Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
29 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ramachandra, TV; Shruthi, BV;

    Increasing negative effects of fossil fuel combustion on the environment in addition to limited stock have forced many countries to explore and change to environmentally friendly alternatives that are renewable to h sustain the increasing energy demand. Changing to renewable sources and implementation of effective conservation measures would ensure sustainability. Currently, wind energy is one of the fastest developing renewable energy source technologies across the globe. Wind energy is an alternative clean energy source compared to fossil fuel, which pollute the lower layer of the atmosphere. It has the advantage of being harnessed on a local basis for application in rural and remote areas. In order to tap the potential of wind energy sources, there is a need to assess the availability of the resources spatially. Mapping potential sites for tapping wind energy in Karnataka (a federal State in India) is the focus of this study. The study employs the geographical information system (GIS) to map the wind energy resources of Karnataka state and analyse their variability considering spatial and seasonal aspects. Considering these, the present status of the potential is assessed and maps of locations suitable for tapping wind energy have been prepared. A spatial data base with data of wind velocities has been developed and used for evaluation of the theoretical potential through continuous monitoring and mapping of the wind resources. The study shows that the average wind velocity in Karnataka varies from 0.85m/s in Bagalkote to 8.28m/s in Chikkodi during the monsoon season. Chikkodi, in Belgaum district, has high wind velocity during the period May to September with a peak value of 9.18 m/s in July. Agroclimatic zone wise analysis shows that the northern dry zone and the central dry zone are ideally suited for harvesting wind energy for regional economic development.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Conversion and Management
    Article . 2005 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    98
    citations98
    popularityTop 10%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Conversion and Management
      Article . 2005 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: T. V. Ramachandra; N. V. Joshi; Samantray Shilpi; Mahapatra Durga Madhab;

    Rapidly depleting stocks of fossil fuels and increasing greenhouse gas (GHG) emissions have necessitated the exploration of cost effective sustainable energy sources focussing on biofuels through algae. Abundant wastewaters generated in urban localities every day provide the nourishment to nurture algae for biofuel generation. The present communication focuses on the lipid prospects of algae grown in wastewater systems. Euglena sp., Spirogyra sp. and Phormidium sp. were collected from selected locations of sewage fed urban lakes and sewage treatment plants of Bangalore and Mysore. The total lipid content of Euglena sp. was higher (24.6%) compared to Spirogyra sp. (18.4%) followed by Phormidium sp. (8.8%) and their annual lipid yield potential was 6.52, 1.94 and 2.856 t/ha/year, respectively. These species showed higher content of fatty acids (palmitate, stearate followed by oleic and linoleic acids) with the desirable biofuel properties. (C) 2013 Elsevier Ltd. All rights reserved.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    82
    citations82
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ramachandra, TV; Kamakshi, G; Shruthi, BV;

    Energy is a vital component of any society playing a pivotal role in the development. Post oil crises shifted the focus of energy planners towards renewable resources and energy conservation. Biomass is one such renewable, which accounts for nearly 33% of a developing country’s energy needs. In India, it meets about 75% of the rural energy needs. In Karnataka, non-commercial energy sources like firewood, agricultural residues, charcoal and cow dung account for 53.2%. The energy released by the reaction of organic carbon (of bioresources) with oxygen is referred to as bioenergy. Bioresource availability is highly diversified and it depends on the region’s agroclimatic conditions. Inventorying of these resources is required for describing the quality, quantity, change, productivity, condition of bioresources and requirement in a given area. The present study assesses bioresource status across the agroclimatic zones of Karnataka, considering the bioenergy availability (from agriculture, horticulture, forests and plantations) and sector-wise energy demand (domestic, agriculture, industry, etc.). Bioresource availability is computed based on the compilation of data on the area and productivity of agriculture and horticulture crops, forests and plantations. Sector-wise energy demand is computed based on the National Sample Survey Organisation (NSSO study) data, primary survey data and from the literature. Using the data of bioresource availability and demand, bioresource status is computed for all the agroclimatic zones. The ratio of bioresource availability to demand gives the bioresource status. The ratio greater than one indicates bioresource surplus zones, while a ratio less than one indicates scarcity. The study reveals that the central dry zone (1.4), the hilly zone (3.79), the southern transition zone (3.12) and the coastal zone (3.40) are bioresource surplus zones, whereas the northeastern transition zone (0.48), northeastern dry zone (0.23), northern dry zone (0.58), eastern dry zone (0.39), southern dry zone (0.93) and northern transition zone (0.45) come under bioresource-deficient zones. Among the bioresource surplus zones, horticulture residues contribute significantly towards bioenergy in the central dry zone, southern transition zone and the coastal zone, while in the hilly zone the main contributor of bioenergy are agricultural residues. Amidst the bioresource-deficient zones, agriculture is the major contributor of bioenergy in the northeastern transition zone (52%), northern dry zone (59%), and northern transition zone. Based on the bioenergy status of the zones and land use pattern, feasible management and technical options have been discussed, which help in optimising the available bioenergy and in building a sustainable energy society. This study also explores various programmes that can be initiated and implemented like social, community and joint forest management involving public participation. Such schemes will lessen the burden on the existing resources and also help the rural masses to procure biomass on a sustained basis.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2004 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    88
    citations88
    popularityTop 10%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2004 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ramachandra, TV; Shruthi, BV;

    An energy resource that is renewed by nature and whose supply is not affected by the rate of consumption is often termed as renewable energy. The need to search for renewable, alternate and non-polluting sources of energy assumes top priority for self-reliance in the regional energy supply. This demands an estimat+ion of available energy resources spatially to evolve better management strategies for ensuring sustainability of resources. The spatial mapping of availability and demand of energy resources would help in the integrated regional energy planning through an appropriate energy supply–demand matching. This paper discusses the application of Geographical Information System (GIS) to map the renewable energy potential talukwise in Karnataka State, India. Taluk is an administrative division in the federal set-up in India to implement developmental programmes like dissemination of biogas, improved stoves, etc. Hence, this paper focuses talukwise mapping of renewable energy (solar, wind, bioenergy and small hydroenergy) potential for Karnataka using GIS. GIS helps in spatial and temporal analyses of the resources and demand and also aids as Decision Support System while implementing location-specific renewable energy technologies. Regions suitable for tapping solar energy are mapped based on global solar radiation data, which provides a picture of the potential. Coastal taluks in Uttara Kannada have higher global solar radiation during summer $(6.31 kWh/m^2)$, monsoon $(4.16 kWh/m^2)$ and winter $(5.48 kWh/m^2)$. Mapping of regions suitable for tapping wind energy has been done based on wind velocity data, and it shows that Chikkodi taluk, Belgaum district, has higher potential during summer (6.06 m/s), monsoon (8.27 m/s) and winter (5.19 m/s). Mysore district has the maximum number of small hydropower plants with a capacity of 36 MW. Talukwise computation of bioenergy availability from agricultural residue, forest, horticulture, plantation and livestock indicates that Channagiri taluk in Shimoga district yields maximum bioenergy. The bioenergy status analysis shows that Siddapur taluk in Uttara Kannada district has the highest bioenergy status of 2.004 (ratio of bioresource availability and demand).

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2007 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    199
    citations199
    popularityTop 1%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2007 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Ramachandra, TV; Krishna, Vamsee S; Shruthi, BV;

    Biomass is a renewable source that accounts for nearly 33% of a developing country's energy needs. In India, it meets about 75% of the rural energy needs and the rural population constitutes 70% of the total population. Sustainable management of these resources requires better and timely decisions, which can lead to increased cost-efficiency and productivity. This would help in regional energy planning and conservation through appropriate decision interventions. To assist in strategic decision-making activities, considering spatial and temporal variables, Spatial Decision Support Systems (SDSS) are required. Spatial decision support system is an interactive computerized system that gathers data from a wide range of data sources, analyze the collected data, and then present it in a way that can be interpreted by the decision maker to deliver the precise information needed to make timely decisions. Decision support system (DSS) framework is designed and implemented to ease and speed up the use of environmental systems. In this regard, to assist planners to plan and manage bioresources in a sustainable way, Biomass Energy Potential Assessment (BEPA) decision support system is designed and is being implemented at regional levels through proper training. Overall objective of this DSS is the development of a set of tools aimed at transforming data into information and aid decisions for bioresources. This article outlines the design and implementation of DSS for assessment of biomass energy potential of a region considering the resources available and the demand. It is designed with user friendly GUI's (Graphic User Interface) using VB (Visual Basic) as frontend with Microsoft Access database as the backend. This helps to build executive information systems and reporting tools that tap vast data resources and deliver information in the context of daily processes. This tool can be used to form a core of practical methodology that will result in more resilience in less time and can be used by decision-making bodies to assess the impacts of various scenarios and to review cost and benefits of decisions to be made. It also offers means of entering, accessing and interpreting the information for the purpose of sound decision making.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    24
    citations24
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ramachandra, TV; Subramanian, DK;

    Energy is essential for industrial production. Because of the past abundance of low-cost energy, historically, the rate of social progress among industrial societies has not been limited by energy availability. Energy cost has not been significant when compared with no energy use. Mechanisation of agriculture, increased use of electrical appliances in the domestic sector and rapid industrialisation to meet the demand of exponentially growing population have resulted in an energy crisis. The raised fossil fuel prices and the environmental factors playing the dominant role in implementation of large scale projects, such as hydro, thermal and nuclear, have aggravated the problem further. In this context, an integrated energy plan for a country seems essential for ecologically sound development of a region. An integrated plan includes strategies to: • improve the efficiencies of end use devices and/or conversion equipment in all sectors; • optimise energy sources (end use matching); • maximise the use of renewable resources; • balance the exploitation of biomass energy resources; and • discourage the use of depletable resources. Conservation through improvement of the efficiencies of end use devices is one of the most effective ways to provide immediate relief for the energy problem. This helps to maintain economic growth and social progress of a region. Environmental problems, resource depletion and growing demand of energy in the state/region make it increasingly imperative that we use energy as efficiently as possible, and planners should take note of this untapped resource. The potential for improved energy efficiency is great, and a substantial part of that potential could be realised in the course of events. The industrial sector constitutes a major consumer of commercial energy. Improvement of energy efficiency in the industrial sector would result in a slower rate of energy growth. A secure energy supply is the major concern of most industrialists. It is, thus, necessary to examine industrial energy use and the economy. The analyses of consumption patterns and the assessment of feasible energy conservation possibilities show that the potential for energy conservation in the industrial sector and in all sectors is substantial. The barriers identified to tap this potential are a lack of information on specific measures and options for achieving energy conservation, lack of capital for schemes involving technology upgrading and efficiency improvements, pricing policies which deviate from rational tariffs and the inadequacy of institutional arrangements for promoting energy conservation in different sectors of the economy. In this regard, research should be sponsored to develop system designs, cost and pricing policies, problems related to system interconnection with public utilities and an assessment of potential energy savings, and research into methods of matching energy resources to work requirements, rather than vice versa, for improved efficiency. It is essential for the planning machinery to foster the integrated approach in energy planning of a region. This paper discusses an attempt made by us to illustrate the industrial energy scene in Karnataka and reveals the possibilities of energy conservation. Analysis of the energy consumption data of Karnataka and India shows that the per capita consumption of energy is low (compared with 56 countries in the world), while for the industrial sector, energy per state domestic product (SDP comparable to GDP) is at least 10–20 times higher than that of industrialised countries. This implies inefficiency in energy utilisation. Detailed investigation of the industrial sector through analysis of the Specific Energy Consumption (SEC)—industry wise and yearly for a seven-year period—reveals that about 27.72% of energy could be saved in the industrial sector. This, when quantified, accounts for savings of 1541 million kWh per year in Karnataka, which is equivalent to the power output of 300 MW (Mega Watts) electric power generating station (hydro/thermal).

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Conversion and Management
    Article . 1997 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    6
    citations6
    popularityAverage
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Conversion and Management
      Article . 1997 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ramachandra, T V; Hebbale, Deepthi;

    Abstract Burgeoning dependence on fossil fuels for transport and industrial sectors has been posing challenges such as depletion of fossil fuel reserves, enhanced greenhouse gas (GHG) footprint, with the imminent changes in the climate, etc. This has necessitated an exploration of sustainable, eco-friendly and carbon neutral energy alternatives. Recent studies on biofuels indicate that algal biomass, particularly from marine macroalgae (seaweeds) have the potential to supplement oil fuel. Marine macroalgae are fast growing and carbohydrate rich biomass having advantage over other biofuel feedstock in terms of land dependence, freshwater requirements, not competing with food crops, which were the inherent drawback of the first- and second-generation feedstock. The present communication reviews the macroalgal feedstock availability, screening and selection of viable feedstock based on the biochemical composition, process involved, scope and opportunities in bioethanol production as well as technology interventions. The prospect of bioethanol production from algal feedstock of Central West Coast of India has been evaluated taking into account challenges (feedstock sustenance, technical feasibility, economic viability) in order to achieve energy sustainability. The green algae exhibited growth during all seasons and highest total carbohydrate was recorded from green seaweed Ulva lactuca (62.15 ± 12.8%). Elemental (CHN) analyses of seaweed samples indicate 25.31–37.95% of carbon, 4.52–6.48% hydrogen and 1.88–4.36% Nitrogen. Highest carbon, hydrogen and nitrogen content were recorded respectively from G.pusillum (C: 37.95%), G.pusillum (H: 6.48%) and E.intestinalis (N: 4.36%). Green seaweeds are rich in cellulose content (>10%) compared to other seaweeds (2–10%). Higher cellulose content was estimated in U.lactuca (14.03 ± 0.14%), followed by E.intestinalis (12.10 ± 0.53%) and C.media (10.53 ± 0.17%). Cellulose is a glucan present in green seaweeds, which can easily be hydrolysed through enzyme and subsequently fermented to produce bioethanol. Lower sugar removal in acid hydrolysate neutralization process (Na2CO3) was recorded in U.lactuca (39.8%) and E.intestinalis (14.7%). Highest ethanol yield of 1.63 g and 0.49 g achieving 25.8% and 77.4% efficiency in SHF (Separate Hydrolysis and Fermentation) and SSF (Simultaneous Saccharification and Fermentation) process respectively was recorded for green alga E. intestinalis.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Renewable and Sustai...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    117
    citations117
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Renewable and Sustai...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ramachandra, TV; Subramanian, DK;

    The inefficient use of energy in a large number of industries is slowly developing into a major energy crisis in the already power-starved Karnataka State, India. This study attempts to bring out the present inefficient pattern of energy use in an electro-metallurgical industry. It also brings out the considerable scope for energy conservation, especially by increasing the efficiency of the end-use devices used. This concept, when extended to other industries, wherein increasing efficiency of the end-use devices would provide the desired end results with small energy input. This, in turn, would result in a slower rate of energy growth as well as saving in energy use.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Conversion and Management
    Article . 1992 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityAverage
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Conversion and Management
      Article . 1992 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: N. V. Joshi; T. V. Ramachandra; D. K. Subramanian;

    The amount of power available at a given site is decided by the volumetric flow of water and the hydraulic head or water pressure. In hydro schemes, the turbines that drive the electricity generators are directly powered either from a reservoir or the ‘run of the river’. The large schemes may include a water storage reservoir providing daily or seasonal storage to match the production with demand for electricity. These schemes have been producing power in Karnataka for many years, with the first hydroelectric station built in 1942. The majority of them are in Uttara Kannada district. Due to environmental constraints, further construction of storage reservoirs is limited and attention has been focussed towards developing environmental friendly small-scale hydro schemes to cater for the needs of the region. In this paper, the assessment of potential carried out in the streams of Bedthi and Aghnashini river basins in Uttara Kannada district of Western Ghats is discussed. Potentials at five feasible sites are assessed based on stream gauging carried out for a period of 18 months. Computations of discharge on empirical/rational method based on 90 years of precipitation data and the subsequent power and energy values computed are in conformity with the power calculations based on stream gauging. It is estimated that, if all streams are harnessed for energy, electricity generated would be in the order of 720 and 510 million units in Bedthi and Aghnashini basins, respectively. This exercise provides insight to meeting the regional energy requirement through integrated approaches, like harnessing hydro power in a decentralized way during the monsoon season, and meeting lean season requirements through small storage, solar or other thermal options. Net energy analyses incorporating biomass energy lost in submergence show that maximization in net energy at a site is possible, if the hydroelectric generation capacity is adjusted according to the seasonal variations in the river’s water discharge. © 1999 Elsevier Science Ltd. All rights reserved.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 1999 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    8
    citations8
    popularityAverage
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 1999 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ramachandra, TV; Jain, Rishabh; Krishnadas, Gautham;

    Solar hotspots are the regions characterized by an exceptional solar power potential suitable for decentralized commercial exploitation of energy. Identification of solar hotspots in a vast geographical expanse with dense habitations helps to meet escalating power demand in a decentralized, efficient and sustainable manner. This communication focuses on the assessment of resource potential with variability in India derived from high resolution satellite derived insolation data. Data analysis reveals that nearly 58% of the geographical area potentially represent the solar hotspots in the country with more than 5 kWh/m(2)/day of annual average Global insolation. A techno-economic analysis of the solar power technologies and a prospective minimal utilization of the land available within these solar hotspots demonstrate their immense power generation as well as emission reduction potential. The study evaluates the progress made in solar power generation in the country especially with the inception of an ambitious National Solar Mission (NSM) also termed as `Solar India'. The organizational aspects of solar power generation with focus on existing policy elements are also addressed so as to probe the actual potential of the identified solar hotspots in meeting the NSM targets and beyond. (C) 2011 Elsevier Ltd. All rights reserved.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2011 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    232
    citations232
    popularityTop 1%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2011 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
29 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ramachandra, TV; Shruthi, BV;

    Increasing negative effects of fossil fuel combustion on the environment in addition to limited stock have forced many countries to explore and change to environmentally friendly alternatives that are renewable to h sustain the increasing energy demand. Changing to renewable sources and implementation of effective conservation measures would ensure sustainability. Currently, wind energy is one of the fastest developing renewable energy source technologies across the globe. Wind energy is an alternative clean energy source compared to fossil fuel, which pollute the lower layer of the atmosphere. It has the advantage of being harnessed on a local basis for application in rural and remote areas. In order to tap the potential of wind energy sources, there is a need to assess the availability of the resources spatially. Mapping potential sites for tapping wind energy in Karnataka (a federal State in India) is the focus of this study. The study employs the geographical information system (GIS) to map the wind energy resources of Karnataka state and analyse their variability considering spatial and seasonal aspects. Considering these, the present status of the potential is assessed and maps of locations suitable for tapping wind energy have been prepared. A spatial data base with data of wind velocities has been developed and used for evaluation of the theoretical potential through continuous monitoring and mapping of the wind resources. The study shows that the average wind velocity in Karnataka varies from 0.85m/s in Bagalkote to 8.28m/s in Chikkodi during the monsoon season. Chikkodi, in Belgaum district, has high wind velocity during the period May to September with a peak value of 9.18 m/s in July. Agroclimatic zone wise analysis shows that the northern dry zone and the central dry zone are ideally suited for harvesting wind energy for regional economic development.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Conversion and Management
    Article . 2005 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    98
    citations98
    popularityTop 10%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Conversion and Management
      Article . 2005 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: T. V. Ramachandra; N. V. Joshi; Samantray Shilpi; Mahapatra Durga Madhab;

    Rapidly depleting stocks of fossil fuels and increasing greenhouse gas (GHG) emissions have necessitated the exploration of cost effective sustainable energy sources focussing on biofuels through algae. Abundant wastewaters generated in urban localities every day provide the nourishment to nurture algae for biofuel generation. The present communication focuses on the lipid prospects of algae grown in wastewater systems. Euglena sp., Spirogyra sp. and Phormidium sp. were collected from selected locations of sewage fed urban lakes and sewage treatment plants of Bangalore and Mysore. The total lipid content of Euglena sp. was higher (24.6%) compared to Spirogyra sp. (18.4%) followed by Phormidium sp. (8.8%) and their annual lipid yield potential was 6.52, 1.94 and 2.856 t/ha/year, respectively. These species showed higher content of fatty acids (palmitate, stearate followed by oleic and linoleic acids) with the desirable biofuel properties. (C) 2013 Elsevier Ltd. All rights reserved.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    82
    citations82
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ramachandra, TV; Kamakshi, G; Shruthi, BV;

    Energy is a vital component of any society playing a pivotal role in the development. Post oil crises shifted the focus of energy planners towards renewable resources and energy conservation. Biomass is one such renewable, which accounts for nearly 33% of a developing country’s energy needs. In India, it meets about 75% of the rural energy needs. In Karnataka, non-commercial energy sources like firewood, agricultural residues, charcoal and cow dung account for 53.2%. The energy released by the reaction of organic carbon (of bioresources) with oxygen is referred to as bioenergy. Bioresource availability is highly diversified and it depends on the region’s agroclimatic conditions. Inventorying of these resources is required for describing the quality, quantity, change, productivity, condition of bioresources and requirement in a given area. The present study assesses bioresource status across the agroclimatic zones of Karnataka, considering the bioenergy availability (from agriculture, horticulture, forests and plantations) and sector-wise energy demand (domestic, agriculture, industry, etc.). Bioresource availability is computed based on the compilation of data on the area and productivity of agriculture and horticulture crops, forests and plantations. Sector-wise energy demand is computed based on the National Sample Survey Organisation (NSSO study) data, primary survey data and from the literature. Using the data of bioresource availability and demand, bioresource status is computed for all the agroclimatic zones. The ratio of bioresource availability to demand gives the bioresource status. The ratio greater than one indicates bioresource surplus zones, while a ratio less than one indicates scarcity. The study reveals that the central dry zone (1.4), the hilly zone (3.79), the southern transition zone (3.12) and the coastal zone (3.40) are bioresource surplus zones, whereas the northeastern transition zone (0.48), northeastern dry zone (0.23), northern dry zone (0.58), eastern dry zone (0.39), southern dry zone (0.93) and northern transition zone (0.45) come under bioresource-deficient zones. Among the bioresource surplus zones, horticulture residues contribute significantly towards bioenergy in the central dry zone, southern transition zone and the coastal zone, while in the hilly zone the main contributor of bioenergy are agricultural residues. Amidst the bioresource-deficient zones, agriculture is the major contributor of bioenergy in the northeastern transition zone (52%), northern dry zone (59%), and northern transition zone. Based on the bioenergy status of the zones and land use pattern, feasible management and technical options have been discussed, which help in optimising the available bioenergy and in building a sustainable energy society. This study also explores various programmes that can be initiated and implemented like social, community and joint forest management involving public participation. Such schemes will lessen the burden on the existing resources and also help the rural masses to procure biomass on a sustained basis.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2004 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    88
    citations88
    popularityTop 10%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2004 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ramachandra, TV; Shruthi, BV;

    An energy resource that is renewed by nature and whose supply is not affected by the rate of consumption is often termed as renewable energy. The need to search for renewable, alternate and non-polluting sources of energy assumes top priority for self-reliance in the regional energy supply. This demands an estimat+ion of available energy resources spatially to evolve better management strategies for ensuring sustainability of resources. The spatial mapping of availability and demand of energy resources would help in the integrated regional energy planning through an appropriate energy supply–demand matching. This paper discusses the application of Geographical Information System (GIS) to map the renewable energy potential talukwise in Karnataka State, India. Taluk is an administrative division in the federal set-up in India to implement developmental programmes like dissemination of biogas, improved stoves, etc. Hence, this paper focuses talukwise mapping of renewable energy (solar, wind, bioenergy and small hydroenergy) potential for Karnataka using GIS. GIS helps in spatial and temporal analyses of the resources and demand and also aids as Decision Support System while implementing location-specific renewable energy technologies. Regions suitable for tapping solar energy are mapped based on global solar radiation data, which provides a picture of the potential. Coastal taluks in Uttara Kannada have higher global solar radiation during summer $(6.31 kWh/m^2)$, monsoon $(4.16 kWh/m^2)$ and winter $(5.48 kWh/m^2)$. Mapping of regions suitable for tapping wind energy has been done based on wind velocity data, and it shows that Chikkodi taluk, Belgaum district, has higher potential during summer (6.06 m/s), monsoon (8.27 m/s) and winter (5.19 m/s). Mysore district has the maximum number of small hydropower plants with a capacity of 36 MW. Talukwise computation of bioenergy availability from agricultural residue, forest, horticulture, plantation and livestock indicates that Channagiri taluk in Shimoga district yields maximum bioenergy. The bioenergy status analysis shows that Siddapur taluk in Uttara Kannada district has the highest bioenergy status of 2.004 (ratio of bioresource availability and demand).

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2007 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    199
    citations199
    popularityTop 1%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2007 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Ramachandra, TV; Krishna, Vamsee S; Shruthi, BV;

    Biomass is a renewable source that accounts for nearly 33% of a developing country's energy needs. In India, it meets about 75% of the rural energy needs and the rural population constitutes 70% of the total population. Sustainable management of these resources requires better and timely decisions, which can lead to increased cost-efficiency and productivity. This would help in regional energy planning and conservation through appropriate decision interventions. To assist in strategic decision-making activities, considering spatial and temporal variables, Spatial Decision Support Systems (SDSS) are required. Spatial decision support system is an interactive computerized system that gathers data from a wide range of data sources, analyze the collected data, and then present it in a way that can be interpreted by the decision maker to deliver the precise information needed to make timely decisions. Decision support system (DSS) framework is designed and implemented to ease and speed up the use of environmental systems. In this regard, to assist planners to plan and manage bioresources in a sustainable way, Biomass Energy Potential Assessment (BEPA) decision support system is designed and is being implemented at regional levels through proper training. Overall objective of this DSS is the development of a set of tools aimed at transforming data into information and aid decisions for bioresources. This article outlines the design and implementation of DSS for assessment of biomass energy potential of a region considering the resources available and the demand. It is designed with user friendly GUI's (Graphic User Interface) using VB (Visual Basic) as frontend with Microsoft Access database as the backend. This helps to build executive information systems and reporting tools that tap vast data resources and deliver information in the context of daily processes. This tool can be used to form a core of practical methodology that will result in more resilience in less time and can be used by decision-making bodies to assess the impacts of various scenarios and to review cost and benefits of decisions to be made. It also offers means of entering, accessing and interpreting the information for the purpose of sound decision making.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    24
    citations24
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ramachandra, TV; Subramanian, DK;

    Energy is essential for industrial production. Because of the past abundance of low-cost energy, historically, the rate of social progress among industrial societies has not been limited by energy availability. Energy cost has not been significant when compared with no energy use. Mechanisation of agriculture, increased use of electrical appliances in the domestic sector and rapid industrialisation to meet the demand of exponentially growing population have resulted in an energy crisis. The raised fossil fuel prices and the environmental factors playing the dominant role in implementation of large scale projects, such as hydro, thermal and nuclear, have aggravated the problem further. In this context, an integrated energy plan for a country seems essential for ecologically sound development of a region. An integrated plan includes strategies to: • improve the efficiencies of end use devices and/or conversion equipment in all sectors; • optimise energy sources (end use matching); • maximise the use of renewable resources; • balance the exploitation of biomass energy resources; and • discourage the use of depletable resources. Conservation through improvement of the efficiencies of end use devices is one of the most effective ways to provide immediate relief for the energy problem. This helps to maintain economic growth and social progress of a region. Environmental problems, resource depletion and growing demand of energy in the state/region make it increasingly imperative that we use energy as efficiently as possible, and planners should take note of this untapped resource. The potential for improved energy efficiency is great, and a substantial part of that potential could be realised in the course of events. The industrial sector constitutes a major consumer of commercial energy. Improvement of energy efficiency in the industrial sector would result in a slower rate of energy growth. A secure energy supply is the major concern of most industrialists. It is, thus, necessary to examine industrial energy use and the economy. The analyses of consumption patterns and the assessment of feasible energy conservation possibilities show that the potential for energy conservation in the industrial sector and in all sectors is substantial. The barriers identified to tap this potential are a lack of information on specific measures and options for achieving energy conservation, lack of capital for schemes involving technology upgrading and efficiency improvements, pricing policies which deviate from rational tariffs and the inadequacy of institutional arrangements for promoting energy conservation in different sectors of the economy. In this regard, research should be sponsored to develop system designs, cost and pricing policies, problems related to system interconnection with public utilities and an assessment of potential energy savings, and research into methods of matching energy resources to work requirements, rather than vice versa, for improved efficiency. It is essential for the planning machinery to foster the integrated approach in energy planning of a region. This paper discusses an attempt made by us to illustrate the industrial energy scene in Karnataka and reveals the possibilities of energy conservation. Analysis of the energy consumption data of Karnataka and India shows that the per capita consumption of energy is low (compared with 56 countries in the world), while for the industrial sector, energy per state domestic product (SDP comparable to GDP) is at least 10–20 times higher than that of industrialised countries. This implies inefficiency in energy utilisation. Detailed investigation of the industrial sector through analysis of the Specific Energy Consumption (SEC)—industry wise and yearly for a seven-year period—reveals that about 27.72% of energy could be saved in the industrial sector. This, when quantified, accounts for savings of 1541 million kWh per year in Karnataka, which is equivalent to the power output of 300 MW (Mega Watts) electric power generating station (hydro/thermal).

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Conversion and Management
    Article . 1997 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    6
    citations6
    popularityAverage
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Conversion and Management
      Article . 1997 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ramachandra, T V; Hebbale, Deepthi;

    Abstract Burgeoning dependence on fossil fuels for transport and industrial sectors has been posing challenges such as depletion of fossil fuel reserves, enhanced greenhouse gas (GHG) footprint, with the imminent changes in the climate, etc. This has necessitated an exploration of sustainable, eco-friendly and carbon neutral energy alternatives. Recent studies on biofuels indicate that algal biomass, particularly from marine macroalgae (seaweeds) have the potential to supplement oil fuel. Marine macroalgae are fast growing and carbohydrate rich biomass having advantage over other biofuel feedstock in terms of land dependence, freshwater requirements, not competing with food crops, which were the inherent drawback of the first- and second-generation feedstock. The present communication reviews the macroalgal feedstock availability, screening and selection of viable feedstock based on the biochemical composition, process involved, scope and opportunities in bioethanol production as well as technology interventions. The prospect of bioethanol production from algal feedstock of Central West Coast of India has been evaluated taking into account challenges (feedstock sustenance, technical feasibility, economic viability) in order to achieve energy sustainability. The green algae exhibited growth during all seasons and highest total carbohydrate was recorded from green seaweed Ulva lactuca (62.15 ± 12.8%). Elemental (CHN) analyses of seaweed samples indicate 25.31–37.95% of carbon, 4.52–6.48% hydrogen and 1.88–4.36% Nitrogen. Highest carbon, hydrogen and nitrogen content were recorded respectively from G.pusillum (C: 37.95%), G.pusillum (H: 6.48%) and E.intestinalis (N: 4.36%). Green seaweeds are rich in cellulose content (>10%) compared to other seaweeds (2–10%). Higher cellulose content was estimated in U.lactuca (14.03 ± 0.14%), followed by E.intestinalis (12.10 ± 0.53%) and C.media (10.53 ± 0.17%). Cellulose is a glucan present in green seaweeds, which can easily be hydrolysed through enzyme and subsequently fermented to produce bioethanol. Lower sugar removal in acid hydrolysate neutralization process (Na2CO3) was recorded in U.lactuca (39.8%) and E.intestinalis (14.7%). Highest ethanol yield of 1.63 g and 0.49 g achieving 25.8% and 77.4% efficiency in SHF (Separate Hydrolysis and Fermentation) and SSF (Simultaneous Saccharification and Fermentation) process respectively was recorded for green alga E. intestinalis.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Renewable and Sustai...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    117
    citations117
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Renewable and Sustai...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ramachandra, TV; Subramanian, DK;

    The inefficient use of energy in a large number of industries is slowly developing into a major energy crisis in the already power-starved Karnataka State, India. This study attempts to bring out the present inefficient pattern of energy use in an electro-metallurgical industry. It also brings out the considerable scope for energy conservation, especially by increasing the efficiency of the end-use devices used. This concept, when extended to other industries, wherein increasing efficiency of the end-use devices would provide the desired end results with small energy input. This, in turn, would result in a slower rate of energy growth as well as saving in energy use.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Conversion and Management
    Article . 1992 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityAverage
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Conversion and Management
      Article . 1992 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: N. V. Joshi; T. V. Ramachandra; D. K. Subramanian;

    The amount of power available at a given site is decided by the volumetric flow of water and the hydraulic head or water pressure. In hydro schemes, the turbines that drive the electricity generators are directly powered either from a reservoir or the ‘run of the river’. The large schemes may include a water storage reservoir providing daily or seasonal storage to match the production with demand for electricity. These schemes have been producing power in Karnataka for many years, with the first hydroelectric station built in 1942. The majority of them are in Uttara Kannada district. Due to environmental constraints, further construction of storage reservoirs is limited and attention has been focussed towards developing environmental friendly small-scale hydro schemes to cater for the needs of the region. In this paper, the assessment of potential carried out in the streams of Bedthi and Aghnashini river basins in Uttara Kannada district of Western Ghats is discussed. Potentials at five feasible sites are assessed based on stream gauging carried out for a period of 18 months. Computations of discharge on empirical/rational method based on 90 years of precipitation data and the subsequent power and energy values computed are in conformity with the power calculations based on stream gauging. It is estimated that, if all streams are harnessed for energy, electricity generated would be in the order of 720 and 510 million units in Bedthi and Aghnashini basins, respectively. This exercise provides insight to meeting the regional energy requirement through integrated approaches, like harnessing hydro power in a decentralized way during the monsoon season, and meeting lean season requirements through small storage, solar or other thermal options. Net energy analyses incorporating biomass energy lost in submergence show that maximization in net energy at a site is possible, if the hydroelectric generation capacity is adjusted according to the seasonal variations in the river’s water discharge. © 1999 Elsevier Science Ltd. All rights reserved.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 1999 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    8
    citations8
    popularityAverage
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 1999 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ramachandra, TV; Jain, Rishabh; Krishnadas, Gautham;

    Solar hotspots are the regions characterized by an exceptional solar power potential suitable for decentralized commercial exploitation of energy. Identification of solar hotspots in a vast geographical expanse with dense habitations helps to meet escalating power demand in a decentralized, efficient and sustainable manner. This communication focuses on the assessment of resource potential with variability in India derived from high resolution satellite derived insolation data. Data analysis reveals that nearly 58% of the geographical area potentially represent the solar hotspots in the country with more than 5 kWh/m(2)/day of annual average Global insolation. A techno-economic analysis of the solar power technologies and a prospective minimal utilization of the land available within these solar hotspots demonstrate their immense power generation as well as emission reduction potential. The study evaluates the progress made in solar power generation in the country especially with the inception of an ambitious National Solar Mission (NSM) also termed as `Solar India'. The organizational aspects of solar power generation with focus on existing policy elements are also addressed so as to probe the actual potential of the identified solar hotspots in meeting the NSM targets and beyond. (C) 2011 Elsevier Ltd. All rights reserved.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2011 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    232
    citations232
    popularityTop 1%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2011 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right
Powered by OpenAIRE graph