- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Funder
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2025Embargo end date: 06 Jan 2025 United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSF | Tracing Past Methane Vari...NSF| Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice CoresBen Riddell-Young; James Edward Lee; Edward J. Brook; Jochen Schmitt; Hubertus Fischer; Thomas K. Bauska; James A. Menking; René Iseli; Justin Reid Clark;pmid: 39743610
Understanding the causes of past atmospheric methane (CH4) variability is important for characterizing the relationship between CH4, global climate and terrestrial biogeochemical cycling. Ice core records of atmospheric CH4 contain rapid variations linked to abrupt climate changes of the last glacial period known as Dansgaard-Oeschger (DO) events and Heinrich events (HE)1,2. The drivers of these CH4 variations remain unknown but can be constrained with ice core measurements of the stable isotopic composition of atmospheric CH4, which is sensitive to the strength of different isotopically distinguishable emission categories (microbial, pyrogenic and geologic)3-5. Here we present multi-decadal-scale measurements of δ13C-CH4 and δD-CH4 from the WAIS Divide and Talos Dome ice cores and identify abrupt 1‰ enrichments in δ13C-CH4 synchronous with HE CH4 pulses and 0.5‰ δ13C-CH4 enrichments synchronous with DO CH4 increases. δD-CH4 varied little across the abrupt CH4 changes. Using box models to interpret these isotopic shifts6 and assuming a constant δ13C-CH4 of microbial emissions, we propose that abrupt shifts in tropical rainfall associated with HEs and DO events enhanced 13C-enriched pyrogenic CH4 emissions, and by extension global wildfire extent, by 90-150%. Carbon cycle box modelling experiments7 suggest that the resulting released terrestrial carbon could have caused from one-third to all of the abrupt CO2 increases associated with HEs. These findings suggest that fire regimes and the terrestrial carbon cycle varied contemporaneously and substantially with past abrupt climate changes of the last glacial period.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-08363-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-08363-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2025Embargo end date: 06 Jan 2025 United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSF | Tracing Past Methane Vari...NSF| Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice CoresBen Riddell-Young; James Edward Lee; Edward J. Brook; Jochen Schmitt; Hubertus Fischer; Thomas K. Bauska; James A. Menking; René Iseli; Justin Reid Clark;pmid: 39743610
Understanding the causes of past atmospheric methane (CH4) variability is important for characterizing the relationship between CH4, global climate and terrestrial biogeochemical cycling. Ice core records of atmospheric CH4 contain rapid variations linked to abrupt climate changes of the last glacial period known as Dansgaard-Oeschger (DO) events and Heinrich events (HE)1,2. The drivers of these CH4 variations remain unknown but can be constrained with ice core measurements of the stable isotopic composition of atmospheric CH4, which is sensitive to the strength of different isotopically distinguishable emission categories (microbial, pyrogenic and geologic)3-5. Here we present multi-decadal-scale measurements of δ13C-CH4 and δD-CH4 from the WAIS Divide and Talos Dome ice cores and identify abrupt 1‰ enrichments in δ13C-CH4 synchronous with HE CH4 pulses and 0.5‰ δ13C-CH4 enrichments synchronous with DO CH4 increases. δD-CH4 varied little across the abrupt CH4 changes. Using box models to interpret these isotopic shifts6 and assuming a constant δ13C-CH4 of microbial emissions, we propose that abrupt shifts in tropical rainfall associated with HEs and DO events enhanced 13C-enriched pyrogenic CH4 emissions, and by extension global wildfire extent, by 90-150%. Carbon cycle box modelling experiments7 suggest that the resulting released terrestrial carbon could have caused from one-third to all of the abrupt CO2 increases associated with HEs. These findings suggest that fire regimes and the terrestrial carbon cycle varied contemporaneously and substantially with past abrupt climate changes of the last glacial period.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-08363-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-08363-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu