- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:The Electrochemical Society Rüdiger Kötz; S.H. Ng; Patrick Ruch; Petr Novák; J. L. Gómez Cámer; Luis Sánchez; Julián Morales;Abstract not Available.
ECS Meeting Abstract... arrow_drop_down ECS Meeting AbstractsArticle . 2009 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/ma2009-02/8/530&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert ECS Meeting Abstract... arrow_drop_down ECS Meeting AbstractsArticle . 2009 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/ma2009-02/8/530&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:American Chemical Society (ACS) Authors: Julián Morales; Luis Sánchez; Manuel Cruz-Yusta; I. Mármol;doi: 10.1021/es200968a
pmid: 21728343
The incorporation of fly ash from olive biomass (FAOB) combustion in cogeneration plants into cement based mortars was explored by analyzing the chemical composition, mineralogical phases, particle size, morphology, and IR spectra of the resulting material. Pozzolanic activity was detected and found to be related with the presence of calcium aluminum silicates phases. The preparation of new olive biomass fly ash content mortars is effective by replacing either CaCO(3) filler or cement with FAOB. In fact, up to 10% of cement can be replaced without detracting from the mechanical properties of a mortar. This can provide an alternative way to manage the olive biomass fly ash as waste produced in thermal plants and reduce cement consumption in the building industry, and hence an economically and environmentally attractive choice.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es200968a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es200968a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: Lourdes Hernán; Julián Morales; Alvaro Caballero; José C. Arrebola;Abstract The electrochemical performance of a Li-ion battery made from nanometric, highly crystalline LiNi 0.5 Mn 1.5 O 4 as positive electrode and mesoporous carbon microbeads (MCMBs) as negative electrode was assessed. The best performance was obtained by using a slight excess of spinel (a cathode/anode mole ratio of 1.3) and lithium bis-oxalate borate (LiBOB) instead of LiPF 6 as an electrolyte salt. Higher spinel contents caused the formation of metallic Li in the carbon and the rapid degradation of battery performance as a result. The calculated output energy was 322 Wh kg −1 which is higher than the value reported for the LiMn 2 O 4 /C cell (250 Wh kg −1 ).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2008.04.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2008.04.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Royal Society of Chemistry (RSC) Authors: Juan Luis Gómez-Cámer; Julián Morales; Luis Sánchez;doi: 10.1039/c0jm01811b
Carbon fibers obtained by pyrolysis of tailored resorcinol/formaldehyde polymer particles were used to anchor Si nanoparticles at their surface. The carbonization process, carried out at 1000 °C under nitrogen, induced strong interactions between Si particles and the carbon matrix through a thick amorphous silicon oxide layer as revealed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Therefore, the actual composition of the composites was Si/SiOx/C (fibers). Component contents were determined from thermogravimetric measurements (TG) made under oxygen. The composites delivered specific capacities as high as 2500 mA h gSi−1 at rather high current densities (500 mA gsi−1) and exhibited good capacity retention on cycling. By contrast, a mixture of pristine Si nanoparticles and carbon nanofibers performed considerably worse, their capacity fading abruptly with cycling. The improved performance of composites is ascribed to a combination of the properties of the amorphous SiOx layer, and the texture and morphological properties of carbon, increasing the electrode conductivity and buffering Si expansion and shrinkage during Li insertion and deinsertion.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c0jm01811b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c0jm01811b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Royal Society of Chemistry (RSC) Authors: Fernando Luna-Lama; Alvaro Caballero; Julián Morales;doi: 10.1039/d1se02052h
handle: 10396/22702
A synergistic combination between a biomass carbon derived from avocado seeds and a conductive copolymer has been employed to obtain high-energy and sustainable lithium–sulfur batteries.
Helvia - Repositorio... arrow_drop_down Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2022License: CC BY NC NDFull-Text: https://doi.org/10.1039/D1SE02052HData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTASustainable Energy & FuelsArticle . 2022 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1se02052h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Helvia - Repositorio... arrow_drop_down Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2022License: CC BY NC NDFull-Text: https://doi.org/10.1039/D1SE02052HData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTASustainable Energy & FuelsArticle . 2022 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1se02052h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 ItalyPublisher:Wiley Funded by:EC | ENHANCEEC| ENHANCECARRARO, GIORGIO; Davide Barreca; Manuel Cruz Yusta; GASPAROTTO, ALBERTO; MACCATO, CHIARA; Julián Morales; SADA, CINZIA; Luis Sánchez;The other polymorph: A vapor-phase route for the fabrication of β-Fe(2)O(3) nanomaterials on Ti substrates at 400-500 °C is reported. For the first time, the β polymorph is tested as anode for lithium batteries, exhibiting promising performances in terms of Li storage and rate capability.
CNR ExploRA arrow_drop_down ChemPhysChemArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cphc.201200588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down ChemPhysChemArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cphc.201200588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Elsevier BV Authors: Jesús Santos-Peña; Sylvain Franger; Enrique Rodríguez-Castellón; Julián Morales;In the last few years, several strategies towards boosting the electrochemical performance of LiFePO4 cathodes have been envisaged. Copper addition to the phosphate seems to be a simple, inexpensive method for this purpose. However, it has a serious drawback: at voltages slightly higher than that required for lithium extraction from LiFePO4, the copper is oxidized to either Cu(I) or Cu(II) with partial decomposition of the electrolyte. XRD patterns are consistent with the disappearance of copper from pristine composites upon charging at up to 4.0 V. Moreover, a copper deposit is formed on the lithium surface in the discharged state that creates a barrier hindering the release of Li ion from the electrode. Therefore, copper electroactivity strongly influences the capacity and cycling life of the cell. © 2007 Elsevier Ltd. All rights reserved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2007.08.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2007.08.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2000Publisher:Elsevier BV Authors: Luis Sánchez; Julián Morales; Mercedes Martos;Abstract Fine powders of tin dioxide doped with Mo were prepared under hydrothermal conditions and tested in lithium cells. X-ray and IR data revealed the formation of single-phase products with a rutile-like structure that is maintained upon calcining at 800°C. Mo 6+ ions change the habit growth of crystals and are randomly distributed at octahedral positions, thus promoting the formation of cation vacancies. The addition of Mo increases the reversibility of the lithium insertion/de-insertion process, as reflected in the simplified differential specific capacity plots obtained, which result in a single, rather symmetric peak in the anodic and cathodic waves. Furthermore, increasing the Mo content improves retention capacity at the expense of reversible capacity because the transition element acts as an inactive component in the electrochemical process. The following arguments account for the improved performance of these mixed oxides. (i) A diluent effect of Mo atoms that facilitates dispersion of the Sn atoms formed during the reduction process; (ii) hindered formation of large clusters and decreased interfacial strains; (iii) restriction of the number of alloying/de-alloying processes through a decreased reversible capacity during the first few cycles; and (iv) an increased chemical diffusion coefficient for lithium, that results partially from the structural disorder caused by the replacement of tin with molybdenum.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0013-4686(00)00562-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0013-4686(00)00562-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:The Electrochemical Society Alvaro Caballero; Julián Morales; Lourdes Hernán; Manuel Angulo; M. Melero;doi: 10.1149/1.1824037
spinels (M 5 Cr, Ni, Cu;x ’ 0.2) prepared at 500°C was analyzed by using accurate analytical spectroscopic techniques ~mass spectroscopy, nuclearmagnetic resonance! to examine the electrolyte behavior. The spectra revealed organic solvents to be stable as no decompositionproducts were detected, thus excluding the electrolyte oxidation as a side reaction accounting for the cell overcharge. However,these spinels contain excess oxygen in an amount that was quantified from thermogravimetric data. The excess oxygen plays aprominent role in the electrochemical response of the spinel. The cyclic voltammetry and galvanostatic results support theassumption that the excess oxygen can be released above 4.5 V. The additional capacity obtained and that required to release theoxygen were quite consistent. This must be the origin of both the overcharge and the poor performance of the cells compared withspinels of similar composition but synthesized at higher temperatures ~800°C!, the excess of oxygen in which was smaller.© 2004 The Electrochemical Society. @DOI: 10.1149/1.1824037# All rights reserved.Manuscript submitted March 30, 2004; revised manuscript received May 20, 2004. Available electronically November 17, 2004.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1.1824037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1.1824037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Royal Society of Chemistry (RSC) Authors: A C Oscar Vargas; Julián Morales; Alvaro Caballero;doi: 10.1039/c2nr11936f
pmid: 22358220
Graphene nanosheets (GNS) were prepared from graphitic oxide (GO) in two different ways: (a) thermal exfoliation at different temperatures; and (b) wet chemistry, using aqueous N(2)H(4) and KBH(4) as reducing agents. Irrespective of the synthetic method used, the materials exhibited a high irreversible capacity and strong polarization in their charge curves, when used in a Li-ion battery. The GNS synthesized with N(2)H(4) exhibited the best performance. Thus, at 149 mA g(-1) the average specific capacity delivered was ca. 600 mA h g(-1) after 100 cycles. On the other hand, the worst performance, irrespective of rate, was that of GNS synthesized with KBH(4) and the thermal GNS obtained at 800 °C. The physical and chemical analyses allowed various parameters to be derived for correlation with the electrochemical properties. Unfortunately, no clear-cut correlation was apparent. A comparison with reported data revealed that no correlation appears to exist with physical and chemical properties that allows a simple strategy for tailoring an effective graphene anode to be designed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2nr11936f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu129 citations 129 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2nr11936f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:The Electrochemical Society Rüdiger Kötz; S.H. Ng; Patrick Ruch; Petr Novák; J. L. Gómez Cámer; Luis Sánchez; Julián Morales;Abstract not Available.
ECS Meeting Abstract... arrow_drop_down ECS Meeting AbstractsArticle . 2009 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/ma2009-02/8/530&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert ECS Meeting Abstract... arrow_drop_down ECS Meeting AbstractsArticle . 2009 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/ma2009-02/8/530&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:American Chemical Society (ACS) Authors: Julián Morales; Luis Sánchez; Manuel Cruz-Yusta; I. Mármol;doi: 10.1021/es200968a
pmid: 21728343
The incorporation of fly ash from olive biomass (FAOB) combustion in cogeneration plants into cement based mortars was explored by analyzing the chemical composition, mineralogical phases, particle size, morphology, and IR spectra of the resulting material. Pozzolanic activity was detected and found to be related with the presence of calcium aluminum silicates phases. The preparation of new olive biomass fly ash content mortars is effective by replacing either CaCO(3) filler or cement with FAOB. In fact, up to 10% of cement can be replaced without detracting from the mechanical properties of a mortar. This can provide an alternative way to manage the olive biomass fly ash as waste produced in thermal plants and reduce cement consumption in the building industry, and hence an economically and environmentally attractive choice.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es200968a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es200968a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: Lourdes Hernán; Julián Morales; Alvaro Caballero; José C. Arrebola;Abstract The electrochemical performance of a Li-ion battery made from nanometric, highly crystalline LiNi 0.5 Mn 1.5 O 4 as positive electrode and mesoporous carbon microbeads (MCMBs) as negative electrode was assessed. The best performance was obtained by using a slight excess of spinel (a cathode/anode mole ratio of 1.3) and lithium bis-oxalate borate (LiBOB) instead of LiPF 6 as an electrolyte salt. Higher spinel contents caused the formation of metallic Li in the carbon and the rapid degradation of battery performance as a result. The calculated output energy was 322 Wh kg −1 which is higher than the value reported for the LiMn 2 O 4 /C cell (250 Wh kg −1 ).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2008.04.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2008.04.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Royal Society of Chemistry (RSC) Authors: Juan Luis Gómez-Cámer; Julián Morales; Luis Sánchez;doi: 10.1039/c0jm01811b
Carbon fibers obtained by pyrolysis of tailored resorcinol/formaldehyde polymer particles were used to anchor Si nanoparticles at their surface. The carbonization process, carried out at 1000 °C under nitrogen, induced strong interactions between Si particles and the carbon matrix through a thick amorphous silicon oxide layer as revealed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Therefore, the actual composition of the composites was Si/SiOx/C (fibers). Component contents were determined from thermogravimetric measurements (TG) made under oxygen. The composites delivered specific capacities as high as 2500 mA h gSi−1 at rather high current densities (500 mA gsi−1) and exhibited good capacity retention on cycling. By contrast, a mixture of pristine Si nanoparticles and carbon nanofibers performed considerably worse, their capacity fading abruptly with cycling. The improved performance of composites is ascribed to a combination of the properties of the amorphous SiOx layer, and the texture and morphological properties of carbon, increasing the electrode conductivity and buffering Si expansion and shrinkage during Li insertion and deinsertion.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c0jm01811b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c0jm01811b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Royal Society of Chemistry (RSC) Authors: Fernando Luna-Lama; Alvaro Caballero; Julián Morales;doi: 10.1039/d1se02052h
handle: 10396/22702
A synergistic combination between a biomass carbon derived from avocado seeds and a conductive copolymer has been employed to obtain high-energy and sustainable lithium–sulfur batteries.
Helvia - Repositorio... arrow_drop_down Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2022License: CC BY NC NDFull-Text: https://doi.org/10.1039/D1SE02052HData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTASustainable Energy & FuelsArticle . 2022 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1se02052h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Helvia - Repositorio... arrow_drop_down Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2022License: CC BY NC NDFull-Text: https://doi.org/10.1039/D1SE02052HData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTASustainable Energy & FuelsArticle . 2022 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1se02052h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 ItalyPublisher:Wiley Funded by:EC | ENHANCEEC| ENHANCECARRARO, GIORGIO; Davide Barreca; Manuel Cruz Yusta; GASPAROTTO, ALBERTO; MACCATO, CHIARA; Julián Morales; SADA, CINZIA; Luis Sánchez;The other polymorph: A vapor-phase route for the fabrication of β-Fe(2)O(3) nanomaterials on Ti substrates at 400-500 °C is reported. For the first time, the β polymorph is tested as anode for lithium batteries, exhibiting promising performances in terms of Li storage and rate capability.
CNR ExploRA arrow_drop_down ChemPhysChemArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cphc.201200588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down ChemPhysChemArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cphc.201200588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Elsevier BV Authors: Jesús Santos-Peña; Sylvain Franger; Enrique Rodríguez-Castellón; Julián Morales;In the last few years, several strategies towards boosting the electrochemical performance of LiFePO4 cathodes have been envisaged. Copper addition to the phosphate seems to be a simple, inexpensive method for this purpose. However, it has a serious drawback: at voltages slightly higher than that required for lithium extraction from LiFePO4, the copper is oxidized to either Cu(I) or Cu(II) with partial decomposition of the electrolyte. XRD patterns are consistent with the disappearance of copper from pristine composites upon charging at up to 4.0 V. Moreover, a copper deposit is formed on the lithium surface in the discharged state that creates a barrier hindering the release of Li ion from the electrode. Therefore, copper electroactivity strongly influences the capacity and cycling life of the cell. © 2007 Elsevier Ltd. All rights reserved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2007.08.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.electacta.2007.08.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2000Publisher:Elsevier BV Authors: Luis Sánchez; Julián Morales; Mercedes Martos;Abstract Fine powders of tin dioxide doped with Mo were prepared under hydrothermal conditions and tested in lithium cells. X-ray and IR data revealed the formation of single-phase products with a rutile-like structure that is maintained upon calcining at 800°C. Mo 6+ ions change the habit growth of crystals and are randomly distributed at octahedral positions, thus promoting the formation of cation vacancies. The addition of Mo increases the reversibility of the lithium insertion/de-insertion process, as reflected in the simplified differential specific capacity plots obtained, which result in a single, rather symmetric peak in the anodic and cathodic waves. Furthermore, increasing the Mo content improves retention capacity at the expense of reversible capacity because the transition element acts as an inactive component in the electrochemical process. The following arguments account for the improved performance of these mixed oxides. (i) A diluent effect of Mo atoms that facilitates dispersion of the Sn atoms formed during the reduction process; (ii) hindered formation of large clusters and decreased interfacial strains; (iii) restriction of the number of alloying/de-alloying processes through a decreased reversible capacity during the first few cycles; and (iv) an increased chemical diffusion coefficient for lithium, that results partially from the structural disorder caused by the replacement of tin with molybdenum.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0013-4686(00)00562-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0013-4686(00)00562-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:The Electrochemical Society Alvaro Caballero; Julián Morales; Lourdes Hernán; Manuel Angulo; M. Melero;doi: 10.1149/1.1824037
spinels (M 5 Cr, Ni, Cu;x ’ 0.2) prepared at 500°C was analyzed by using accurate analytical spectroscopic techniques ~mass spectroscopy, nuclearmagnetic resonance! to examine the electrolyte behavior. The spectra revealed organic solvents to be stable as no decompositionproducts were detected, thus excluding the electrolyte oxidation as a side reaction accounting for the cell overcharge. However,these spinels contain excess oxygen in an amount that was quantified from thermogravimetric data. The excess oxygen plays aprominent role in the electrochemical response of the spinel. The cyclic voltammetry and galvanostatic results support theassumption that the excess oxygen can be released above 4.5 V. The additional capacity obtained and that required to release theoxygen were quite consistent. This must be the origin of both the overcharge and the poor performance of the cells compared withspinels of similar composition but synthesized at higher temperatures ~800°C!, the excess of oxygen in which was smaller.© 2004 The Electrochemical Society. @DOI: 10.1149/1.1824037# All rights reserved.Manuscript submitted March 30, 2004; revised manuscript received May 20, 2004. Available electronically November 17, 2004.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1.1824037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1.1824037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Royal Society of Chemistry (RSC) Authors: A C Oscar Vargas; Julián Morales; Alvaro Caballero;doi: 10.1039/c2nr11936f
pmid: 22358220
Graphene nanosheets (GNS) were prepared from graphitic oxide (GO) in two different ways: (a) thermal exfoliation at different temperatures; and (b) wet chemistry, using aqueous N(2)H(4) and KBH(4) as reducing agents. Irrespective of the synthetic method used, the materials exhibited a high irreversible capacity and strong polarization in their charge curves, when used in a Li-ion battery. The GNS synthesized with N(2)H(4) exhibited the best performance. Thus, at 149 mA g(-1) the average specific capacity delivered was ca. 600 mA h g(-1) after 100 cycles. On the other hand, the worst performance, irrespective of rate, was that of GNS synthesized with KBH(4) and the thermal GNS obtained at 800 °C. The physical and chemical analyses allowed various parameters to be derived for correlation with the electrochemical properties. Unfortunately, no clear-cut correlation was apparent. A comparison with reported data revealed that no correlation appears to exist with physical and chemical properties that allows a simple strategy for tailoring an effective graphene anode to be designed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2nr11936f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu129 citations 129 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2nr11936f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu