- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Edem Cudjoe Bensah; Francis Kemausuor; Kodwo Miezah; Zsófia Kádár; Moses Mensah;Abstract A major challenge to commercial production of cellulosic ethanol pertains to the cost-effective breakdown of the complex and recalcitrant structure of lignocellulose into its components via pretreatment, the cost of enzymes for hydrolysis and fermentation, and the conversion rate of C5 sugars to ethanol, among others. While the industrialized and some emerging countries are gradually breaking grounds in cellulosic ethanol, most African countries have made little effort in research and development even though the continent is rich in lignocellulosic biomass. The paper estimates residues from widely available crops and municipal waste and determines their respective theoretical ethanol potential (around 22 billion litres annually). It further reviews stages involved in the production of cellulosic ethanol, focussing on processing methods that can be adapted to current situation in most African countries. The paper suggests that research and development should highlight favourable pretreatment methods such as extrusion, steaming/boiling, and chemical methods employing lime, KOH and crude glycerol (from biodiesel production), as well as the development of crude enzyme complexes from local materials. Though the falling price of enzymes is improving economic production of ethanol, advancements in heterogeneous catalytic hydrolysis will considerably favour economic production of ethanol in Africa due to the potential of recycling and reusing solid acid catalysts.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.04.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.04.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Valentine Doe Azasi; Felix Offei; Francis Kemausuor; Lawrence Akpalu;Abstract The global campaign to minimise greenhouse gas emissions and reduce fossil fuel dependency has led to the consideration of crop residue as feedstock for various bioenergy technologies. In this study, the extent to which various crop residues in the ten administrative regions of Ghana can contribute to the specific heat and electricity demands of each region was assessed. The conversion of residues from 22 crops to briquettes, biomethane and bioethanol-based electricity were examined using resource modelling to determine their potential contribution to wood fuels, Liquefied Petroleum Gas (LPG) and electricity demand respectively. The results indicate that, the Eastern Region generated the highest amount of crop residues at 2.3 Mt, mainly from cassava stalks while the Greater Accra Region generated the least amount of crop residue from the ten regions at 52.3 kt. The conversion of selected crop residues to briquettes would contribute to 53.6% of the national wood fuel demand, with Eastern and Brong Ahafo Regions recording the highest individual contributions of 27.7 and 20.5% respectively. Biomethane would contribute to 11.7% of LPG demand in all the ten regions. Electricity generated from bioethanol would supplement 91.2% of the national electricity demand. Overall, the prospects are highest for the production of electricity from bioethanol produced from crop residue to support regional energy demands.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2020.105640&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2020.105640&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Abeeku Brew-Hammond; Francis Kemausuor;Access to modern forms of energy continues to elude the majority of households in sub-Saharan Africa (SSA) and only about 30% of the population has access to electricity while 90% relies on traditional fuels for cooking and heating. The central question addressed in this review is whether or not SSA can provide access to modern energy services for its entire population by 2030. The review points out that efforts which succeed in integrating productive uses and income generation activities into energy access initiatives, whether based on conventional fuels or renewable energy, may well turn out to be the deciding factor if the dream of energy for all in sub-Saharan Africa is to become a reality in the foreseeable future.
Current Opinion in E... arrow_drop_down Current Opinion in Environmental SustainabilityArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cosust.2009.07.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu79 citations 79 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Current Opinion in E... arrow_drop_down Current Opinion in Environmental SustainabilityArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cosust.2009.07.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Mairi J. Black; Amitava Roy; Edson Twinomunuji; Francis Kemausuor; Richard Oduro; Matthew Leach; Jhuma Sadhukhan; Richard Murphy;doi: 10.3390/en14133856
Anaerobic digestion (AD) can bring benefits in terms of effective management of organic waste, recovery of nutrients and energy recovery, and is consistent with circular economy principles. AD has been promoted and implemented worldwide, but at widely differing scales, influenced by the availability and location of feedstocks. In developing countries, feedstock arises from small- to medium-scale agriculture and agro-processing operations, as well as from household and municipal waste. Biogas produced from residues from agro-processing facilities may be used for on-site heat and power, but the lack of a gas and electricity grid infrastructure can limit opportunities to distribute gas or generated electricity to wider users. This paper presents the findings of the first study to consider novel technologies for small-scale and low-cost biogas clean-up into biomethane, and compression into small bottles, suitable as a clean cooking fuel. The paper reports on the initial evaluation of biomethane for cooking in Ghana and Uganda.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/13/3856/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14133856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/13/3856/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14133856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 DenmarkPublisher:Elsevier BV Authors: Francis Kemausuor; Ivan Nygaard; Gordon Mackenzie;Abstract As Ghana's economy grows, the choice of future energy paths and policies in the coming years will have a significant influence on its energy security. A Renewable Energy Act approved in 2011 seeks to encourage the influx of renewable energy sources in Ghana's energy mix. The new legal framework combined with increasing demand for energy has created an opportunity for dramatic changes in the way energy is generated in Ghana. However, the impending changes and their implication remain uncertain. This paper examines the extent to which future energy scenarios in Ghana could rely on energy from biomass sources, through the production of biogas, liquid biofuels and electricity. Analysis was based on moderate and high use of bioenergy for transportation, electricity generation and residential fuel using the LEAP (Long-range Energy Alternatives Planning) model. Results obtained indicate that introducing bioenergy to the energy mix could reduce GHG (greenhouse gas) emissions by about 6 million tonnes CO2e by 2030, equivalent to a 14% reduction in a business-as-usual scenario. This paper advocates the use of second generation ethanol for transport, to the extent that it is economically exploitable. Resorting to first generation ethanol would require the allocation of over 580,000 ha of agricultural land for ethanol production.
Energy arrow_drop_down Online Research Database In TechnologyArticle . 2015Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.08.104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 54 citations 54 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy arrow_drop_down Online Research Database In TechnologyArticle . 2015Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.08.104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 01 Jan 2022 United Kingdom, Switzerland, United Kingdom, Belgium, Netherlands, GermanyPublisher:Springer Science and Business Media LLC Yacob Mulugetta; Youba Sokona; Philipp A. Trotter; Samuel Fankhauser; Jessica Omukuti; Lucas Somavilla Croxatto; Bjarne Steffen; Meron Tesfamichael; Edo Abraham; Jean-Paul Adam; Lawrence Agbemabiese; Churchill Agutu; Mekalia Paulos Aklilu; Olakunle Alao; Bothwell Batidzirai; Getachew Bekele; Anteneh G. Dagnachew; Ogunlade Davidson; Fatima Denton; E. Ogheneruona Diemuodeke; Florian Egli; Gebrekidan Gebresilassie Eshetu; Mulualem Gebreslassie; Mamadou Goundiam; Haruna Kachalla Gujba; Yohannes Hailu; Adam D. Hawkes; Stephanie Hirmer; Helen Hoka; Mark Howells; Abdulrasheed Isah; Daniel Kammen; Francis Kemausuor; Ismail Khennas; Wikus Kruger; Ifeoma Malo; Linus Mofor; Minette Nago; Destenie Nock; Chukwumerije Okereke; S. Nadia Ouedraogo; Benedict Probst; Maria Schmidt; Tobias S. Schmidt; Carlos Shenga; Mohamed Sokona; Jan Christoph Steckel; Sebastian Sterl; Bernard Tembo; Julia Tomei; Peter Twesigye; Jim Watson; Harald Winkler; Abdulmutalib Yussuff;Nature Energy, 7 (11) ISSN:2058-7546
Oxford University Re... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2022Vrije Universiteit Brussel Research PortalArticle . 2022Data sources: Vrije Universiteit Brussel Research PortalGöttingen Research Online PublicationsArticle . 2022Data sources: Göttingen Research Online PublicationsPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-022-01152-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 56 citations 56 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 9visibility views 9 download downloads 102 Powered bymore_vert Oxford University Re... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2022Vrije Universiteit Brussel Research PortalArticle . 2022Data sources: Vrije Universiteit Brussel Research PortalGöttingen Research Online PublicationsArticle . 2022Data sources: Göttingen Research Online PublicationsPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-022-01152-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Nii Nelson; Jo Darkwa; John Calautit; Mark Worall; Robert Mokaya; Eunice Adjei; Francis Kemausuor; Julius Ahiekpor;doi: 10.3390/su13010381
Crop residues are common in rural Ghana due to the predominant role agriculture plays in livelihood activities in these communities. In this paper we investigate the prospects of exploiting agricultural crop residues for rural development in Ghana through bioenergy schemes. A theoretical energy potential of 623.84 PJ per year, which is equivalent to 19,781 MW was estimated using crop production data from the Food and Agricultural Organization of the United Nations and residue-to-product ratios. Ghana has a total installed generation capacity of 4577 MW which is four times less the energy potential of crop residues in the country. Cocoa pod husks were identified as important biomass resources for energy generation as they are currently wasted. To further assess the energy potential of cocoa pod husks, different cocoa pod husks samples were collected across the six cocoa growing regions in Ghana and thermo-chemically characterised using proximate and ultimate analysis. The low levels of nitrogen and sulphur observed, together with the high heating value, suggest that cocoa pod husks and for that matter crop residues are eco-friendly feedstock that can be used to power rural communities in Ghana.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/1/381/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13010381&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/1/381/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13010381&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Springer Science and Business Media LLC Authors: Stephen J. Mitchual; Joseph Oppong Akowuah; Francis Kemausuor;In the absence of the widespread distribution of modern cooking fuels in developing countries, efforts are being made to utilise biomass residues which abound in most of these countries. This is intended to replace portions of firewood and charcoal and thereby reduce the cutting down of forests for fuel purposes. Briquettes from agro-residues have therefore been promoted as a better replacement to firewood and charcoals for heating, cooking and other industrial applications in both urban and rural communities. This study sought to assess the physico-chemical properties of charcoal briquettes produced in Ghana and also establish demand for and willingness of potential users to substitute charcoal and firewood with a charcoal briquette. A laboratory experiment was conducted to determine the physico-chemical characteristics of the briquettes. This was done prior to the distribution of the briquette to potential users to collaborate their views or otherwise on the handling and burning characteristics of the charcoal briquette. A survey was undertaken a week later using questionnaires to access the willingness of the potential users to use the briquettes. Sixty respondents were purposively selected from households and the hospitality industry for the survey. Results of the physico-chemical assessment of the briquettes were as follows: length (75 to 120 mm), moisture content (5.7% dry basis), density (1.1 g/cm3), ash content (2.6%), fixed carbon (20.7%), volatile matter (71%) and calorific value (4,820 kcal/kg). Responses from the survey indicated that the briquette is easy to ignite, has a long burning time and has good heat output. Respondents also observed that the briquettes did not give off sparks and had less smoke and ash content as compared to the regular charcoal they often used. Finally, 93% of the respondents indicated their willingness to use the briquettes if the price was comparable to charcoal.
International Journa... arrow_drop_down International Journal of Energy and Environmental EngineeringArticleData sources: CORE (RIOXX-UK Aggregator)International Journal of Energy and Environmental EngineeringArticle . 2012 . Peer-reviewedData sources: CrossrefInternational Journal of Energy and Environmental EngineeringJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2251-6832-3-20&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 124 citations 124 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Energy and Environmental EngineeringArticleData sources: CORE (RIOXX-UK Aggregator)International Journal of Energy and Environmental EngineeringArticle . 2012 . Peer-reviewedData sources: CrossrefInternational Journal of Energy and Environmental EngineeringJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2251-6832-3-20&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Francis Kemausuor; Abeeku Brew-Hammond; Isaac Adu-Poku; Vijay Modi; Edwin Adkins;Abstract In this study, the Network Planner, a decision support tool for exploring costs of different electrification technology options in un-electrified communities, was used to model costs and other inputs for providing electricity to 2600 un-electrified communities in Ghana within a 10-year planning period. The results show that the cost-optimized option for majority of the un-electrified communities will be grid connection, accounting for more 85% of the total un-electrified communities in each region. The total cost of electrification (which includes initial and recurring) at 100% penetration rate totalled US$ 696 million with a breakdown as follows: US$ 592 million for grid electrification, US$ 47 million for off-grid electrification and US$ 58 million for mini-grid compatible communities. Sensitivity analysis shows that model scenarios with higher electricity demand and higher household penetration rate generally recommend a larger percentage of communities for grid electrification, rather than off-grid or diesel mini-grid. One important aspect of this modelling approach is that it predicts costs for different electricity generation technologies for each of the communities involved and thus gives the planner the freedom to explore the most cost-effective technology based on existing conditions in the community and price trend of electrification inputs during the planning period.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esd.2013.12.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu96 citations 96 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esd.2013.12.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Funded by:UKRI | DER Centres – A National ...UKRI| DER Centres – A National Network of PEMD Centres of ExcellenceAuthors: R. N. Ossei-Bremang; F. Kemausuor;Bioenergy production from biomass is a multicriteria decision-making (MCDM) problem involving multidimensional criteria due to the vast range of resources available for consideration. In this paper, we propose a hybrid fuzzy technique for order preference by similarity to ideal solution (FTOPSIS) and analytical hierarchy process (AHP) that is able to tackle vagueness and ambiguity in data and produce weights for all criteria in the MCDM problem. By utilizing this methodology, different aspects of experts’ data evaluation including fuzzy values can be converted into crisp values. Accuracy in each decision matrix is ensured by determining the weights of the subcriteria. We then apply the model to sustainable biomass resource selection in Ghana. Specifically, we comprehensively review the sustainable criteria within the bioenergy domain namely social, environmental, and economic aspects together with thirteen subcriteria. The proposed model was applied to biomass resource alternatives including crop residue, animal manure, forest residue, energy crops, and municipal solid waste. Results show the weights of thirteen subcriteria to be within the range of 0.10340 and 0.05263. The FTOPSIS shows that animal manure may be the most desirable resource for bioenergy production in Ghana, followed by energy crop, municipal solid waste, forest residue, and crop residue, respectively. Engineering and energy planning problems with conflicting multicriteria data can be easily solved by using this proposed hybrid AHP/FTOPSIS framework.
Environment Systems ... arrow_drop_down Environment Systems & DecisionsArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10669-021-09810-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environment Systems ... arrow_drop_down Environment Systems & DecisionsArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10669-021-09810-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Edem Cudjoe Bensah; Francis Kemausuor; Kodwo Miezah; Zsófia Kádár; Moses Mensah;Abstract A major challenge to commercial production of cellulosic ethanol pertains to the cost-effective breakdown of the complex and recalcitrant structure of lignocellulose into its components via pretreatment, the cost of enzymes for hydrolysis and fermentation, and the conversion rate of C5 sugars to ethanol, among others. While the industrialized and some emerging countries are gradually breaking grounds in cellulosic ethanol, most African countries have made little effort in research and development even though the continent is rich in lignocellulosic biomass. The paper estimates residues from widely available crops and municipal waste and determines their respective theoretical ethanol potential (around 22 billion litres annually). It further reviews stages involved in the production of cellulosic ethanol, focussing on processing methods that can be adapted to current situation in most African countries. The paper suggests that research and development should highlight favourable pretreatment methods such as extrusion, steaming/boiling, and chemical methods employing lime, KOH and crude glycerol (from biodiesel production), as well as the development of crude enzyme complexes from local materials. Though the falling price of enzymes is improving economic production of ethanol, advancements in heterogeneous catalytic hydrolysis will considerably favour economic production of ethanol in Africa due to the potential of recycling and reusing solid acid catalysts.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.04.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.04.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Valentine Doe Azasi; Felix Offei; Francis Kemausuor; Lawrence Akpalu;Abstract The global campaign to minimise greenhouse gas emissions and reduce fossil fuel dependency has led to the consideration of crop residue as feedstock for various bioenergy technologies. In this study, the extent to which various crop residues in the ten administrative regions of Ghana can contribute to the specific heat and electricity demands of each region was assessed. The conversion of residues from 22 crops to briquettes, biomethane and bioethanol-based electricity were examined using resource modelling to determine their potential contribution to wood fuels, Liquefied Petroleum Gas (LPG) and electricity demand respectively. The results indicate that, the Eastern Region generated the highest amount of crop residues at 2.3 Mt, mainly from cassava stalks while the Greater Accra Region generated the least amount of crop residue from the ten regions at 52.3 kt. The conversion of selected crop residues to briquettes would contribute to 53.6% of the national wood fuel demand, with Eastern and Brong Ahafo Regions recording the highest individual contributions of 27.7 and 20.5% respectively. Biomethane would contribute to 11.7% of LPG demand in all the ten regions. Electricity generated from bioethanol would supplement 91.2% of the national electricity demand. Overall, the prospects are highest for the production of electricity from bioethanol produced from crop residue to support regional energy demands.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2020.105640&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2020.105640&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Abeeku Brew-Hammond; Francis Kemausuor;Access to modern forms of energy continues to elude the majority of households in sub-Saharan Africa (SSA) and only about 30% of the population has access to electricity while 90% relies on traditional fuels for cooking and heating. The central question addressed in this review is whether or not SSA can provide access to modern energy services for its entire population by 2030. The review points out that efforts which succeed in integrating productive uses and income generation activities into energy access initiatives, whether based on conventional fuels or renewable energy, may well turn out to be the deciding factor if the dream of energy for all in sub-Saharan Africa is to become a reality in the foreseeable future.
Current Opinion in E... arrow_drop_down Current Opinion in Environmental SustainabilityArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cosust.2009.07.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu79 citations 79 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Current Opinion in E... arrow_drop_down Current Opinion in Environmental SustainabilityArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cosust.2009.07.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Mairi J. Black; Amitava Roy; Edson Twinomunuji; Francis Kemausuor; Richard Oduro; Matthew Leach; Jhuma Sadhukhan; Richard Murphy;doi: 10.3390/en14133856
Anaerobic digestion (AD) can bring benefits in terms of effective management of organic waste, recovery of nutrients and energy recovery, and is consistent with circular economy principles. AD has been promoted and implemented worldwide, but at widely differing scales, influenced by the availability and location of feedstocks. In developing countries, feedstock arises from small- to medium-scale agriculture and agro-processing operations, as well as from household and municipal waste. Biogas produced from residues from agro-processing facilities may be used for on-site heat and power, but the lack of a gas and electricity grid infrastructure can limit opportunities to distribute gas or generated electricity to wider users. This paper presents the findings of the first study to consider novel technologies for small-scale and low-cost biogas clean-up into biomethane, and compression into small bottles, suitable as a clean cooking fuel. The paper reports on the initial evaluation of biomethane for cooking in Ghana and Uganda.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/13/3856/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14133856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/13/3856/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14133856&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 DenmarkPublisher:Elsevier BV Authors: Francis Kemausuor; Ivan Nygaard; Gordon Mackenzie;Abstract As Ghana's economy grows, the choice of future energy paths and policies in the coming years will have a significant influence on its energy security. A Renewable Energy Act approved in 2011 seeks to encourage the influx of renewable energy sources in Ghana's energy mix. The new legal framework combined with increasing demand for energy has created an opportunity for dramatic changes in the way energy is generated in Ghana. However, the impending changes and their implication remain uncertain. This paper examines the extent to which future energy scenarios in Ghana could rely on energy from biomass sources, through the production of biogas, liquid biofuels and electricity. Analysis was based on moderate and high use of bioenergy for transportation, electricity generation and residential fuel using the LEAP (Long-range Energy Alternatives Planning) model. Results obtained indicate that introducing bioenergy to the energy mix could reduce GHG (greenhouse gas) emissions by about 6 million tonnes CO2e by 2030, equivalent to a 14% reduction in a business-as-usual scenario. This paper advocates the use of second generation ethanol for transport, to the extent that it is economically exploitable. Resorting to first generation ethanol would require the allocation of over 580,000 ha of agricultural land for ethanol production.
Energy arrow_drop_down Online Research Database In TechnologyArticle . 2015Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.08.104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 54 citations 54 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy arrow_drop_down Online Research Database In TechnologyArticle . 2015Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.08.104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 01 Jan 2022 United Kingdom, Switzerland, United Kingdom, Belgium, Netherlands, GermanyPublisher:Springer Science and Business Media LLC Yacob Mulugetta; Youba Sokona; Philipp A. Trotter; Samuel Fankhauser; Jessica Omukuti; Lucas Somavilla Croxatto; Bjarne Steffen; Meron Tesfamichael; Edo Abraham; Jean-Paul Adam; Lawrence Agbemabiese; Churchill Agutu; Mekalia Paulos Aklilu; Olakunle Alao; Bothwell Batidzirai; Getachew Bekele; Anteneh G. Dagnachew; Ogunlade Davidson; Fatima Denton; E. Ogheneruona Diemuodeke; Florian Egli; Gebrekidan Gebresilassie Eshetu; Mulualem Gebreslassie; Mamadou Goundiam; Haruna Kachalla Gujba; Yohannes Hailu; Adam D. Hawkes; Stephanie Hirmer; Helen Hoka; Mark Howells; Abdulrasheed Isah; Daniel Kammen; Francis Kemausuor; Ismail Khennas; Wikus Kruger; Ifeoma Malo; Linus Mofor; Minette Nago; Destenie Nock; Chukwumerije Okereke; S. Nadia Ouedraogo; Benedict Probst; Maria Schmidt; Tobias S. Schmidt; Carlos Shenga; Mohamed Sokona; Jan Christoph Steckel; Sebastian Sterl; Bernard Tembo; Julia Tomei; Peter Twesigye; Jim Watson; Harald Winkler; Abdulmutalib Yussuff;Nature Energy, 7 (11) ISSN:2058-7546
Oxford University Re... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2022Vrije Universiteit Brussel Research PortalArticle . 2022Data sources: Vrije Universiteit Brussel Research PortalGöttingen Research Online PublicationsArticle . 2022Data sources: Göttingen Research Online PublicationsPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-022-01152-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 56 citations 56 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 9visibility views 9 download downloads 102 Powered bymore_vert Oxford University Re... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2022Vrije Universiteit Brussel Research PortalArticle . 2022Data sources: Vrije Universiteit Brussel Research PortalGöttingen Research Online PublicationsArticle . 2022Data sources: Göttingen Research Online PublicationsPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-022-01152-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Nii Nelson; Jo Darkwa; John Calautit; Mark Worall; Robert Mokaya; Eunice Adjei; Francis Kemausuor; Julius Ahiekpor;doi: 10.3390/su13010381
Crop residues are common in rural Ghana due to the predominant role agriculture plays in livelihood activities in these communities. In this paper we investigate the prospects of exploiting agricultural crop residues for rural development in Ghana through bioenergy schemes. A theoretical energy potential of 623.84 PJ per year, which is equivalent to 19,781 MW was estimated using crop production data from the Food and Agricultural Organization of the United Nations and residue-to-product ratios. Ghana has a total installed generation capacity of 4577 MW which is four times less the energy potential of crop residues in the country. Cocoa pod husks were identified as important biomass resources for energy generation as they are currently wasted. To further assess the energy potential of cocoa pod husks, different cocoa pod husks samples were collected across the six cocoa growing regions in Ghana and thermo-chemically characterised using proximate and ultimate analysis. The low levels of nitrogen and sulphur observed, together with the high heating value, suggest that cocoa pod husks and for that matter crop residues are eco-friendly feedstock that can be used to power rural communities in Ghana.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/1/381/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13010381&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/1/381/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13010381&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Springer Science and Business Media LLC Authors: Stephen J. Mitchual; Joseph Oppong Akowuah; Francis Kemausuor;In the absence of the widespread distribution of modern cooking fuels in developing countries, efforts are being made to utilise biomass residues which abound in most of these countries. This is intended to replace portions of firewood and charcoal and thereby reduce the cutting down of forests for fuel purposes. Briquettes from agro-residues have therefore been promoted as a better replacement to firewood and charcoals for heating, cooking and other industrial applications in both urban and rural communities. This study sought to assess the physico-chemical properties of charcoal briquettes produced in Ghana and also establish demand for and willingness of potential users to substitute charcoal and firewood with a charcoal briquette. A laboratory experiment was conducted to determine the physico-chemical characteristics of the briquettes. This was done prior to the distribution of the briquette to potential users to collaborate their views or otherwise on the handling and burning characteristics of the charcoal briquette. A survey was undertaken a week later using questionnaires to access the willingness of the potential users to use the briquettes. Sixty respondents were purposively selected from households and the hospitality industry for the survey. Results of the physico-chemical assessment of the briquettes were as follows: length (75 to 120 mm), moisture content (5.7% dry basis), density (1.1 g/cm3), ash content (2.6%), fixed carbon (20.7%), volatile matter (71%) and calorific value (4,820 kcal/kg). Responses from the survey indicated that the briquette is easy to ignite, has a long burning time and has good heat output. Respondents also observed that the briquettes did not give off sparks and had less smoke and ash content as compared to the regular charcoal they often used. Finally, 93% of the respondents indicated their willingness to use the briquettes if the price was comparable to charcoal.
International Journa... arrow_drop_down International Journal of Energy and Environmental EngineeringArticleData sources: CORE (RIOXX-UK Aggregator)International Journal of Energy and Environmental EngineeringArticle . 2012 . Peer-reviewedData sources: CrossrefInternational Journal of Energy and Environmental EngineeringJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2251-6832-3-20&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 124 citations 124 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Energy and Environmental EngineeringArticleData sources: CORE (RIOXX-UK Aggregator)International Journal of Energy and Environmental EngineeringArticle . 2012 . Peer-reviewedData sources: CrossrefInternational Journal of Energy and Environmental EngineeringJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2251-6832-3-20&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Francis Kemausuor; Abeeku Brew-Hammond; Isaac Adu-Poku; Vijay Modi; Edwin Adkins;Abstract In this study, the Network Planner, a decision support tool for exploring costs of different electrification technology options in un-electrified communities, was used to model costs and other inputs for providing electricity to 2600 un-electrified communities in Ghana within a 10-year planning period. The results show that the cost-optimized option for majority of the un-electrified communities will be grid connection, accounting for more 85% of the total un-electrified communities in each region. The total cost of electrification (which includes initial and recurring) at 100% penetration rate totalled US$ 696 million with a breakdown as follows: US$ 592 million for grid electrification, US$ 47 million for off-grid electrification and US$ 58 million for mini-grid compatible communities. Sensitivity analysis shows that model scenarios with higher electricity demand and higher household penetration rate generally recommend a larger percentage of communities for grid electrification, rather than off-grid or diesel mini-grid. One important aspect of this modelling approach is that it predicts costs for different electricity generation technologies for each of the communities involved and thus gives the planner the freedom to explore the most cost-effective technology based on existing conditions in the community and price trend of electrification inputs during the planning period.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esd.2013.12.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu96 citations 96 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esd.2013.12.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Funded by:UKRI | DER Centres – A National ...UKRI| DER Centres – A National Network of PEMD Centres of ExcellenceAuthors: R. N. Ossei-Bremang; F. Kemausuor;Bioenergy production from biomass is a multicriteria decision-making (MCDM) problem involving multidimensional criteria due to the vast range of resources available for consideration. In this paper, we propose a hybrid fuzzy technique for order preference by similarity to ideal solution (FTOPSIS) and analytical hierarchy process (AHP) that is able to tackle vagueness and ambiguity in data and produce weights for all criteria in the MCDM problem. By utilizing this methodology, different aspects of experts’ data evaluation including fuzzy values can be converted into crisp values. Accuracy in each decision matrix is ensured by determining the weights of the subcriteria. We then apply the model to sustainable biomass resource selection in Ghana. Specifically, we comprehensively review the sustainable criteria within the bioenergy domain namely social, environmental, and economic aspects together with thirteen subcriteria. The proposed model was applied to biomass resource alternatives including crop residue, animal manure, forest residue, energy crops, and municipal solid waste. Results show the weights of thirteen subcriteria to be within the range of 0.10340 and 0.05263. The FTOPSIS shows that animal manure may be the most desirable resource for bioenergy production in Ghana, followed by energy crop, municipal solid waste, forest residue, and crop residue, respectively. Engineering and energy planning problems with conflicting multicriteria data can be easily solved by using this proposed hybrid AHP/FTOPSIS framework.
Environment Systems ... arrow_drop_down Environment Systems & DecisionsArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10669-021-09810-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environment Systems ... arrow_drop_down Environment Systems & DecisionsArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10669-021-09810-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu