to dissolved forms. Copyright © 2017 John Wiley & Sons, Ltd.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://hal.science/hal-01833045Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://hal.science/hal-01833045Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017Full-Text: https://hal.science/hal-01833045Data sources: Bielefeld Academic Search Engine (BASE)Earth Surface Processes and LandformsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/esp.4170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://hal.science/hal-01833045Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://hal.science/hal-01833045Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017Full-Text: https://hal.science/hal-01833045Data sources: Bielefeld Academic Search Engine (BASE)Earth Surface Processes and LandformsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/esp.4170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 India, France, IndiaPublisher:Copernicus GmbH Vincent Chaplot; Vincent Chaplot; Philippe Ciais; Khatab Abdalla; Pauline Chivenge; Pauline Chivenge;handle: 10568/76715
Abstract. The management of agroecosystems plays a crucial role in the global carbon cycle with soil tillage leading to known organic carbon redistributions within soils and changes in soil CO2 emissions. Yet, discrepancies exist on the impact of tillage on soil CO2 emissions and on the main soil and environmental controls. A meta-analysis was conducted using 46 peer-reviewed publications totaling 174 paired observations comparing CO2 emissions over entire seasons or years from tilled and untilled soils across different climates, crop types and soil conditions with the objective of quantifying tillage impact on CO2 emissions and assessing the main controls. On average, tilled soils emitted 21 % more CO2 than untilled soils, which corresponded to a significant difference at P<0.05. The difference increased to 29 % in sandy soils from arid climates with low soil organic carbon content (SOCC < 1 %) and low soil moisture, but tillage had no impact on CO2 fluxes in clayey soils with high background SOCC (> 3 %). Finally, nitrogen fertilization and crop residue management had little effect on the CO2 responses of soils to no-tillage. These results suggest no-tillage is an effective mitigation measure of carbon dioxide losses from dry land soils. They emphasize the importance of including information on soil factors such as texture, aggregate stability and organic carbon content in global models of the carbon cycle.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://hal.science/hal-01587588Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01587588Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/10568/76715Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2016Full-Text: https://hal.science/hal-01587588Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bgd-12...Article . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-13-3619-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 129 citations 129 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://hal.science/hal-01587588Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01587588Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/10568/76715Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2016Full-Text: https://hal.science/hal-01587588Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bgd-12...Article . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-13-3619-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 France, Russian Federation, Netherlands, United KingdomPublisher:Elsevier BV Publicly fundedFunded by:ARC | Dynamic soil landscape ca..., RSF | Large-scale digital soil ...ARC| Dynamic soil landscape carbon modelling ,RSF| Large-scale digital soil mapping based on remote sensing dataBudiman Minasny; Brendan P. Malone; Alex B. McBratney; Denis A. Angers; Dominique Arrouays; Adam Chambers; Vincent Chaplot; Zueng-Sang Chen; Kun Cheng; Bhabani S. Das; Damien J. Field; Alessandro Gimona; Carolyn B. Hedley; Suk Young Hong; Biswapati Mandal; Ben P. Marchant; Manuel Martin; Brian G. McConkey; Vera Leatitia Mulder; Sharon O'Rourke; Anne C. Richer-de-Forges; Inakwu Odeh; José Padarian; Keith Paustian; Genxing Pan; Laura Poggio; Igor Savin; Vladimir Stolbovoy; Uta Stockmann; Yiyi Sulaeman; Chun-Chih Tsui; Tor-Gunnar Vågen; Bas van Wesemael; Leigh Winowiecki;The ‘4 per mille Soils for Food Security and Climate’ was launched at the COP21 with an aspiration to increase global soil organic matter stocks by 4 per 1000 (or 0.4 %) per year as a compensation for the global emissions of greenhouse gases by anthropogenic sources. This paper surveyed the soil organic carbon (SOC) stock estimates and sequestration potentials from 20 regions in the world (New Zealand, Chile, South Africa, Australia, Tanzania, Indonesia, Kenya, Nigeria, India, China Taiwan, South Korea, China Mainland, United States of America, France, Canada, Belgium, England & Wales, Ireland, Scotland, and Russia). We asked whether the 4 per mille initiative is feasible for the region. The outcomes highlight region specific efforts and scopes for soil carbon sequestration. Reported soil C sequestration rates globally show that under best management practices, 4 per mille or even higher sequestration rates can be accomplished. High C sequestration rates (up to 10 per mille) can be achieved for soils with low initial SOC stock (topsoil less than 30 t C ha− 1), and at the first twenty years after implementation of best management practices. In addition, areas which have reached equilibrium will not be able to further increase their sequestration. We found that most studies on SOC sequestration only consider topsoil (up to 0.3 m depth), as it is considered to be most affected by management techniques. The 4 per mille number was based on a blanket calculation of the whole global soil profile C stock, however the potential to increase SOC is mostly on managed agricultural lands. If we consider 4 per mille in the top 1m of global agricultural soils, SOC sequestration is between 2-3 Gt C year− 1, which effectively offset 20–35% of global anthropogenic greenhouse gas emissions. As a strategy for climate change mitigation, soil carbon sequestration buys time over the next ten to twenty years while other effective sequestration and low carbon technologies become viable. The challenge for cropping farmers is to find disruptive technologies that will further improve soil condition and deliver increased soil carbon. Progress in 4 per mille requires collaboration and communication between scientists, farmers, policy makers, and marketeers.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2017License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2017.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1K citations 1,447 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
visibility 15visibility views 15 download downloads 221 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2017License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2017.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Wiley Isack Mathew; Hussein Shimelis; Macdex Mutema; Alistair Clulow; Rebecca Zengeni; Nozibusiso Mbava; Vincent Chaplot;doi: 10.1111/jac.12332
AbstractThe biomass allocation pattern of plants to shoots and roots is a key in the cycle of elements such as carbon, water and nutrients with, for instance, the greatest allocations to roots fostering the transfer of atmospheric carbon to soils through photosynthesis. Several studies have investigated the root to shoot ratio (R:S) biomass of existing crops but variation within a crop species constitutes an important information gap for selecting genotypes aiming for increasing soil carbon stocks for climate change mitigation and food security. The objectives of this study were to evaluate agronomic performance and quantify biomass production and allocation between roots and shoots, in response to different soil water levels to select promising genotypes for breeding. Field and greenhouse experiments were carried out using 100 genotypes including wheat and Triticale under drought‐stressed and non‐stressed conditions. The experiments were set‐up using a 10 × 10 alpha lattice design with two replications under water stress and non‐stress conditions. The following phenotypic traits were collected: number of days to heading (DTH), number of productive tillers per plant (NPT), plant height (PH), days to maturity (DTM), spike length (SL), kernels per spike (KPS), thousand kernel weight (TKW), root biomass (RB), shoot biomass (SB), root to shoot ratio (R:S) and grain yield (GY). There was significant (p < 0.05) variation for grain yield and biomass production because of genotypic variation. The highest grain yield of 247.3 g/m2 was recorded in the genotype LM52 and the least was in genotype Sossognon with 30 g/m2. Shoot biomass ranged from 830 g/m2 (genotype Arenza) to 437 g/m2 (LM57), whilst root biomass ranged between 603 g/m2 for Triticale and 140 g/m2 for LM15 across testing sites and water regimes. Triticale also recorded the highest R:S of 1.2, whilst the least was 0.30 for wheat genotype LM18. Overall, drought stress reduced total biomass production by 35% and R:S by 14%. Genotypic variation existed for all measured traits useful for improving drought tolerance, whilst the calculated R:S values can improve accuracy in estimating C sequestration potential of wheat. Wheat genotypes LM26, LM47, BW140, LM70, LM48, BW152, LM75, BW162, LM71 and BW141 were selected for further development based on their high total biomass production, grain yield potential and genetic diversity under drought stress.
Journal of Agronomy ... arrow_drop_down Journal of Agronomy and Crop ScienceArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jac.12332&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 34 citations 34 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Agronomy ... arrow_drop_down Journal of Agronomy and Crop ScienceArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jac.12332&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Wiley Pauline Chivenge; Philippe Ciais; Vincent Chaplot; Vincent Chaplot; Khatab Abdalla; Khatab Abdalla;pmid: 34606136
ABSTRACTBurning has commonly been used to increase forage production and nutrients cycling in grasslands. However, its long‐term effects on soil organic carbon (SOC) and nitrogen (N) pools within the aggregates and the relation between aggregates‐associated SOC and soil CO2 emissions need further appraisal. This study evaluated the effects of 64 years of annual burning on SOC and N dynamics compared to annual mowing and undisturbed treatments in a grassland experiment established in 1950. Soils were sampled from four depths representing the upper 30 cm layer and fractionated into macroaggregates, microaggregates and silt + clay fractions. The macroaggregates were further fractionated into three occluded fractions. The SOC in the bulk soil and aggregates were correlated to soil CO2 effluxes measured under field conditions. Compared to the undisturbed treatment, annual burning decreased aggregates stability, SOC and N in the upper 30 cm layer by 8%, 5% and 12%, respectively. Grassland mowing induced greater aggregates stability than burning only in the upper 5 cm. Burning also decreased SOC in the large macroaggregates (e.g., 0–5 cm) compared to mowing and the undisturbed grasslands but proportionally increased the microaggregates and their associated SOC. Soil N associated with aggregates decreased largely following grassland burning, for example, by 8.8‐fold in the microaggregates within the large macroaggregates at 20–30 cm compared to the undisturbed grassland. Burning also increased soil CO2 emissions by 33 and 16% compared to undisturbed and mowing, respectively. The combustion of fresh C and soil organic matter by fire is likely responsible for the low soil aggregation, high SOC and N losses under burned grassland. These results suggested a direct link between grass burning and SOC losses, a key component for escalating climate change severity. Therefore, less frequent burning or a rotation of burning and mowing should be investigated for sustainable grasslands management.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021License: CC BY NCFull-Text: https://hal.science/hal-03430263Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021License: CC BY NCFull-Text: https://hal.science/hal-03430263Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021License: CC BY NCFull-Text: https://hal.science/hal-03430263Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15918&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021License: CC BY NCFull-Text: https://hal.science/hal-03430263Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021License: CC BY NCFull-Text: https://hal.science/hal-03430263Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021License: CC BY NCFull-Text: https://hal.science/hal-03430263Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15918&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FrancePublisher:Elsevier BV Macdex Mutema; Colin S. Everson; Khatab Abdalla; Vincent Chaplot; Vincent Chaplot; Pauline Chivenge; Pauline Chivenge;Abstract Grassland degradation reduces net primary production and, subsequently, soil fertility and soil organic carbon stocks (SOCs); however, little is known about its impact on soil CO2 emissions, particularly the emissions relative to SOCs and biomass produced. The main objective of this study, performed in KwaZulu-Natal province of South Africa, was to quantify the impact of grass basal cover, as main indicator of grassland degradation, on soil CO2 emissions. The soil CO2 emissions were measured from three grass cover levels (non-degraded, with 100% grass cover; moderately degraded: 25
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.catena.2018.05.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.catena.2018.05.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Public Library of Science (PLoS) Mark Laing; Admire Shayanowako; Vincent Chaplot; Vincent Chaplot; Hussein Shimelis; Isack Mathew;Genome wide association studies (GWAS) are important in discerning the genetic architecture of complex traits such as biomass allocation for improving drought tolerance and carbon sequestration potential of wheat. The objectives of this study were to deduce the population structure and marker-trait association for biomass traits in wheat under drought-stressed and non-stressed conditions. A 100-wheat (Triticum aestivum L.) genotype panel was phenotyped for days to heading (DTH), days to maturity (DTM), shoot biomass (SB), root biomass (RB), root to shoot ratio (RS) and grain yield (GY). The panel was sequenced using 15,600 single nucleotide polymorphism (SNPs) markers and subjected to genetic analysis using the compressed mixed linear model (CMLM) at false discovery rate (FDR < 0.05). Population structure analysis revealed six sub-clusters with high membership ancestry coefficient of ≤0.65 to their assigned sub-clusters. A total of 75 significant marker-trait associations (MTAs) were identified with a linkage disequilibrium threshold of 0.38 at 5cM. Thirty-seven of the MTAs were detected under drought-stressed condition and 48% were on the B genome, where most quantitative trait loci (QTLs) for RB, SB and GY were previously identified. There were seven pleiotropic markers for RB and SB that may facilitate simultaneous selection. Thirty-seven putative candidate genes were mined by gene annotation on the IWGSC RefSeq 1.1. The significant MTAs observed in this study will be useful in devising strategies for marker-assisted breeding for simultaneous improvement of drought tolerance and to enhance C sequestration capacity of wheat.
Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0225383&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 53 citations 53 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0225383&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 India, India, FrancePublisher:Elsevier BV Chaplot, V.; Abdalla, K.; Alexis, M.; Bourennane, H.; Darboux, F.; Dlamini, P.; Everson, C.; Mchunu, C.; Muller-Nedebock, D.; Mutema, M.; Quenea, K.; Thenga, H.; Chivenge, Pauline P.;handle: 10568/76723
The impact of agricultural practices on CO2 emissions from soils needs to be understood and quantified to enhance ecosystem functions, especially the ability of soils to sequester atmospheric carbon (C), while enhancing food and biomass production. The objective of this study was to assess CO2 emissions in the soil surface following tillage abandonment and to investigate some of the underlying soil physical, chemical and biological controls. Maize (Zea mays) was planted under conventional tillage (T) and no-tillage (NT), both without crop residues under smallholder farming conditions in Potshini, South Africa. Intact top-soil (0–0.05 m) core samples (N = 54) from three 5 × 15 m2 plots per treatment were collected two years after conversion of T to NT to evaluate the short-term CO2 emissions. Depending on the treatment, cores were left intact, compacted by 5 and 10 or had surface crusts removed. They were incubated for 20 days with measurements of CO2 fluxes twice a day during the first three days and once a day thereafter. Soil organic C (SOC) content, soil bulk density (ρb), aggregate stability, soil organic matter quality, and microbial biomass and its activity were evaluated at the onset of the incubation. CO2 emissions were 22% lower under NT compared with T with CO2 emissions of 0.9 ± 0.10 vs 1.1 ± 0.10 mg C–CO2 gC−1 day−1 under NT and T, respectively, suggesting greater SOC protection under NT. However, there were greater total CO2 emissions per unit of surface by 9% under NT compared to T (1.15 ± 0.03 vs 1.05 ± 0.04 g C–CO2 m−2 day−1). SOC protection significantly increased with the increase in soil bulk density (r = 0.89) and aggregate stability (from 1.7 ± 0.25 mm to 2.3 ± 0.31, r = 0.50), and to the decrease in microbial biomass and its activity (r = −0.59 and −0.57, respectively). In contrast, the greater NT CO2 emissions per m2 were explained by top-soil enrichment in SOC by 48% (from 12.4 ± 0.2 to 19.1 ± 0.4 g kg−1, r = 0.59). These results on the soil controls of tillage impact on CO2 emissions are expected to inform on the required shifts in agricultural practices for enhancing C sequestration in soils. In the context of the study, any mechanism favoring aggregate stability and promoting SOC allocation deep in the soil profile rather than in the top-soil would greatly diminish soil CO2 outputs and thus stimulate C sequestration.
Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Full-Text: https://hal.science/hal-01129938Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Full-Text: https://hal.science/hal-01129938Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2015Full-Text: https://hal.science/hal-01129938Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016Full-Text: https://hdl.handle.net/10568/76723Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2015License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Agriculture Ecosystems & EnvironmentArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agee.2015.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Full-Text: https://hal.science/hal-01129938Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Full-Text: https://hal.science/hal-01129938Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2015Full-Text: https://hal.science/hal-01129938Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016Full-Text: https://hdl.handle.net/10568/76723Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2015License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Agriculture Ecosystems & EnvironmentArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agee.2015.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2016 India, India, FrancePublisher:Elsevier BV Olivier Mathieu; Colin S. Everson; Mathieu Thevenot; Khatab Abdalla; Vincent Chaplot; Vincent Chaplot; Pauline Chivenge; Pauline Chivenge;Grasslands have potential to mitigate against climate change because of their large capacity to store soil organic carbon (SOC). However, the long-term impact of grassland management such as burning, which is still common in many areas of the world, on SOC is still a matter of debate. The objective of this study was to quantify the long-term effects of annual burning on CO2 output from soils and SOC stocks. The study was performed on a 62 years old field trial comparing annual burning (AB) to no burning associated with tree encroachment (NB), and to annual mowing (AM) with all treatments laid out in randomized block design with three replicates per treatment. CO2 emissions from soil were continuously measured over two years and were correlated to soil chemical and physical properties. AB and AM produced 30 and 34% greater CO2 emissions from soil than NB (1.80 ± 0.13 vs. 2.34 ± 0.18 and 2.41 ± 0.17 g C-CO2 m− 2 d− 1 for NB, AB and AM respectively). AB and AM also produced greater CO2 emissions from soil and per gram of soil carbon (1.32 ± 0.1 and 1.35 ± 0.1 mg C-CO2 g C− 1 d− 1, respectively) than NB (1.05 ± 0.07 mg C-CO2 g C− 1 d− 1), which corresponded to significant differences of respectively 26% and 29%. Overall, CO2 emissions from soil (per m2) significantly increased with soil water content (r = 0.72) followed by SOC stocks (r = 0.59), SOC content (r = 0.50), soil bulk density (r = 0.49), soil temperature (r = 0.47), C:N ratio (r = 0.46) and mean weight diameter (r = 0.38). These findings suggest that long-term annual burning increases CO2 output from soils. Additional greenhouse gases emissions from burning itself and alternative grassland management techniques were finally discussed.
Geoderma arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverInstitut national des sciences de l'Univers: HAL-INSUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2016.07.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Geoderma arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverInstitut national des sciences de l'Univers: HAL-INSUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2016.07.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 France, BrazilPublisher:Elsevier BV Vania Rosolen; Danilo Amendola; Macdex Mutema; Vincent Chaplot; Vincent Chaplot;handle: 11449/176015
Abstract Wetland soils are an important component of the Global Carbon Cycle because they store about 20–25% of the terrestrial soil organic carbon (SOC). Wetlands occupy about 6% of the global land surface and any change in their use or management has potentially dramatic consequences on greenhouse gases emissions. However, the capacity of wetland soils to store carbon (C) differs from place to place due to reasons still not well understood. The objective of this review was to evaluate the global variations in wetlands SOC content (SOCC) and to relate it to key soil and environmental factors such as soil texture, intensity of soil hydromorphy, metallic element content and climate. A comprehensive data analysis was performed using 122 soil profiles from 29 studies performed under temperate, humid, sub-humid, tropical and sub-arctic conditions. The results point to average SOCC of 53.5 ± 15.8 g C kg−1 with a maximum of 540 g C kg−1. SOCC increased with increase in intensity of soil hydromorphy (r = −0.52), Al (r = 0.19) and Fe content (r = 0.21), and decreased with soil pH (r = −0.24). There was also a surprising tendency for intensity of soil hydromorphy, and thus SOCC, to decrease with increasing mean annual precipitation and soil clay content. These results contribute to a better understanding of the impact of soil hydromorphy in wetlands on organic C stabilization in the soils. However, further studies with additional information on soil bulk density to assess carbon C stocks, still need to be performed.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2018.03.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2018.03.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 India, India, FrancePublisher:Wiley Macdex Mutema; Pauline Chivenge; Fantine Nivet; Christophe Rabouille; Vincent Thieu; Vincent Chaplot;doi: 10.1002/esp.4170
AbstractWater erosion provides major links in global cycles of carbon (C), nitrogen (N) and phosphorus (P). Although significant research on erosion mechanisms has been done, there is still little knowledge on C, N and P fluxes across landscapes to the ocean and their controlling factors in subtropical climates. A four‐year study quantifying and comparing particulate and dissolved C, N and P from multiple scales (microplot, plot, microcatchment, subcatchment, catchment, sub‐basin and basin) was performed in Thukela basin (≈30 000 km2), South Africa. The basin climate was largely subtropical‐humid [mean annual precipitation (MAP) > 980 mm yr‐1], but temperate (MAP >2000 mm yr‐1) on the highlands. Open grassland, cropland and bushland were the major land uses. On average, 65, 24 and 4 g m‐2 yr‐1 C, N and P were displaced from original topsoil positions, but only 0.33, 0.005 and 0.002 mg m‐2 yr‐1 were, respectively, exported to the ocean. The fluxes decreased by 95, 97 and 84%, respectively, from plot to microcatchment outlet; and decreased further in downstream direction by >99% from microcatchment to basin outlet. The hillslope (microplot to microcatchment) fluxes correlated strongly with rainfall parameters. Particulate contributions dominated hillslope fluxes at 73, 81 and 76% of total annual C, N and P, respectively. Although particulate C dominated in the microcatchment‐catchment reach (55%), N (54%) and P (69%) were dominated by dissolved forms. The lower basin zone was dominated by dissolved flux contributions at 93, 81 and 78% for C, N and P for the sub‐basin outlet. These results suggested spatially varying drivers of C, N and P losses from the landscape to the ocean, via the river network. Deposition was envisaged the dominant hillslope level loss process, which gradually gave way to mineralization and biotic uptake in the river network as flux contributions shifted from being predominantly particulate to dissolved forms. Copyright © 2017 John Wiley & Sons, Ltd.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://hal.science/hal-01833045Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://hal.science/hal-01833045Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017Full-Text: https://hal.science/hal-01833045Data sources: Bielefeld Academic Search Engine (BASE)Earth Surface Processes and LandformsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/esp.4170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://hal.science/hal-01833045Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Full-Text: https://hal.science/hal-01833045Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017Full-Text: https://hal.science/hal-01833045Data sources: Bielefeld Academic Search Engine (BASE)Earth Surface Processes and LandformsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/esp.4170&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 India, France, IndiaPublisher:Copernicus GmbH Vincent Chaplot; Vincent Chaplot; Philippe Ciais; Khatab Abdalla; Pauline Chivenge; Pauline Chivenge;handle: 10568/76715
Abstract. The management of agroecosystems plays a crucial role in the global carbon cycle with soil tillage leading to known organic carbon redistributions within soils and changes in soil CO2 emissions. Yet, discrepancies exist on the impact of tillage on soil CO2 emissions and on the main soil and environmental controls. A meta-analysis was conducted using 46 peer-reviewed publications totaling 174 paired observations comparing CO2 emissions over entire seasons or years from tilled and untilled soils across different climates, crop types and soil conditions with the objective of quantifying tillage impact on CO2 emissions and assessing the main controls. On average, tilled soils emitted 21 % more CO2 than untilled soils, which corresponded to a significant difference at P<0.05. The difference increased to 29 % in sandy soils from arid climates with low soil organic carbon content (SOCC < 1 %) and low soil moisture, but tillage had no impact on CO2 fluxes in clayey soils with high background SOCC (> 3 %). Finally, nitrogen fertilization and crop residue management had little effect on the CO2 responses of soils to no-tillage. These results suggest no-tillage is an effective mitigation measure of carbon dioxide losses from dry land soils. They emphasize the importance of including information on soil factors such as texture, aggregate stability and organic carbon content in global models of the carbon cycle.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://hal.science/hal-01587588Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01587588Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/10568/76715Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2016Full-Text: https://hal.science/hal-01587588Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bgd-12...Article . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-13-3619-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 129 citations 129 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://hal.science/hal-01587588Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01587588Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/10568/76715Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2016Full-Text: https://hal.science/hal-01587588Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bgd-12...Article . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-13-3619-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 France, Russian Federation, Netherlands, United KingdomPublisher:Elsevier BV Publicly fundedFunded by:ARC | Dynamic soil landscape ca..., RSF | Large-scale digital soil ...ARC| Dynamic soil landscape carbon modelling ,RSF| Large-scale digital soil mapping based on remote sensing dataBudiman Minasny; Brendan P. Malone; Alex B. McBratney; Denis A. Angers; Dominique Arrouays; Adam Chambers; Vincent Chaplot; Zueng-Sang Chen; Kun Cheng; Bhabani S. Das; Damien J. Field; Alessandro Gimona; Carolyn B. Hedley; Suk Young Hong; Biswapati Mandal; Ben P. Marchant; Manuel Martin; Brian G. McConkey; Vera Leatitia Mulder; Sharon O'Rourke; Anne C. Richer-de-Forges; Inakwu Odeh; José Padarian; Keith Paustian; Genxing Pan; Laura Poggio; Igor Savin; Vladimir Stolbovoy; Uta Stockmann; Yiyi Sulaeman; Chun-Chih Tsui; Tor-Gunnar Vågen; Bas van Wesemael; Leigh Winowiecki;The ‘4 per mille Soils for Food Security and Climate’ was launched at the COP21 with an aspiration to increase global soil organic matter stocks by 4 per 1000 (or 0.4 %) per year as a compensation for the global emissions of greenhouse gases by anthropogenic sources. This paper surveyed the soil organic carbon (SOC) stock estimates and sequestration potentials from 20 regions in the world (New Zealand, Chile, South Africa, Australia, Tanzania, Indonesia, Kenya, Nigeria, India, China Taiwan, South Korea, China Mainland, United States of America, France, Canada, Belgium, England & Wales, Ireland, Scotland, and Russia). We asked whether the 4 per mille initiative is feasible for the region. The outcomes highlight region specific efforts and scopes for soil carbon sequestration. Reported soil C sequestration rates globally show that under best management practices, 4 per mille or even higher sequestration rates can be accomplished. High C sequestration rates (up to 10 per mille) can be achieved for soils with low initial SOC stock (topsoil less than 30 t C ha− 1), and at the first twenty years after implementation of best management practices. In addition, areas which have reached equilibrium will not be able to further increase their sequestration. We found that most studies on SOC sequestration only consider topsoil (up to 0.3 m depth), as it is considered to be most affected by management techniques. The 4 per mille number was based on a blanket calculation of the whole global soil profile C stock, however the potential to increase SOC is mostly on managed agricultural lands. If we consider 4 per mille in the top 1m of global agricultural soils, SOC sequestration is between 2-3 Gt C year− 1, which effectively offset 20–35% of global anthropogenic greenhouse gas emissions. As a strategy for climate change mitigation, soil carbon sequestration buys time over the next ten to twenty years while other effective sequestration and low carbon technologies become viable. The challenge for cropping farmers is to find disruptive technologies that will further improve soil condition and deliver increased soil carbon. Progress in 4 per mille requires collaboration and communication between scientists, farmers, policy makers, and marketeers.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2017License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2017.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1K citations 1,447 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
visibility 15visibility views 15 download downloads 221 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2017License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2017.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Wiley Isack Mathew; Hussein Shimelis; Macdex Mutema; Alistair Clulow; Rebecca Zengeni; Nozibusiso Mbava; Vincent Chaplot;doi: 10.1111/jac.12332
AbstractThe biomass allocation pattern of plants to shoots and roots is a key in the cycle of elements such as carbon, water and nutrients with, for instance, the greatest allocations to roots fostering the transfer of atmospheric carbon to soils through photosynthesis. Several studies have investigated the root to shoot ratio (R:S) biomass of existing crops but variation within a crop species constitutes an important information gap for selecting genotypes aiming for increasing soil carbon stocks for climate change mitigation and food security. The objectives of this study were to evaluate agronomic performance and quantify biomass production and allocation between roots and shoots, in response to different soil water levels to select promising genotypes for breeding. Field and greenhouse experiments were carried out using 100 genotypes including wheat and Triticale under drought‐stressed and non‐stressed conditions. The experiments were set‐up using a 10 × 10 alpha lattice design with two replications under water stress and non‐stress conditions. The following phenotypic traits were collected: number of days to heading (DTH), number of productive tillers per plant (NPT), plant height (PH), days to maturity (DTM), spike length (SL), kernels per spike (KPS), thousand kernel weight (TKW), root biomass (RB), shoot biomass (SB), root to shoot ratio (R:S) and grain yield (GY). There was significant (p < 0.05) variation for grain yield and biomass production because of genotypic variation. The highest grain yield of 247.3 g/m2 was recorded in the genotype LM52 and the least was in genotype Sossognon with 30 g/m2. Shoot biomass ranged from 830 g/m2 (genotype Arenza) to 437 g/m2 (LM57), whilst root biomass ranged between 603 g/m2 for Triticale and 140 g/m2 for LM15 across testing sites and water regimes. Triticale also recorded the highest R:S of 1.2, whilst the least was 0.30 for wheat genotype LM18. Overall, drought stress reduced total biomass production by 35% and R:S by 14%. Genotypic variation existed for all measured traits useful for improving drought tolerance, whilst the calculated R:S values can improve accuracy in estimating C sequestration potential of wheat. Wheat genotypes LM26, LM47, BW140, LM70, LM48, BW152, LM75, BW162, LM71 and BW141 were selected for further development based on their high total biomass production, grain yield potential and genetic diversity under drought stress.
Journal of Agronomy ... arrow_drop_down Journal of Agronomy and Crop ScienceArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jac.12332&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 34 citations 34 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Agronomy ... arrow_drop_down Journal of Agronomy and Crop ScienceArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jac.12332&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Wiley Pauline Chivenge; Philippe Ciais; Vincent Chaplot; Vincent Chaplot; Khatab Abdalla; Khatab Abdalla;pmid: 34606136
ABSTRACTBurning has commonly been used to increase forage production and nutrients cycling in grasslands. However, its long‐term effects on soil organic carbon (SOC) and nitrogen (N) pools within the aggregates and the relation between aggregates‐associated SOC and soil CO2 emissions need further appraisal. This study evaluated the effects of 64 years of annual burning on SOC and N dynamics compared to annual mowing and undisturbed treatments in a grassland experiment established in 1950. Soils were sampled from four depths representing the upper 30 cm layer and fractionated into macroaggregates, microaggregates and silt + clay fractions. The macroaggregates were further fractionated into three occluded fractions. The SOC in the bulk soil and aggregates were correlated to soil CO2 effluxes measured under field conditions. Compared to the undisturbed treatment, annual burning decreased aggregates stability, SOC and N in the upper 30 cm layer by 8%, 5% and 12%, respectively. Grassland mowing induced greater aggregates stability than burning only in the upper 5 cm. Burning also decreased SOC in the large macroaggregates (e.g., 0–5 cm) compared to mowing and the undisturbed grasslands but proportionally increased the microaggregates and their associated SOC. Soil N associated with aggregates decreased largely following grassland burning, for example, by 8.8‐fold in the microaggregates within the large macroaggregates at 20–30 cm compared to the undisturbed grassland. Burning also increased soil CO2 emissions by 33 and 16% compared to undisturbed and mowing, respectively. The combustion of fresh C and soil organic matter by fire is likely responsible for the low soil aggregation, high SOC and N losses under burned grassland. These results suggested a direct link between grass burning and SOC losses, a key component for escalating climate change severity. Therefore, less frequent burning or a rotation of burning and mowing should be investigated for sustainable grasslands management.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021License: CC BY NCFull-Text: https://hal.science/hal-03430263Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021License: CC BY NCFull-Text: https://hal.science/hal-03430263Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021License: CC BY NCFull-Text: https://hal.science/hal-03430263Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15918&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021License: CC BY NCFull-Text: https://hal.science/hal-03430263Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021License: CC BY NCFull-Text: https://hal.science/hal-03430263Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021License: CC BY NCFull-Text: https://hal.science/hal-03430263Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15918&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FrancePublisher:Elsevier BV Macdex Mutema; Colin S. Everson; Khatab Abdalla; Vincent Chaplot; Vincent Chaplot; Pauline Chivenge; Pauline Chivenge;Abstract Grassland degradation reduces net primary production and, subsequently, soil fertility and soil organic carbon stocks (SOCs); however, little is known about its impact on soil CO2 emissions, particularly the emissions relative to SOCs and biomass produced. The main objective of this study, performed in KwaZulu-Natal province of South Africa, was to quantify the impact of grass basal cover, as main indicator of grassland degradation, on soil CO2 emissions. The soil CO2 emissions were measured from three grass cover levels (non-degraded, with 100% grass cover; moderately degraded: 25
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.catena.2018.05.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.catena.2018.05.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Public Library of Science (PLoS) Mark Laing; Admire Shayanowako; Vincent Chaplot; Vincent Chaplot; Hussein Shimelis; Isack Mathew;Genome wide association studies (GWAS) are important in discerning the genetic architecture of complex traits such as biomass allocation for improving drought tolerance and carbon sequestration potential of wheat. The objectives of this study were to deduce the population structure and marker-trait association for biomass traits in wheat under drought-stressed and non-stressed conditions. A 100-wheat (Triticum aestivum L.) genotype panel was phenotyped for days to heading (DTH), days to maturity (DTM), shoot biomass (SB), root biomass (RB), root to shoot ratio (RS) and grain yield (GY). The panel was sequenced using 15,600 single nucleotide polymorphism (SNPs) markers and subjected to genetic analysis using the compressed mixed linear model (CMLM) at false discovery rate (FDR < 0.05). Population structure analysis revealed six sub-clusters with high membership ancestry coefficient of ≤0.65 to their assigned sub-clusters. A total of 75 significant marker-trait associations (MTAs) were identified with a linkage disequilibrium threshold of 0.38 at 5cM. Thirty-seven of the MTAs were detected under drought-stressed condition and 48% were on the B genome, where most quantitative trait loci (QTLs) for RB, SB and GY were previously identified. There were seven pleiotropic markers for RB and SB that may facilitate simultaneous selection. Thirty-seven putative candidate genes were mined by gene annotation on the IWGSC RefSeq 1.1. The significant MTAs observed in this study will be useful in devising strategies for marker-assisted breeding for simultaneous improvement of drought tolerance and to enhance C sequestration capacity of wheat.
Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0225383&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 53 citations 53 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0225383&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 India, India, FrancePublisher:Elsevier BV Chaplot, V.; Abdalla, K.; Alexis, M.; Bourennane, H.; Darboux, F.; Dlamini, P.; Everson, C.; Mchunu, C.; Muller-Nedebock, D.; Mutema, M.; Quenea, K.; Thenga, H.; Chivenge, Pauline P.;handle: 10568/76723
The impact of agricultural practices on CO2 emissions from soils needs to be understood and quantified to enhance ecosystem functions, especially the ability of soils to sequester atmospheric carbon (C), while enhancing food and biomass production. The objective of this study was to assess CO2 emissions in the soil surface following tillage abandonment and to investigate some of the underlying soil physical, chemical and biological controls. Maize (Zea mays) was planted under conventional tillage (T) and no-tillage (NT), both without crop residues under smallholder farming conditions in Potshini, South Africa. Intact top-soil (0–0.05 m) core samples (N = 54) from three 5 × 15 m2 plots per treatment were collected two years after conversion of T to NT to evaluate the short-term CO2 emissions. Depending on the treatment, cores were left intact, compacted by 5 and 10 or had surface crusts removed. They were incubated for 20 days with measurements of CO2 fluxes twice a day during the first three days and once a day thereafter. Soil organic C (SOC) content, soil bulk density (ρb), aggregate stability, soil organic matter quality, and microbial biomass and its activity were evaluated at the onset of the incubation. CO2 emissions were 22% lower under NT compared with T with CO2 emissions of 0.9 ± 0.10 vs 1.1 ± 0.10 mg C–CO2 gC−1 day−1 under NT and T, respectively, suggesting greater SOC protection under NT. However, there were greater total CO2 emissions per unit of surface by 9% under NT compared to T (1.15 ± 0.03 vs 1.05 ± 0.04 g C–CO2 m−2 day−1). SOC protection significantly increased with the increase in soil bulk density (r = 0.89) and aggregate stability (from 1.7 ± 0.25 mm to 2.3 ± 0.31, r = 0.50), and to the decrease in microbial biomass and its activity (r = −0.59 and −0.57, respectively). In contrast, the greater NT CO2 emissions per m2 were explained by top-soil enrichment in SOC by 48% (from 12.4 ± 0.2 to 19.1 ± 0.4 g kg−1, r = 0.59). These results on the soil controls of tillage impact on CO2 emissions are expected to inform on the required shifts in agricultural practices for enhancing C sequestration in soils. In the context of the study, any mechanism favoring aggregate stability and promoting SOC allocation deep in the soil profile rather than in the top-soil would greatly diminish soil CO2 outputs and thus stimulate C sequestration.
Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Full-Text: https://hal.science/hal-01129938Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Full-Text: https://hal.science/hal-01129938Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2015Full-Text: https://hal.science/hal-01129938Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016Full-Text: https://hdl.handle.net/10568/76723Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2015License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Agriculture Ecosystems & EnvironmentArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agee.2015.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Full-Text: https://hal.science/hal-01129938Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Full-Text: https://hal.science/hal-01129938Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2015Full-Text: https://hal.science/hal-01129938Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016Full-Text: https://hdl.handle.net/10568/76723Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2015License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Agriculture Ecosystems & EnvironmentArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agee.2015.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu