- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Martina Francisca Baidoo; Edem Cudjoe Bensah; Abeeku Brew-Hammond; Richard Arthur;Abstract Apart from waste treatment, anaerobic digestion is a reliable method for biogas generation. The digested sludge from anaerobic digesters can also be used to enhance the fertility of the soil. This paper assesses the biogas potential from the sewage generated in four public universities in Ghana for the 2008/2009 academic year. In the estimation of the amount of sewage generated in each university, the population was used and was categorized into residential and non-residential staff and students. The population of the universities varies throughout the year due to the vacation periods hence the sewage generated varies accordingly. The estimated population for the four universities was 100,313 when in session and 20,903 on vacation and the estimated daily sewage generated is 1379.9 m 3 and 327.8 m 3 , when the universities were in session and on vacation respectively. This study revealed that an annual biogas potential of about 815,109 m 3 could be obtained which is equivalent to about 4,891 MWh of energy or can replace about 4532 tonnes of firewood or 326.4 tonnes of LPG which can reduce the pressure on the forest and the use of LPG.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2011.04.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2011.04.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Martina Francisca Baidoo; Edem Cudjoe Bensah; Abeeku Brew-Hammond; Richard Arthur;Abstract Apart from waste treatment, anaerobic digestion is a reliable method for biogas generation. The digested sludge from anaerobic digesters can also be used to enhance the fertility of the soil. This paper assesses the biogas potential from the sewage generated in four public universities in Ghana for the 2008/2009 academic year. In the estimation of the amount of sewage generated in each university, the population was used and was categorized into residential and non-residential staff and students. The population of the universities varies throughout the year due to the vacation periods hence the sewage generated varies accordingly. The estimated population for the four universities was 100,313 when in session and 20,903 on vacation and the estimated daily sewage generated is 1379.9 m 3 and 327.8 m 3 , when the universities were in session and on vacation respectively. This study revealed that an annual biogas potential of about 815,109 m 3 could be obtained which is equivalent to about 4,891 MWh of energy or can replace about 4532 tonnes of firewood or 326.4 tonnes of LPG which can reduce the pressure on the forest and the use of LPG.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2011.04.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2011.04.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 DenmarkPublisher:Elsevier BV Kemausuor, Francis; Kamp, Andreas; Thomsen, Sune Tjalfe; Bensah, Edem Cudjoe; Stergård, Hanne;Abstract Biomass is an important renewable energy source that holds large potential as feedstock for the production of different energy carriers in a context of sustainable development, peak oil and climate change. In developing countries, biomass already supplies the bulk of energy services and future use is expected to increase with more efficient applications, such as the production of biogas and liquid biofuels for cooking, transportation and the generation of power. The aim of this study is to establish the amount of Ghana's energy demand that can be satisfied by using the country's crop residues, animal manure, logging residues and municipal waste. The study finds that the technical potential of bioenergy from these sources is 96 PJ in 2700 Mm3 of biogas or 52 PJ in 2300 ML of cellulosic ethanol. The biogas potential is sufficient to replace more than a quarter of Ghana's present woodfuel use. If instead converted to cellulosic ethanol, the estimated potential is seven times the estimated 336 ML of biofuels needed to achieve the projected 10% biofuels blends at the national level in 2020. Utilizing the calculated potentials involves a large challenge in terms of infrastructure requirements, quantified to hundreds of thousands of small-scale plants.
University of Copenh... arrow_drop_down University of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2014.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu108 citations 108 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Copenh... arrow_drop_down University of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2014.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 DenmarkPublisher:Elsevier BV Kemausuor, Francis; Kamp, Andreas; Thomsen, Sune Tjalfe; Bensah, Edem Cudjoe; Stergård, Hanne;Abstract Biomass is an important renewable energy source that holds large potential as feedstock for the production of different energy carriers in a context of sustainable development, peak oil and climate change. In developing countries, biomass already supplies the bulk of energy services and future use is expected to increase with more efficient applications, such as the production of biogas and liquid biofuels for cooking, transportation and the generation of power. The aim of this study is to establish the amount of Ghana's energy demand that can be satisfied by using the country's crop residues, animal manure, logging residues and municipal waste. The study finds that the technical potential of bioenergy from these sources is 96 PJ in 2700 Mm3 of biogas or 52 PJ in 2300 ML of cellulosic ethanol. The biogas potential is sufficient to replace more than a quarter of Ghana's present woodfuel use. If instead converted to cellulosic ethanol, the estimated potential is seven times the estimated 336 ML of biofuels needed to achieve the projected 10% biofuels blends at the national level in 2020. Utilizing the calculated potentials involves a large challenge in terms of infrastructure requirements, quantified to hundreds of thousands of small-scale plants.
University of Copenh... arrow_drop_down University of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2014.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu108 citations 108 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Copenh... arrow_drop_down University of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2014.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type 2019Publisher:IntechOpen Authors: Edem Cudjoe Bensah; Moses Mensah;Un défi majeur à la production commerciale d'éthanol cellulosique concerne la décomposition rentable de la structure complexe et récalcitrante de la lignocellulose en ses composants par des méthodes de prétraitement - physiques, chimiques, physico-chimiques, biologiques et diverses combinaisons de ceux-ci. Le type et les conditions d'un prétraitement ont un impact sur les processus en amont tels que la réduction de la taille ainsi que sur les processus en aval tels que l'hydrolyse enzymatique et les charges enzymatiques, et en tant que tel, le choix d'une méthode de prétraitement pour une biomasse spécifique (ou un mélange de matériaux) est influencé par plusieurs facteurs tels que la préservation des glucides et la digestibilité, les rendements en sucre et en éthanol, la consommation d'énergie, les coûts des équipements et des solvants, l'élimination et la qualité de la lignine, la formation de produits de dégradation du sucre/lignine, la production de déchets et l'utilisation de l'eau, entre autres. Ce chapitre examine les méthodes physico-chimiques connues et émergentes de fractionnement de la biomasse en ce qui concerne la description et les applications du processus, les avantages et les inconvénients, ainsi que les innovations récentes utilisées pour améliorer les rendements en sucre, la durabilité environnementale et l'économie des processus. Un desafío importante para la producción comercial de etanol celulósico se refiere a la descomposición rentable de la estructura compleja y recalcitrante de la lignocelulosa en sus componentes mediante métodos de pretratamiento: físico, químico, físico-químico, biológico y varias combinaciones de los mismos. El tipo y las condiciones de un pretratamiento afectan tanto a los procesos anteriores, como a la reducción de tamaño, como a los procesos posteriores, como la hidrólisis enzimática y las cargas enzimáticas, y como tal, la elección de un método de pretratamiento para una biomasa específica (o mezcla de materiales) está influenciada por varios factores, como la conservación y digestibilidad de carbohidratos, los rendimientos de azúcar y etanol, el consumo de energía, los costos de equipos y disolventes, la eliminación y calidad de la lignina, la formación de productos de degradación de azúcar/lignina, la producción de desechos y el uso de agua, entre otros. Este capítulo revisa los métodos fisicoquímicos de fraccionamiento de biomasa conocidos y emergentes con respecto a la descripción y las aplicaciones del proceso, las ventajas y desventajas, así como las innovaciones recientes empleadas para mejorar los rendimientos de azúcar, la sostenibilidad ambiental y la economía del proceso. A major challenge to commercial production of cellulosic ethanol pertains to the costeffective breakdown of the complex and recalcitrant structure of lignocellulose into its components by pretreatment methods-physical, chemical, physico-chemical, biological and various combinations thereof.The type and conditions of a pretreatment impacts both upstream processes such as size reduction as well as downstream processes such as enzymatic hydrolysis and enzyme loadings, and as such the choice of a pretreatment method for a specific biomass (or mix of materials) is influenced by several factors such as carbohydrate preservation and digestibility, sugar and ethanol yields, energy consumption, equipment and solvent costs, lignin removal and quality, formation of sugar/lignin degradation products, waste production, and water usage, among others.This chapter reviews both well-known and emerging physico-chemical methods of biomass fractionation with regards to process description and applications, advantages and disadvantages, as well as recent innovations employed to improve sugar yields, environmental sustainability and process economics. يتعلق التحدي الرئيسي للإنتاج التجاري للإيثانول السليولوزي بالتحلل الفعال من حيث التكلفة للهيكل المعقد والمتمرد لليجنوسليلوز إلى مكوناته من خلال طرق المعالجة المسبقة - الفيزيائية والكيميائية والفيزيائية والكيميائية والبيولوجية وتوليفات مختلفة منها. يؤثر نوع وشروط المعالجة المسبقة على كل من عمليات المنبع مثل تقليل الحجم وكذلك العمليات النهائية مثل التحلل المائي الإنزيمي وتحميل الإنزيمات، وعلى هذا النحو، فإن اختيار طريقة المعالجة المسبقة لكتلة حيوية معينة (أو مزيج من المواد) يتأثر بعدة عوامل مثل الحفاظ على الكربوهيدرات وقابليتها للهضم، ومحاصيل السكر والإيثانول، واستهلاك الطاقة، وتكاليف المعدات والمذيبات، وإزالة اللجنين وجودته، وتشكيل منتجات تحلل السكر/اللجنين، وإنتاج النفايات، واستخدام المياه، من بين أمور أخرى. يستعرض هذا الفصل كلا من الأساليب الفيزيائية والكيميائية الناشئة لتجزئة الكتلة الحيوية فيما يتعلق بوصف العملية وتطبيقاتها ومزاياها وعيوبها، بالإضافة إلى الابتكارات الحديثة المستخدمة لتحسين محاصيل السكر، والاستدامة البيئية والعمليات الاقتصادية.
InTech arrow_drop_down https://doi.org/10.5772/intech...Part of book or chapter of book . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://www.intechopen.com/cit...Part of book or chapter of bookLicense: CC BYData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5772/intechopen.79649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert InTech arrow_drop_down https://doi.org/10.5772/intech...Part of book or chapter of book . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://www.intechopen.com/cit...Part of book or chapter of bookLicense: CC BYData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5772/intechopen.79649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type 2019Publisher:IntechOpen Authors: Edem Cudjoe Bensah; Moses Mensah;Un défi majeur à la production commerciale d'éthanol cellulosique concerne la décomposition rentable de la structure complexe et récalcitrante de la lignocellulose en ses composants par des méthodes de prétraitement - physiques, chimiques, physico-chimiques, biologiques et diverses combinaisons de ceux-ci. Le type et les conditions d'un prétraitement ont un impact sur les processus en amont tels que la réduction de la taille ainsi que sur les processus en aval tels que l'hydrolyse enzymatique et les charges enzymatiques, et en tant que tel, le choix d'une méthode de prétraitement pour une biomasse spécifique (ou un mélange de matériaux) est influencé par plusieurs facteurs tels que la préservation des glucides et la digestibilité, les rendements en sucre et en éthanol, la consommation d'énergie, les coûts des équipements et des solvants, l'élimination et la qualité de la lignine, la formation de produits de dégradation du sucre/lignine, la production de déchets et l'utilisation de l'eau, entre autres. Ce chapitre examine les méthodes physico-chimiques connues et émergentes de fractionnement de la biomasse en ce qui concerne la description et les applications du processus, les avantages et les inconvénients, ainsi que les innovations récentes utilisées pour améliorer les rendements en sucre, la durabilité environnementale et l'économie des processus. Un desafío importante para la producción comercial de etanol celulósico se refiere a la descomposición rentable de la estructura compleja y recalcitrante de la lignocelulosa en sus componentes mediante métodos de pretratamiento: físico, químico, físico-químico, biológico y varias combinaciones de los mismos. El tipo y las condiciones de un pretratamiento afectan tanto a los procesos anteriores, como a la reducción de tamaño, como a los procesos posteriores, como la hidrólisis enzimática y las cargas enzimáticas, y como tal, la elección de un método de pretratamiento para una biomasa específica (o mezcla de materiales) está influenciada por varios factores, como la conservación y digestibilidad de carbohidratos, los rendimientos de azúcar y etanol, el consumo de energía, los costos de equipos y disolventes, la eliminación y calidad de la lignina, la formación de productos de degradación de azúcar/lignina, la producción de desechos y el uso de agua, entre otros. Este capítulo revisa los métodos fisicoquímicos de fraccionamiento de biomasa conocidos y emergentes con respecto a la descripción y las aplicaciones del proceso, las ventajas y desventajas, así como las innovaciones recientes empleadas para mejorar los rendimientos de azúcar, la sostenibilidad ambiental y la economía del proceso. A major challenge to commercial production of cellulosic ethanol pertains to the costeffective breakdown of the complex and recalcitrant structure of lignocellulose into its components by pretreatment methods-physical, chemical, physico-chemical, biological and various combinations thereof.The type and conditions of a pretreatment impacts both upstream processes such as size reduction as well as downstream processes such as enzymatic hydrolysis and enzyme loadings, and as such the choice of a pretreatment method for a specific biomass (or mix of materials) is influenced by several factors such as carbohydrate preservation and digestibility, sugar and ethanol yields, energy consumption, equipment and solvent costs, lignin removal and quality, formation of sugar/lignin degradation products, waste production, and water usage, among others.This chapter reviews both well-known and emerging physico-chemical methods of biomass fractionation with regards to process description and applications, advantages and disadvantages, as well as recent innovations employed to improve sugar yields, environmental sustainability and process economics. يتعلق التحدي الرئيسي للإنتاج التجاري للإيثانول السليولوزي بالتحلل الفعال من حيث التكلفة للهيكل المعقد والمتمرد لليجنوسليلوز إلى مكوناته من خلال طرق المعالجة المسبقة - الفيزيائية والكيميائية والفيزيائية والكيميائية والبيولوجية وتوليفات مختلفة منها. يؤثر نوع وشروط المعالجة المسبقة على كل من عمليات المنبع مثل تقليل الحجم وكذلك العمليات النهائية مثل التحلل المائي الإنزيمي وتحميل الإنزيمات، وعلى هذا النحو، فإن اختيار طريقة المعالجة المسبقة لكتلة حيوية معينة (أو مزيج من المواد) يتأثر بعدة عوامل مثل الحفاظ على الكربوهيدرات وقابليتها للهضم، ومحاصيل السكر والإيثانول، واستهلاك الطاقة، وتكاليف المعدات والمذيبات، وإزالة اللجنين وجودته، وتشكيل منتجات تحلل السكر/اللجنين، وإنتاج النفايات، واستخدام المياه، من بين أمور أخرى. يستعرض هذا الفصل كلا من الأساليب الفيزيائية والكيميائية الناشئة لتجزئة الكتلة الحيوية فيما يتعلق بوصف العملية وتطبيقاتها ومزاياها وعيوبها، بالإضافة إلى الابتكارات الحديثة المستخدمة لتحسين محاصيل السكر، والاستدامة البيئية والعمليات الاقتصادية.
InTech arrow_drop_down https://doi.org/10.5772/intech...Part of book or chapter of book . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://www.intechopen.com/cit...Part of book or chapter of bookLicense: CC BYData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5772/intechopen.79649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert InTech arrow_drop_down https://doi.org/10.5772/intech...Part of book or chapter of book . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://www.intechopen.com/cit...Part of book or chapter of bookLicense: CC BYData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5772/intechopen.79649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Elsevier BV Isaac Mensah; Julius Cudjoe Ahiekpor; Edem Cudjoe Bensah; Satyanarayana Narra; Bright Amponsem; Edward Antwi;Le comportement de co-pyrolyse de la sciure de Celtis mildbraedii (CMS) et des déchets de polyéthylène téréphtalate (PET) pour la production de gaz de synthèse a été étudié à l'aide d'une méthodologie de surface de réponse (RSM) basée sur la conception Box-Behnken (BBD). Les paramètres de production ont été examinés à une température, une concentration de charge d'alimentation (rapport CMS/PET) et une plage de débit de gaz d'azote (N2) de 600–800 °C, 50/50-80/20% et 2–10 litres normaux par minute (NL/min), respectivement. Un modèle de régression du deuxième ordre a été utilisé pour prédire la réponse avec les résultats analysés à l'aide du logiciel statistique Minitab (version 19) à un intervalle de confiance de 95 %. Les résultats ont montré que le CMS peut être utilisé uniquement et/ou en mélange avec du PET pour la pyrolyse. Le rendement en gaz de synthèse a été influencé par les effets interactifs de la température et du débit de gaz N2 avec une valeur p significative inférieure à 0,05. Il a été observé que la température était le facteur le plus influent en raison de sa valeur F élevée de 355,06. Le rendement optimal en gaz de synthèse a été atteint à une température de 800 °C, un débit de gaz N2 de 6 NL/min et une concentration de charge d'alimentation d'un mélange de 50 % en poids de sciure de bois et de 50 % en poids de plastique. Dans ces conditions, le rendement en gaz de synthèse obtenu était de 68,1 % en poids. En conclusion, la présente étude prouve que la co-pyrolyse a le potentiel de convertir la biomasse et les plastiques en carburants et autres produits chimiques verts. El comportamiento de copirólisis del aserrín Celtis mildbraedii (CMS) y los residuos de tereftalato de polietileno (PET) para la producción de gas de síntesis se investigó utilizando una metodología de superficie de respuesta (RSM) basada en el diseño Box-Behnken (BBD). Los parámetros de producción se examinaron a una temperatura, concentración de materia prima (relación CMS/PET) y rango de caudal de gas nitrógeno (N2) de 600–800 °C, 50/50–80/20% y 2–10 litros normales por minuto (NL/min), respectivamente. Se utilizó un modelo de regresión de segundo orden para predecir la respuesta con los resultados analizados utilizando el software estadístico Minitab (versión 19) con un intervalo de confianza del 95%. Los resultados mostraron que CMS se puede usar solo y/o en una mezcla con PET para la pirólisis. El rendimiento del gas de síntesis se vio influenciado por los efectos interactivos de la temperatura y el caudal de gas N2 con un valor p significativo inferior a 0,05. Se observó que la temperatura era el factor más influyente debido a su alto valor F de 355.06. El rendimiento óptimo de gas de síntesis se logró a una temperatura de 800 °C, una velocidad de flujo de gas N2 de 6 NL/min y una concentración de materia prima de una mezcla de 50% en peso de serrín y 50% en peso de plástico. En estas condiciones, el rendimiento de gas de síntesis obtenido fue del 68,1% en peso. En conclusión, el estudio actual demuestra que la copirólisis tiene el potencial de convertir la biomasa y los plásticos en combustibles y otros productos químicos ecológicos. The co-pyrolysis behavior of Celtis mildbraedii sawdust (CMS) and polyethylene terephthalate (PET) waste for syngas production was investigated using a response surface methodology (RSM) based on Box-Behnken design (BBD). The production parameters were examined at a temperature, feedstock concentration (CMS/PET ratio), and nitrogen (N2) gas flow rate range of 600–800 °C, 50/50–80/20%, and 2–10 normal liters per minute (NL/min), respectively. A second-order regression model was used to predict the response with the outcomes analyzed using Minitab statistical software (version 19) at a 95% confidence interval. Results showed that CMS can be used solely and/or in a mixture with PET for pyrolysis. The syngas yield was influenced by the interactive effects of temperature and N2 gas flow rate with a significant p-value of less than 0.05. It was observed that temperature was the most influencing factor due to its high F-value of 355.06. The optimum yield of syngas was attained at a temperature of 800 °C, N2 gas flow rate of 6 NL/min, and feedstock concentration of a mixture of 50 wt.% of sawdust and 50 wt.% of plastic. At these conditions, the obtained syngas yield was 68.1 wt.%. In conclusion, the current study proves that co-pyrolysis has the potential to convert biomass and plastics to fuels and other green chemicals. تم التحقيق في سلوك الانحلال الحراري المشترك لنشارة الخشب Celtis mildbraedii (CMS) ونفايات البولي إيثيلين تيريفثالات (PET) لإنتاج غاز التخليق باستخدام منهجية سطح الاستجابة (RSM) بناءً على تصميم Box - Behnken (BBD). تم فحص معلمات الإنتاج عند درجة حرارة، وتركيز خام التغذية (نسبة CMS/PET)، ونطاق معدل تدفق غاز النيتروجين (N2) من 600–800 درجة مئوية، و 50/50-80/20 ٪، و 2–10 لتر عادي في الدقيقة (NL/min)، على التوالي. تم استخدام نموذج انحدار من الدرجة الثانية للتنبؤ بالاستجابة مع تحليل النتائج باستخدام برنامج Minitab الإحصائي (الإصدار 19) عند فاصل ثقة 95 ٪. أظهرت النتائج أنه يمكن استخدام CMS فقط و/أو في خليط مع PET للتحلل الحراري. تأثر ناتج غاز التخليق بالتأثيرات التفاعلية لدرجة الحرارة ومعدل تدفق غاز N2 بقيمة p كبيرة أقل من 0.05. ولوحظ أن درجة الحرارة كانت العامل الأكثر تأثيرًا بسبب قيمتها العالية البالغة 355.06. تم تحقيق العائد الأمثل لغاز التخليق عند درجة حرارة 800 درجة مئوية، ومعدل تدفق غاز N2 يبلغ 6 NL/دقيقة، وتركيز خام التغذية لخليط من 50 ٪ بالوزن من نشارة الخشب و 50 ٪ بالوزن من البلاستيك. في هذه الظروف، كان ناتج غاز التخليق الذي تم الحصول عليه 68.1 ٪ بالوزن. في الختام، تثبت الدراسة الحالية أن الانحلال الحراري المشترك لديه القدرة على تحويل الكتلة الحيوية والبلاستيك إلى وقود ومواد كيميائية خضراء أخرى.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.sciaf.2022.e01450&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.sciaf.2022.e01450&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Elsevier BV Isaac Mensah; Julius Cudjoe Ahiekpor; Edem Cudjoe Bensah; Satyanarayana Narra; Bright Amponsem; Edward Antwi;Le comportement de co-pyrolyse de la sciure de Celtis mildbraedii (CMS) et des déchets de polyéthylène téréphtalate (PET) pour la production de gaz de synthèse a été étudié à l'aide d'une méthodologie de surface de réponse (RSM) basée sur la conception Box-Behnken (BBD). Les paramètres de production ont été examinés à une température, une concentration de charge d'alimentation (rapport CMS/PET) et une plage de débit de gaz d'azote (N2) de 600–800 °C, 50/50-80/20% et 2–10 litres normaux par minute (NL/min), respectivement. Un modèle de régression du deuxième ordre a été utilisé pour prédire la réponse avec les résultats analysés à l'aide du logiciel statistique Minitab (version 19) à un intervalle de confiance de 95 %. Les résultats ont montré que le CMS peut être utilisé uniquement et/ou en mélange avec du PET pour la pyrolyse. Le rendement en gaz de synthèse a été influencé par les effets interactifs de la température et du débit de gaz N2 avec une valeur p significative inférieure à 0,05. Il a été observé que la température était le facteur le plus influent en raison de sa valeur F élevée de 355,06. Le rendement optimal en gaz de synthèse a été atteint à une température de 800 °C, un débit de gaz N2 de 6 NL/min et une concentration de charge d'alimentation d'un mélange de 50 % en poids de sciure de bois et de 50 % en poids de plastique. Dans ces conditions, le rendement en gaz de synthèse obtenu était de 68,1 % en poids. En conclusion, la présente étude prouve que la co-pyrolyse a le potentiel de convertir la biomasse et les plastiques en carburants et autres produits chimiques verts. El comportamiento de copirólisis del aserrín Celtis mildbraedii (CMS) y los residuos de tereftalato de polietileno (PET) para la producción de gas de síntesis se investigó utilizando una metodología de superficie de respuesta (RSM) basada en el diseño Box-Behnken (BBD). Los parámetros de producción se examinaron a una temperatura, concentración de materia prima (relación CMS/PET) y rango de caudal de gas nitrógeno (N2) de 600–800 °C, 50/50–80/20% y 2–10 litros normales por minuto (NL/min), respectivamente. Se utilizó un modelo de regresión de segundo orden para predecir la respuesta con los resultados analizados utilizando el software estadístico Minitab (versión 19) con un intervalo de confianza del 95%. Los resultados mostraron que CMS se puede usar solo y/o en una mezcla con PET para la pirólisis. El rendimiento del gas de síntesis se vio influenciado por los efectos interactivos de la temperatura y el caudal de gas N2 con un valor p significativo inferior a 0,05. Se observó que la temperatura era el factor más influyente debido a su alto valor F de 355.06. El rendimiento óptimo de gas de síntesis se logró a una temperatura de 800 °C, una velocidad de flujo de gas N2 de 6 NL/min y una concentración de materia prima de una mezcla de 50% en peso de serrín y 50% en peso de plástico. En estas condiciones, el rendimiento de gas de síntesis obtenido fue del 68,1% en peso. En conclusión, el estudio actual demuestra que la copirólisis tiene el potencial de convertir la biomasa y los plásticos en combustibles y otros productos químicos ecológicos. The co-pyrolysis behavior of Celtis mildbraedii sawdust (CMS) and polyethylene terephthalate (PET) waste for syngas production was investigated using a response surface methodology (RSM) based on Box-Behnken design (BBD). The production parameters were examined at a temperature, feedstock concentration (CMS/PET ratio), and nitrogen (N2) gas flow rate range of 600–800 °C, 50/50–80/20%, and 2–10 normal liters per minute (NL/min), respectively. A second-order regression model was used to predict the response with the outcomes analyzed using Minitab statistical software (version 19) at a 95% confidence interval. Results showed that CMS can be used solely and/or in a mixture with PET for pyrolysis. The syngas yield was influenced by the interactive effects of temperature and N2 gas flow rate with a significant p-value of less than 0.05. It was observed that temperature was the most influencing factor due to its high F-value of 355.06. The optimum yield of syngas was attained at a temperature of 800 °C, N2 gas flow rate of 6 NL/min, and feedstock concentration of a mixture of 50 wt.% of sawdust and 50 wt.% of plastic. At these conditions, the obtained syngas yield was 68.1 wt.%. In conclusion, the current study proves that co-pyrolysis has the potential to convert biomass and plastics to fuels and other green chemicals. تم التحقيق في سلوك الانحلال الحراري المشترك لنشارة الخشب Celtis mildbraedii (CMS) ونفايات البولي إيثيلين تيريفثالات (PET) لإنتاج غاز التخليق باستخدام منهجية سطح الاستجابة (RSM) بناءً على تصميم Box - Behnken (BBD). تم فحص معلمات الإنتاج عند درجة حرارة، وتركيز خام التغذية (نسبة CMS/PET)، ونطاق معدل تدفق غاز النيتروجين (N2) من 600–800 درجة مئوية، و 50/50-80/20 ٪، و 2–10 لتر عادي في الدقيقة (NL/min)، على التوالي. تم استخدام نموذج انحدار من الدرجة الثانية للتنبؤ بالاستجابة مع تحليل النتائج باستخدام برنامج Minitab الإحصائي (الإصدار 19) عند فاصل ثقة 95 ٪. أظهرت النتائج أنه يمكن استخدام CMS فقط و/أو في خليط مع PET للتحلل الحراري. تأثر ناتج غاز التخليق بالتأثيرات التفاعلية لدرجة الحرارة ومعدل تدفق غاز N2 بقيمة p كبيرة أقل من 0.05. ولوحظ أن درجة الحرارة كانت العامل الأكثر تأثيرًا بسبب قيمتها العالية البالغة 355.06. تم تحقيق العائد الأمثل لغاز التخليق عند درجة حرارة 800 درجة مئوية، ومعدل تدفق غاز N2 يبلغ 6 NL/دقيقة، وتركيز خام التغذية لخليط من 50 ٪ بالوزن من نشارة الخشب و 50 ٪ بالوزن من البلاستيك. في هذه الظروف، كان ناتج غاز التخليق الذي تم الحصول عليه 68.1 ٪ بالوزن. في الختام، تثبت الدراسة الحالية أن الانحلال الحراري المشترك لديه القدرة على تحويل الكتلة الحيوية والبلاستيك إلى وقود ومواد كيميائية خضراء أخرى.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.sciaf.2022.e01450&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.sciaf.2022.e01450&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Edem Cudjoe Bensah; Francis Kemausuor; Kodwo Miezah; Zsófia Kádár; Moses Mensah;Abstract A major challenge to commercial production of cellulosic ethanol pertains to the cost-effective breakdown of the complex and recalcitrant structure of lignocellulose into its components via pretreatment, the cost of enzymes for hydrolysis and fermentation, and the conversion rate of C5 sugars to ethanol, among others. While the industrialized and some emerging countries are gradually breaking grounds in cellulosic ethanol, most African countries have made little effort in research and development even though the continent is rich in lignocellulosic biomass. The paper estimates residues from widely available crops and municipal waste and determines their respective theoretical ethanol potential (around 22 billion litres annually). It further reviews stages involved in the production of cellulosic ethanol, focussing on processing methods that can be adapted to current situation in most African countries. The paper suggests that research and development should highlight favourable pretreatment methods such as extrusion, steaming/boiling, and chemical methods employing lime, KOH and crude glycerol (from biodiesel production), as well as the development of crude enzyme complexes from local materials. Though the falling price of enzymes is improving economic production of ethanol, advancements in heterogeneous catalytic hydrolysis will considerably favour economic production of ethanol in Africa due to the potential of recycling and reusing solid acid catalysts.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.04.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.04.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Edem Cudjoe Bensah; Francis Kemausuor; Kodwo Miezah; Zsófia Kádár; Moses Mensah;Abstract A major challenge to commercial production of cellulosic ethanol pertains to the cost-effective breakdown of the complex and recalcitrant structure of lignocellulose into its components via pretreatment, the cost of enzymes for hydrolysis and fermentation, and the conversion rate of C5 sugars to ethanol, among others. While the industrialized and some emerging countries are gradually breaking grounds in cellulosic ethanol, most African countries have made little effort in research and development even though the continent is rich in lignocellulosic biomass. The paper estimates residues from widely available crops and municipal waste and determines their respective theoretical ethanol potential (around 22 billion litres annually). It further reviews stages involved in the production of cellulosic ethanol, focussing on processing methods that can be adapted to current situation in most African countries. The paper suggests that research and development should highlight favourable pretreatment methods such as extrusion, steaming/boiling, and chemical methods employing lime, KOH and crude glycerol (from biodiesel production), as well as the development of crude enzyme complexes from local materials. Though the falling price of enzymes is improving economic production of ethanol, advancements in heterogeneous catalytic hydrolysis will considerably favour economic production of ethanol in Africa due to the potential of recycling and reusing solid acid catalysts.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.04.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.04.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Elsevier BV Isaac Mensah; Julius Cudjoe Ahiekpor; Nadine Herold; Edem Cudjoe Bensah; Alexander Pfriem; Edward Antwi; Bright Amponsem;La sciure de bois Celtis mildbraedii (CMS) du Ghana a été caractérisée pour étudier son adéquation avec le polyéthylène téréphtalate (PET) pour la production de gaz de synthèse par co-pyrolyse. Les propriétés physiques et chimiques évaluées comprennent les compositions proches et ultimes, la valeur du pH, le pouvoir calorifique supérieur (HHV) et la composition lignocellulosique. De plus, le comportement thermique à différentes vitesses de chauffage (5, 10 et 20 K/min) et la prédiction qualitative des composés organiques de la CMS ont été examinés à l'aide de techniques d'analyse thermogravimétrique (TG/DTG) et de spectroscopie NIR, respectivement. Résultats de l'analyse proche (humidité = 17,15±0,0 % en poids, cendres = 1,13±0,4 % en poids, matières volatiles = 68,39±0,4 % en poids, carbone fixe = 13,33±0,8 % en poids) ; analyse finale (C = 48,51 % en poids)%, H = 6,66 % en poids%, N = 0,51 en poids%, S = 0,02 en poids.%, O = 44,30 % en poids) ; des valeurs de pH (phase froide = 7,60, phase chaude = 6,30) ; HHV (15,37 – 18,03 MJ/kg) ; et une composition lignocellulosique (extraits = 13,80±0,57 % en poids, hémicellulose = 21,95±3,89 % en poids, lignine = 17,35±0,35 % en poids, cellulose = 46,90±2,97 % en poids) ont été obtenues. La perte de masse maximale était de 83,48 % à 289,8 °C à 5 K/min. Il a été conclu que la CMS est une ressource de biomasse à fort potentiel pour la production de gaz de synthèse avec une formule empirique de CH1.64O0.69N0.009S0.0001. El aserrín Celtis mildbraedii (CMS) de Ghana se caracterizó por investigar su idoneidad con tereftalato de polietileno (PET) para la producción de gas de síntesis a través de copirólisis. Las propiedades físicas y químicas evaluadas incluyen composiciones próximas y finales, valor de pH, valor de calentamiento más alto (HHV) y composición lignocelulósica. Además, el comportamiento térmico a diferentes velocidades de calentamiento (5, 10 y 20 K/min) y la predicción cualitativa de los compuestos orgánicos de CMS se examinaron mediante análisis termogravimétrico (TG/DTG) y técnicas de espectroscopía NIR, respectivamente. Resultados del análisis próximo (humedad = 17,15±0,0% en peso, ceniza = 1,13±0,4% en peso, materia volátil = 68,39±0,4% en peso, carbono fijo = 13,33±0,8% en peso); análisis final (C = 48,51% en peso%, H = 6.66 en peso.%, N = 0.51 en peso.%, S = 0.02 en peso.%, O = 44.30% en peso); valores de pH (fase fría = 7.60, fase caliente = 6.30); HHV (15.37 – 18.03 MJ/kg); y composición lignocelulósica (extractivos = 13.80±0.57% en peso, hemicelulosa = 21.95±3.89% en peso, lignina = 17.35±0.35% en peso, celulosa = 46.90±2.97% en peso). La pérdida de masa máxima fue del 83,48% a 289,8 °C a 5 K/min. Se concluyó que el CMS es un recurso de biomasa de alto potencial para la producción de gas de síntesis con una fórmula empírica de CH1.64O0.69N0.009S0.0001. تتميز نشارة الخشب Celtis mildbraedii (CMS) من غانا بالتحقيق في مدى ملاءمتها للبولي إيثيلين تيريفثالات (PET) لإنتاج غاز التخليق عبر الانحلال الحراري المشترك. تشمل الخصائص الفيزيائية والكيميائية التي تم تقييمها التركيبات التقريبية والنهائية، وقيمة الأس الهيدروجيني، وقيمة التسخين الأعلى (HHV)، والتركيبة السليلوزية اللجنينية. كما تم فحص السلوك الحراري بمعدلات تسخين مختلفة (5 و 10 و 20 كلفن/دقيقة) والتنبؤ النوعي للمركبات العضوية لـ CMS باستخدام تقنيات التحليل الجاذبية الحرارية (TG/DTG) وتقنيات التحليل الطيفي NIR، على التوالي. نتائج التحليل التقريبي (الرطوبة = 17.15±0.0 ٪ بالوزن، الرماد = 1.13±0.4 ٪ بالوزن، المادة المتطايرة = 68.39±0.4 ٪ بالوزن، الكربون الثابت = 13.33±0.8 ٪ بالوزن) ؛ التحليل النهائي (C = 48.51 بالوزن%، الارتفاع = 6.66 بالوزن٪، N = 0.51 بالوزن.%، S = 0.02 بالوزن%، O = 44.30 بالوزن %)؛ قيم الأس الهيدروجيني (الطور البارد = 7.60، الطور الساخن = 6.30 )؛ HHV (15.37 – 18.03 مللي جول/كجم )؛ والتركيب السليولوزي اللينيني (المستخلصات = 13.80±0.57 بالوزن %، نصف السليلوز = 21.95±3.89 بالوزن %، اللجنين = 17.35±0.35 بالوزن %، السليلوز = 46.90±2.97 بالوزن %). كان الحد الأقصى لفقدان الكتلة 83.48 ٪ عند 289.8 درجة مئوية عند 5 كيلومترات/دقيقة. تم استنتاج أن CMS هو مورد كتلة حيوية محتمل للغاية لإنتاج غاز التخليق مع صيغة تجريبية CH1.64O0.69N0.009S0.0001. Celtis mildbraedii sawdust (CMS) from Ghana was characterised to investigate its suitability with polyethylene terephthalate (PET) for syngas production via co-pyrolysis. The physical and chemical properties assessed include proximate and ultimate compositions, pH value, higher heating value (HHV), and lignocellulosic composition. Also, the thermal behaviour at different heating rates (5, 10, and 20 K/min) and qualitative prediction of organic compounds of CMS were examined using thermogravimetric analysis (TG/DTG) and NIR spectroscopy techniques, respectively. Results of proximate analysis (moisture = 17.15±0.0 wt.%, ash = 1.13±0.4 wt.%, volatile matter = 68.39±0.4 wt.%, fixed carbon = 13.33±0.8 wt.%); ultimate analysis (C = 48.51 wt.%, H = 6.66 wt.%, N = 0.51 wt.%, S = 0.02 wt.%, O = 44.30 wt.%); pH values (cold phase = 7.60, hot phase = 6.30); HHV (15.37 – 18.03 MJ/kg); and lignocellulosic composition (extractives = 13.80±0.57 wt.%, hemicellulose = 21.95±3.89 wt.%, lignin = 17.35±0.35 wt.%, cellulose = 46.90±2.97 wt.%) were obtained. The maximum mass loss was 83.48% at 289.8 °C at 5 K/min. It was concluded that CMS is a highly potential biomass resource for syngas production with an empirical formula of CH1.64O0.69N0.009S0.0001.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.sciaf.2022.e01208&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.sciaf.2022.e01208&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Elsevier BV Isaac Mensah; Julius Cudjoe Ahiekpor; Nadine Herold; Edem Cudjoe Bensah; Alexander Pfriem; Edward Antwi; Bright Amponsem;La sciure de bois Celtis mildbraedii (CMS) du Ghana a été caractérisée pour étudier son adéquation avec le polyéthylène téréphtalate (PET) pour la production de gaz de synthèse par co-pyrolyse. Les propriétés physiques et chimiques évaluées comprennent les compositions proches et ultimes, la valeur du pH, le pouvoir calorifique supérieur (HHV) et la composition lignocellulosique. De plus, le comportement thermique à différentes vitesses de chauffage (5, 10 et 20 K/min) et la prédiction qualitative des composés organiques de la CMS ont été examinés à l'aide de techniques d'analyse thermogravimétrique (TG/DTG) et de spectroscopie NIR, respectivement. Résultats de l'analyse proche (humidité = 17,15±0,0 % en poids, cendres = 1,13±0,4 % en poids, matières volatiles = 68,39±0,4 % en poids, carbone fixe = 13,33±0,8 % en poids) ; analyse finale (C = 48,51 % en poids)%, H = 6,66 % en poids%, N = 0,51 en poids%, S = 0,02 en poids.%, O = 44,30 % en poids) ; des valeurs de pH (phase froide = 7,60, phase chaude = 6,30) ; HHV (15,37 – 18,03 MJ/kg) ; et une composition lignocellulosique (extraits = 13,80±0,57 % en poids, hémicellulose = 21,95±3,89 % en poids, lignine = 17,35±0,35 % en poids, cellulose = 46,90±2,97 % en poids) ont été obtenues. La perte de masse maximale était de 83,48 % à 289,8 °C à 5 K/min. Il a été conclu que la CMS est une ressource de biomasse à fort potentiel pour la production de gaz de synthèse avec une formule empirique de CH1.64O0.69N0.009S0.0001. El aserrín Celtis mildbraedii (CMS) de Ghana se caracterizó por investigar su idoneidad con tereftalato de polietileno (PET) para la producción de gas de síntesis a través de copirólisis. Las propiedades físicas y químicas evaluadas incluyen composiciones próximas y finales, valor de pH, valor de calentamiento más alto (HHV) y composición lignocelulósica. Además, el comportamiento térmico a diferentes velocidades de calentamiento (5, 10 y 20 K/min) y la predicción cualitativa de los compuestos orgánicos de CMS se examinaron mediante análisis termogravimétrico (TG/DTG) y técnicas de espectroscopía NIR, respectivamente. Resultados del análisis próximo (humedad = 17,15±0,0% en peso, ceniza = 1,13±0,4% en peso, materia volátil = 68,39±0,4% en peso, carbono fijo = 13,33±0,8% en peso); análisis final (C = 48,51% en peso%, H = 6.66 en peso.%, N = 0.51 en peso.%, S = 0.02 en peso.%, O = 44.30% en peso); valores de pH (fase fría = 7.60, fase caliente = 6.30); HHV (15.37 – 18.03 MJ/kg); y composición lignocelulósica (extractivos = 13.80±0.57% en peso, hemicelulosa = 21.95±3.89% en peso, lignina = 17.35±0.35% en peso, celulosa = 46.90±2.97% en peso). La pérdida de masa máxima fue del 83,48% a 289,8 °C a 5 K/min. Se concluyó que el CMS es un recurso de biomasa de alto potencial para la producción de gas de síntesis con una fórmula empírica de CH1.64O0.69N0.009S0.0001. تتميز نشارة الخشب Celtis mildbraedii (CMS) من غانا بالتحقيق في مدى ملاءمتها للبولي إيثيلين تيريفثالات (PET) لإنتاج غاز التخليق عبر الانحلال الحراري المشترك. تشمل الخصائص الفيزيائية والكيميائية التي تم تقييمها التركيبات التقريبية والنهائية، وقيمة الأس الهيدروجيني، وقيمة التسخين الأعلى (HHV)، والتركيبة السليلوزية اللجنينية. كما تم فحص السلوك الحراري بمعدلات تسخين مختلفة (5 و 10 و 20 كلفن/دقيقة) والتنبؤ النوعي للمركبات العضوية لـ CMS باستخدام تقنيات التحليل الجاذبية الحرارية (TG/DTG) وتقنيات التحليل الطيفي NIR، على التوالي. نتائج التحليل التقريبي (الرطوبة = 17.15±0.0 ٪ بالوزن، الرماد = 1.13±0.4 ٪ بالوزن، المادة المتطايرة = 68.39±0.4 ٪ بالوزن، الكربون الثابت = 13.33±0.8 ٪ بالوزن) ؛ التحليل النهائي (C = 48.51 بالوزن%، الارتفاع = 6.66 بالوزن٪، N = 0.51 بالوزن.%، S = 0.02 بالوزن%، O = 44.30 بالوزن %)؛ قيم الأس الهيدروجيني (الطور البارد = 7.60، الطور الساخن = 6.30 )؛ HHV (15.37 – 18.03 مللي جول/كجم )؛ والتركيب السليولوزي اللينيني (المستخلصات = 13.80±0.57 بالوزن %، نصف السليلوز = 21.95±3.89 بالوزن %، اللجنين = 17.35±0.35 بالوزن %، السليلوز = 46.90±2.97 بالوزن %). كان الحد الأقصى لفقدان الكتلة 83.48 ٪ عند 289.8 درجة مئوية عند 5 كيلومترات/دقيقة. تم استنتاج أن CMS هو مورد كتلة حيوية محتمل للغاية لإنتاج غاز التخليق مع صيغة تجريبية CH1.64O0.69N0.009S0.0001. Celtis mildbraedii sawdust (CMS) from Ghana was characterised to investigate its suitability with polyethylene terephthalate (PET) for syngas production via co-pyrolysis. The physical and chemical properties assessed include proximate and ultimate compositions, pH value, higher heating value (HHV), and lignocellulosic composition. Also, the thermal behaviour at different heating rates (5, 10, and 20 K/min) and qualitative prediction of organic compounds of CMS were examined using thermogravimetric analysis (TG/DTG) and NIR spectroscopy techniques, respectively. Results of proximate analysis (moisture = 17.15±0.0 wt.%, ash = 1.13±0.4 wt.%, volatile matter = 68.39±0.4 wt.%, fixed carbon = 13.33±0.8 wt.%); ultimate analysis (C = 48.51 wt.%, H = 6.66 wt.%, N = 0.51 wt.%, S = 0.02 wt.%, O = 44.30 wt.%); pH values (cold phase = 7.60, hot phase = 6.30); HHV (15.37 – 18.03 MJ/kg); and lignocellulosic composition (extractives = 13.80±0.57 wt.%, hemicellulose = 21.95±3.89 wt.%, lignin = 17.35±0.35 wt.%, cellulose = 46.90±2.97 wt.%) were obtained. The maximum mass loss was 83.48% at 289.8 °C at 5 K/min. It was concluded that CMS is a highly potential biomass resource for syngas production with an empirical formula of CH1.64O0.69N0.009S0.0001.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.sciaf.2022.e01208&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.sciaf.2022.e01208&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013Publisher:Wiley Authors: Moses Mensah; Edem Cudjoe Bensah; Edem Cudjoe Bensah;Pretreatment of lignocellulose has received considerable research globally due to its influence on the technical, economic and environmental sustainability of cellulosic ethanol production. Some of the most promising pretreatment methods require the application of chemicals such as acids, alkali, salts, oxidants, and solvents. Thus, advances in research have enabled the development and integration of chemical-based pretreatment into proprietary ethanol production technologies in several pilot and demonstration plants globally, with potential to scale-up to commercial levels. This paper reviews known and emerging chemical pretreatment methods, highlighting recent findings and process innovations developed to offset inherent challenges via a range of interventions, notably, the combination of chemical pretreatment with other methods to improve carbohydrate preservation, reduce formation of degradation products, achieve high sugar yields at mild reaction conditions, reduce solvent loads and enzyme dose, reduce waste generation, and improve recovery of biomass components in pure forms. The use of chemicals such as ionic liquids, NMMO, and sulphite are promising once challenges in solvent recovery are overcome. For developing countries, alkali-based methods are relatively easy to deploy in decentralized, low-tech systems owing to advantages such as the requirement of simple reactors and the ease of operation.
International Journa... arrow_drop_down International Journal of Chemical EngineeringArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2013/719607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 273 citations 273 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Chemical EngineeringArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2013/719607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013Publisher:Wiley Authors: Moses Mensah; Edem Cudjoe Bensah; Edem Cudjoe Bensah;Pretreatment of lignocellulose has received considerable research globally due to its influence on the technical, economic and environmental sustainability of cellulosic ethanol production. Some of the most promising pretreatment methods require the application of chemicals such as acids, alkali, salts, oxidants, and solvents. Thus, advances in research have enabled the development and integration of chemical-based pretreatment into proprietary ethanol production technologies in several pilot and demonstration plants globally, with potential to scale-up to commercial levels. This paper reviews known and emerging chemical pretreatment methods, highlighting recent findings and process innovations developed to offset inherent challenges via a range of interventions, notably, the combination of chemical pretreatment with other methods to improve carbohydrate preservation, reduce formation of degradation products, achieve high sugar yields at mild reaction conditions, reduce solvent loads and enzyme dose, reduce waste generation, and improve recovery of biomass components in pure forms. The use of chemicals such as ionic liquids, NMMO, and sulphite are promising once challenges in solvent recovery are overcome. For developing countries, alkali-based methods are relatively easy to deploy in decentralized, low-tech systems owing to advantages such as the requirement of simple reactors and the ease of operation.
International Journa... arrow_drop_down International Journal of Chemical EngineeringArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2013/719607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 273 citations 273 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Chemical EngineeringArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2013/719607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Martina Francisca Baidoo; Edem Cudjoe Bensah; Abeeku Brew-Hammond; Richard Arthur;Abstract Apart from waste treatment, anaerobic digestion is a reliable method for biogas generation. The digested sludge from anaerobic digesters can also be used to enhance the fertility of the soil. This paper assesses the biogas potential from the sewage generated in four public universities in Ghana for the 2008/2009 academic year. In the estimation of the amount of sewage generated in each university, the population was used and was categorized into residential and non-residential staff and students. The population of the universities varies throughout the year due to the vacation periods hence the sewage generated varies accordingly. The estimated population for the four universities was 100,313 when in session and 20,903 on vacation and the estimated daily sewage generated is 1379.9 m 3 and 327.8 m 3 , when the universities were in session and on vacation respectively. This study revealed that an annual biogas potential of about 815,109 m 3 could be obtained which is equivalent to about 4,891 MWh of energy or can replace about 4532 tonnes of firewood or 326.4 tonnes of LPG which can reduce the pressure on the forest and the use of LPG.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2011.04.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2011.04.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Martina Francisca Baidoo; Edem Cudjoe Bensah; Abeeku Brew-Hammond; Richard Arthur;Abstract Apart from waste treatment, anaerobic digestion is a reliable method for biogas generation. The digested sludge from anaerobic digesters can also be used to enhance the fertility of the soil. This paper assesses the biogas potential from the sewage generated in four public universities in Ghana for the 2008/2009 academic year. In the estimation of the amount of sewage generated in each university, the population was used and was categorized into residential and non-residential staff and students. The population of the universities varies throughout the year due to the vacation periods hence the sewage generated varies accordingly. The estimated population for the four universities was 100,313 when in session and 20,903 on vacation and the estimated daily sewage generated is 1379.9 m 3 and 327.8 m 3 , when the universities were in session and on vacation respectively. This study revealed that an annual biogas potential of about 815,109 m 3 could be obtained which is equivalent to about 4,891 MWh of energy or can replace about 4532 tonnes of firewood or 326.4 tonnes of LPG which can reduce the pressure on the forest and the use of LPG.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2011.04.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2011.04.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 DenmarkPublisher:Elsevier BV Kemausuor, Francis; Kamp, Andreas; Thomsen, Sune Tjalfe; Bensah, Edem Cudjoe; Stergård, Hanne;Abstract Biomass is an important renewable energy source that holds large potential as feedstock for the production of different energy carriers in a context of sustainable development, peak oil and climate change. In developing countries, biomass already supplies the bulk of energy services and future use is expected to increase with more efficient applications, such as the production of biogas and liquid biofuels for cooking, transportation and the generation of power. The aim of this study is to establish the amount of Ghana's energy demand that can be satisfied by using the country's crop residues, animal manure, logging residues and municipal waste. The study finds that the technical potential of bioenergy from these sources is 96 PJ in 2700 Mm3 of biogas or 52 PJ in 2300 ML of cellulosic ethanol. The biogas potential is sufficient to replace more than a quarter of Ghana's present woodfuel use. If instead converted to cellulosic ethanol, the estimated potential is seven times the estimated 336 ML of biofuels needed to achieve the projected 10% biofuels blends at the national level in 2020. Utilizing the calculated potentials involves a large challenge in terms of infrastructure requirements, quantified to hundreds of thousands of small-scale plants.
University of Copenh... arrow_drop_down University of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2014.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu108 citations 108 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Copenh... arrow_drop_down University of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2014.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 DenmarkPublisher:Elsevier BV Kemausuor, Francis; Kamp, Andreas; Thomsen, Sune Tjalfe; Bensah, Edem Cudjoe; Stergård, Hanne;Abstract Biomass is an important renewable energy source that holds large potential as feedstock for the production of different energy carriers in a context of sustainable development, peak oil and climate change. In developing countries, biomass already supplies the bulk of energy services and future use is expected to increase with more efficient applications, such as the production of biogas and liquid biofuels for cooking, transportation and the generation of power. The aim of this study is to establish the amount of Ghana's energy demand that can be satisfied by using the country's crop residues, animal manure, logging residues and municipal waste. The study finds that the technical potential of bioenergy from these sources is 96 PJ in 2700 Mm3 of biogas or 52 PJ in 2300 ML of cellulosic ethanol. The biogas potential is sufficient to replace more than a quarter of Ghana's present woodfuel use. If instead converted to cellulosic ethanol, the estimated potential is seven times the estimated 336 ML of biofuels needed to achieve the projected 10% biofuels blends at the national level in 2020. Utilizing the calculated potentials involves a large challenge in terms of infrastructure requirements, quantified to hundreds of thousands of small-scale plants.
University of Copenh... arrow_drop_down University of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2014.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu108 citations 108 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Copenh... arrow_drop_down University of Copenhagen: ResearchArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2014.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type 2019Publisher:IntechOpen Authors: Edem Cudjoe Bensah; Moses Mensah;Un défi majeur à la production commerciale d'éthanol cellulosique concerne la décomposition rentable de la structure complexe et récalcitrante de la lignocellulose en ses composants par des méthodes de prétraitement - physiques, chimiques, physico-chimiques, biologiques et diverses combinaisons de ceux-ci. Le type et les conditions d'un prétraitement ont un impact sur les processus en amont tels que la réduction de la taille ainsi que sur les processus en aval tels que l'hydrolyse enzymatique et les charges enzymatiques, et en tant que tel, le choix d'une méthode de prétraitement pour une biomasse spécifique (ou un mélange de matériaux) est influencé par plusieurs facteurs tels que la préservation des glucides et la digestibilité, les rendements en sucre et en éthanol, la consommation d'énergie, les coûts des équipements et des solvants, l'élimination et la qualité de la lignine, la formation de produits de dégradation du sucre/lignine, la production de déchets et l'utilisation de l'eau, entre autres. Ce chapitre examine les méthodes physico-chimiques connues et émergentes de fractionnement de la biomasse en ce qui concerne la description et les applications du processus, les avantages et les inconvénients, ainsi que les innovations récentes utilisées pour améliorer les rendements en sucre, la durabilité environnementale et l'économie des processus. Un desafío importante para la producción comercial de etanol celulósico se refiere a la descomposición rentable de la estructura compleja y recalcitrante de la lignocelulosa en sus componentes mediante métodos de pretratamiento: físico, químico, físico-químico, biológico y varias combinaciones de los mismos. El tipo y las condiciones de un pretratamiento afectan tanto a los procesos anteriores, como a la reducción de tamaño, como a los procesos posteriores, como la hidrólisis enzimática y las cargas enzimáticas, y como tal, la elección de un método de pretratamiento para una biomasa específica (o mezcla de materiales) está influenciada por varios factores, como la conservación y digestibilidad de carbohidratos, los rendimientos de azúcar y etanol, el consumo de energía, los costos de equipos y disolventes, la eliminación y calidad de la lignina, la formación de productos de degradación de azúcar/lignina, la producción de desechos y el uso de agua, entre otros. Este capítulo revisa los métodos fisicoquímicos de fraccionamiento de biomasa conocidos y emergentes con respecto a la descripción y las aplicaciones del proceso, las ventajas y desventajas, así como las innovaciones recientes empleadas para mejorar los rendimientos de azúcar, la sostenibilidad ambiental y la economía del proceso. A major challenge to commercial production of cellulosic ethanol pertains to the costeffective breakdown of the complex and recalcitrant structure of lignocellulose into its components by pretreatment methods-physical, chemical, physico-chemical, biological and various combinations thereof.The type and conditions of a pretreatment impacts both upstream processes such as size reduction as well as downstream processes such as enzymatic hydrolysis and enzyme loadings, and as such the choice of a pretreatment method for a specific biomass (or mix of materials) is influenced by several factors such as carbohydrate preservation and digestibility, sugar and ethanol yields, energy consumption, equipment and solvent costs, lignin removal and quality, formation of sugar/lignin degradation products, waste production, and water usage, among others.This chapter reviews both well-known and emerging physico-chemical methods of biomass fractionation with regards to process description and applications, advantages and disadvantages, as well as recent innovations employed to improve sugar yields, environmental sustainability and process economics. يتعلق التحدي الرئيسي للإنتاج التجاري للإيثانول السليولوزي بالتحلل الفعال من حيث التكلفة للهيكل المعقد والمتمرد لليجنوسليلوز إلى مكوناته من خلال طرق المعالجة المسبقة - الفيزيائية والكيميائية والفيزيائية والكيميائية والبيولوجية وتوليفات مختلفة منها. يؤثر نوع وشروط المعالجة المسبقة على كل من عمليات المنبع مثل تقليل الحجم وكذلك العمليات النهائية مثل التحلل المائي الإنزيمي وتحميل الإنزيمات، وعلى هذا النحو، فإن اختيار طريقة المعالجة المسبقة لكتلة حيوية معينة (أو مزيج من المواد) يتأثر بعدة عوامل مثل الحفاظ على الكربوهيدرات وقابليتها للهضم، ومحاصيل السكر والإيثانول، واستهلاك الطاقة، وتكاليف المعدات والمذيبات، وإزالة اللجنين وجودته، وتشكيل منتجات تحلل السكر/اللجنين، وإنتاج النفايات، واستخدام المياه، من بين أمور أخرى. يستعرض هذا الفصل كلا من الأساليب الفيزيائية والكيميائية الناشئة لتجزئة الكتلة الحيوية فيما يتعلق بوصف العملية وتطبيقاتها ومزاياها وعيوبها، بالإضافة إلى الابتكارات الحديثة المستخدمة لتحسين محاصيل السكر، والاستدامة البيئية والعمليات الاقتصادية.
InTech arrow_drop_down https://doi.org/10.5772/intech...Part of book or chapter of book . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://www.intechopen.com/cit...Part of book or chapter of bookLicense: CC BYData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5772/intechopen.79649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert InTech arrow_drop_down https://doi.org/10.5772/intech...Part of book or chapter of book . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://www.intechopen.com/cit...Part of book or chapter of bookLicense: CC BYData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5772/intechopen.79649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type 2019Publisher:IntechOpen Authors: Edem Cudjoe Bensah; Moses Mensah;Un défi majeur à la production commerciale d'éthanol cellulosique concerne la décomposition rentable de la structure complexe et récalcitrante de la lignocellulose en ses composants par des méthodes de prétraitement - physiques, chimiques, physico-chimiques, biologiques et diverses combinaisons de ceux-ci. Le type et les conditions d'un prétraitement ont un impact sur les processus en amont tels que la réduction de la taille ainsi que sur les processus en aval tels que l'hydrolyse enzymatique et les charges enzymatiques, et en tant que tel, le choix d'une méthode de prétraitement pour une biomasse spécifique (ou un mélange de matériaux) est influencé par plusieurs facteurs tels que la préservation des glucides et la digestibilité, les rendements en sucre et en éthanol, la consommation d'énergie, les coûts des équipements et des solvants, l'élimination et la qualité de la lignine, la formation de produits de dégradation du sucre/lignine, la production de déchets et l'utilisation de l'eau, entre autres. Ce chapitre examine les méthodes physico-chimiques connues et émergentes de fractionnement de la biomasse en ce qui concerne la description et les applications du processus, les avantages et les inconvénients, ainsi que les innovations récentes utilisées pour améliorer les rendements en sucre, la durabilité environnementale et l'économie des processus. Un desafío importante para la producción comercial de etanol celulósico se refiere a la descomposición rentable de la estructura compleja y recalcitrante de la lignocelulosa en sus componentes mediante métodos de pretratamiento: físico, químico, físico-químico, biológico y varias combinaciones de los mismos. El tipo y las condiciones de un pretratamiento afectan tanto a los procesos anteriores, como a la reducción de tamaño, como a los procesos posteriores, como la hidrólisis enzimática y las cargas enzimáticas, y como tal, la elección de un método de pretratamiento para una biomasa específica (o mezcla de materiales) está influenciada por varios factores, como la conservación y digestibilidad de carbohidratos, los rendimientos de azúcar y etanol, el consumo de energía, los costos de equipos y disolventes, la eliminación y calidad de la lignina, la formación de productos de degradación de azúcar/lignina, la producción de desechos y el uso de agua, entre otros. Este capítulo revisa los métodos fisicoquímicos de fraccionamiento de biomasa conocidos y emergentes con respecto a la descripción y las aplicaciones del proceso, las ventajas y desventajas, así como las innovaciones recientes empleadas para mejorar los rendimientos de azúcar, la sostenibilidad ambiental y la economía del proceso. A major challenge to commercial production of cellulosic ethanol pertains to the costeffective breakdown of the complex and recalcitrant structure of lignocellulose into its components by pretreatment methods-physical, chemical, physico-chemical, biological and various combinations thereof.The type and conditions of a pretreatment impacts both upstream processes such as size reduction as well as downstream processes such as enzymatic hydrolysis and enzyme loadings, and as such the choice of a pretreatment method for a specific biomass (or mix of materials) is influenced by several factors such as carbohydrate preservation and digestibility, sugar and ethanol yields, energy consumption, equipment and solvent costs, lignin removal and quality, formation of sugar/lignin degradation products, waste production, and water usage, among others.This chapter reviews both well-known and emerging physico-chemical methods of biomass fractionation with regards to process description and applications, advantages and disadvantages, as well as recent innovations employed to improve sugar yields, environmental sustainability and process economics. يتعلق التحدي الرئيسي للإنتاج التجاري للإيثانول السليولوزي بالتحلل الفعال من حيث التكلفة للهيكل المعقد والمتمرد لليجنوسليلوز إلى مكوناته من خلال طرق المعالجة المسبقة - الفيزيائية والكيميائية والفيزيائية والكيميائية والبيولوجية وتوليفات مختلفة منها. يؤثر نوع وشروط المعالجة المسبقة على كل من عمليات المنبع مثل تقليل الحجم وكذلك العمليات النهائية مثل التحلل المائي الإنزيمي وتحميل الإنزيمات، وعلى هذا النحو، فإن اختيار طريقة المعالجة المسبقة لكتلة حيوية معينة (أو مزيج من المواد) يتأثر بعدة عوامل مثل الحفاظ على الكربوهيدرات وقابليتها للهضم، ومحاصيل السكر والإيثانول، واستهلاك الطاقة، وتكاليف المعدات والمذيبات، وإزالة اللجنين وجودته، وتشكيل منتجات تحلل السكر/اللجنين، وإنتاج النفايات، واستخدام المياه، من بين أمور أخرى. يستعرض هذا الفصل كلا من الأساليب الفيزيائية والكيميائية الناشئة لتجزئة الكتلة الحيوية فيما يتعلق بوصف العملية وتطبيقاتها ومزاياها وعيوبها، بالإضافة إلى الابتكارات الحديثة المستخدمة لتحسين محاصيل السكر، والاستدامة البيئية والعمليات الاقتصادية.
InTech arrow_drop_down https://doi.org/10.5772/intech...Part of book or chapter of book . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://www.intechopen.com/cit...Part of book or chapter of bookLicense: CC BYData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5772/intechopen.79649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert InTech arrow_drop_down https://doi.org/10.5772/intech...Part of book or chapter of book . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://www.intechopen.com/cit...Part of book or chapter of bookLicense: CC BYData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5772/intechopen.79649&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Elsevier BV Isaac Mensah; Julius Cudjoe Ahiekpor; Edem Cudjoe Bensah; Satyanarayana Narra; Bright Amponsem; Edward Antwi;Le comportement de co-pyrolyse de la sciure de Celtis mildbraedii (CMS) et des déchets de polyéthylène téréphtalate (PET) pour la production de gaz de synthèse a été étudié à l'aide d'une méthodologie de surface de réponse (RSM) basée sur la conception Box-Behnken (BBD). Les paramètres de production ont été examinés à une température, une concentration de charge d'alimentation (rapport CMS/PET) et une plage de débit de gaz d'azote (N2) de 600–800 °C, 50/50-80/20% et 2–10 litres normaux par minute (NL/min), respectivement. Un modèle de régression du deuxième ordre a été utilisé pour prédire la réponse avec les résultats analysés à l'aide du logiciel statistique Minitab (version 19) à un intervalle de confiance de 95 %. Les résultats ont montré que le CMS peut être utilisé uniquement et/ou en mélange avec du PET pour la pyrolyse. Le rendement en gaz de synthèse a été influencé par les effets interactifs de la température et du débit de gaz N2 avec une valeur p significative inférieure à 0,05. Il a été observé que la température était le facteur le plus influent en raison de sa valeur F élevée de 355,06. Le rendement optimal en gaz de synthèse a été atteint à une température de 800 °C, un débit de gaz N2 de 6 NL/min et une concentration de charge d'alimentation d'un mélange de 50 % en poids de sciure de bois et de 50 % en poids de plastique. Dans ces conditions, le rendement en gaz de synthèse obtenu était de 68,1 % en poids. En conclusion, la présente étude prouve que la co-pyrolyse a le potentiel de convertir la biomasse et les plastiques en carburants et autres produits chimiques verts. El comportamiento de copirólisis del aserrín Celtis mildbraedii (CMS) y los residuos de tereftalato de polietileno (PET) para la producción de gas de síntesis se investigó utilizando una metodología de superficie de respuesta (RSM) basada en el diseño Box-Behnken (BBD). Los parámetros de producción se examinaron a una temperatura, concentración de materia prima (relación CMS/PET) y rango de caudal de gas nitrógeno (N2) de 600–800 °C, 50/50–80/20% y 2–10 litros normales por minuto (NL/min), respectivamente. Se utilizó un modelo de regresión de segundo orden para predecir la respuesta con los resultados analizados utilizando el software estadístico Minitab (versión 19) con un intervalo de confianza del 95%. Los resultados mostraron que CMS se puede usar solo y/o en una mezcla con PET para la pirólisis. El rendimiento del gas de síntesis se vio influenciado por los efectos interactivos de la temperatura y el caudal de gas N2 con un valor p significativo inferior a 0,05. Se observó que la temperatura era el factor más influyente debido a su alto valor F de 355.06. El rendimiento óptimo de gas de síntesis se logró a una temperatura de 800 °C, una velocidad de flujo de gas N2 de 6 NL/min y una concentración de materia prima de una mezcla de 50% en peso de serrín y 50% en peso de plástico. En estas condiciones, el rendimiento de gas de síntesis obtenido fue del 68,1% en peso. En conclusión, el estudio actual demuestra que la copirólisis tiene el potencial de convertir la biomasa y los plásticos en combustibles y otros productos químicos ecológicos. The co-pyrolysis behavior of Celtis mildbraedii sawdust (CMS) and polyethylene terephthalate (PET) waste for syngas production was investigated using a response surface methodology (RSM) based on Box-Behnken design (BBD). The production parameters were examined at a temperature, feedstock concentration (CMS/PET ratio), and nitrogen (N2) gas flow rate range of 600–800 °C, 50/50–80/20%, and 2–10 normal liters per minute (NL/min), respectively. A second-order regression model was used to predict the response with the outcomes analyzed using Minitab statistical software (version 19) at a 95% confidence interval. Results showed that CMS can be used solely and/or in a mixture with PET for pyrolysis. The syngas yield was influenced by the interactive effects of temperature and N2 gas flow rate with a significant p-value of less than 0.05. It was observed that temperature was the most influencing factor due to its high F-value of 355.06. The optimum yield of syngas was attained at a temperature of 800 °C, N2 gas flow rate of 6 NL/min, and feedstock concentration of a mixture of 50 wt.% of sawdust and 50 wt.% of plastic. At these conditions, the obtained syngas yield was 68.1 wt.%. In conclusion, the current study proves that co-pyrolysis has the potential to convert biomass and plastics to fuels and other green chemicals. تم التحقيق في سلوك الانحلال الحراري المشترك لنشارة الخشب Celtis mildbraedii (CMS) ونفايات البولي إيثيلين تيريفثالات (PET) لإنتاج غاز التخليق باستخدام منهجية سطح الاستجابة (RSM) بناءً على تصميم Box - Behnken (BBD). تم فحص معلمات الإنتاج عند درجة حرارة، وتركيز خام التغذية (نسبة CMS/PET)، ونطاق معدل تدفق غاز النيتروجين (N2) من 600–800 درجة مئوية، و 50/50-80/20 ٪، و 2–10 لتر عادي في الدقيقة (NL/min)، على التوالي. تم استخدام نموذج انحدار من الدرجة الثانية للتنبؤ بالاستجابة مع تحليل النتائج باستخدام برنامج Minitab الإحصائي (الإصدار 19) عند فاصل ثقة 95 ٪. أظهرت النتائج أنه يمكن استخدام CMS فقط و/أو في خليط مع PET للتحلل الحراري. تأثر ناتج غاز التخليق بالتأثيرات التفاعلية لدرجة الحرارة ومعدل تدفق غاز N2 بقيمة p كبيرة أقل من 0.05. ولوحظ أن درجة الحرارة كانت العامل الأكثر تأثيرًا بسبب قيمتها العالية البالغة 355.06. تم تحقيق العائد الأمثل لغاز التخليق عند درجة حرارة 800 درجة مئوية، ومعدل تدفق غاز N2 يبلغ 6 NL/دقيقة، وتركيز خام التغذية لخليط من 50 ٪ بالوزن من نشارة الخشب و 50 ٪ بالوزن من البلاستيك. في هذه الظروف، كان ناتج غاز التخليق الذي تم الحصول عليه 68.1 ٪ بالوزن. في الختام، تثبت الدراسة الحالية أن الانحلال الحراري المشترك لديه القدرة على تحويل الكتلة الحيوية والبلاستيك إلى وقود ومواد كيميائية خضراء أخرى.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.sciaf.2022.e01450&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.sciaf.2022.e01450&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Elsevier BV Isaac Mensah; Julius Cudjoe Ahiekpor; Edem Cudjoe Bensah; Satyanarayana Narra; Bright Amponsem; Edward Antwi;Le comportement de co-pyrolyse de la sciure de Celtis mildbraedii (CMS) et des déchets de polyéthylène téréphtalate (PET) pour la production de gaz de synthèse a été étudié à l'aide d'une méthodologie de surface de réponse (RSM) basée sur la conception Box-Behnken (BBD). Les paramètres de production ont été examinés à une température, une concentration de charge d'alimentation (rapport CMS/PET) et une plage de débit de gaz d'azote (N2) de 600–800 °C, 50/50-80/20% et 2–10 litres normaux par minute (NL/min), respectivement. Un modèle de régression du deuxième ordre a été utilisé pour prédire la réponse avec les résultats analysés à l'aide du logiciel statistique Minitab (version 19) à un intervalle de confiance de 95 %. Les résultats ont montré que le CMS peut être utilisé uniquement et/ou en mélange avec du PET pour la pyrolyse. Le rendement en gaz de synthèse a été influencé par les effets interactifs de la température et du débit de gaz N2 avec une valeur p significative inférieure à 0,05. Il a été observé que la température était le facteur le plus influent en raison de sa valeur F élevée de 355,06. Le rendement optimal en gaz de synthèse a été atteint à une température de 800 °C, un débit de gaz N2 de 6 NL/min et une concentration de charge d'alimentation d'un mélange de 50 % en poids de sciure de bois et de 50 % en poids de plastique. Dans ces conditions, le rendement en gaz de synthèse obtenu était de 68,1 % en poids. En conclusion, la présente étude prouve que la co-pyrolyse a le potentiel de convertir la biomasse et les plastiques en carburants et autres produits chimiques verts. El comportamiento de copirólisis del aserrín Celtis mildbraedii (CMS) y los residuos de tereftalato de polietileno (PET) para la producción de gas de síntesis se investigó utilizando una metodología de superficie de respuesta (RSM) basada en el diseño Box-Behnken (BBD). Los parámetros de producción se examinaron a una temperatura, concentración de materia prima (relación CMS/PET) y rango de caudal de gas nitrógeno (N2) de 600–800 °C, 50/50–80/20% y 2–10 litros normales por minuto (NL/min), respectivamente. Se utilizó un modelo de regresión de segundo orden para predecir la respuesta con los resultados analizados utilizando el software estadístico Minitab (versión 19) con un intervalo de confianza del 95%. Los resultados mostraron que CMS se puede usar solo y/o en una mezcla con PET para la pirólisis. El rendimiento del gas de síntesis se vio influenciado por los efectos interactivos de la temperatura y el caudal de gas N2 con un valor p significativo inferior a 0,05. Se observó que la temperatura era el factor más influyente debido a su alto valor F de 355.06. El rendimiento óptimo de gas de síntesis se logró a una temperatura de 800 °C, una velocidad de flujo de gas N2 de 6 NL/min y una concentración de materia prima de una mezcla de 50% en peso de serrín y 50% en peso de plástico. En estas condiciones, el rendimiento de gas de síntesis obtenido fue del 68,1% en peso. En conclusión, el estudio actual demuestra que la copirólisis tiene el potencial de convertir la biomasa y los plásticos en combustibles y otros productos químicos ecológicos. The co-pyrolysis behavior of Celtis mildbraedii sawdust (CMS) and polyethylene terephthalate (PET) waste for syngas production was investigated using a response surface methodology (RSM) based on Box-Behnken design (BBD). The production parameters were examined at a temperature, feedstock concentration (CMS/PET ratio), and nitrogen (N2) gas flow rate range of 600–800 °C, 50/50–80/20%, and 2–10 normal liters per minute (NL/min), respectively. A second-order regression model was used to predict the response with the outcomes analyzed using Minitab statistical software (version 19) at a 95% confidence interval. Results showed that CMS can be used solely and/or in a mixture with PET for pyrolysis. The syngas yield was influenced by the interactive effects of temperature and N2 gas flow rate with a significant p-value of less than 0.05. It was observed that temperature was the most influencing factor due to its high F-value of 355.06. The optimum yield of syngas was attained at a temperature of 800 °C, N2 gas flow rate of 6 NL/min, and feedstock concentration of a mixture of 50 wt.% of sawdust and 50 wt.% of plastic. At these conditions, the obtained syngas yield was 68.1 wt.%. In conclusion, the current study proves that co-pyrolysis has the potential to convert biomass and plastics to fuels and other green chemicals. تم التحقيق في سلوك الانحلال الحراري المشترك لنشارة الخشب Celtis mildbraedii (CMS) ونفايات البولي إيثيلين تيريفثالات (PET) لإنتاج غاز التخليق باستخدام منهجية سطح الاستجابة (RSM) بناءً على تصميم Box - Behnken (BBD). تم فحص معلمات الإنتاج عند درجة حرارة، وتركيز خام التغذية (نسبة CMS/PET)، ونطاق معدل تدفق غاز النيتروجين (N2) من 600–800 درجة مئوية، و 50/50-80/20 ٪، و 2–10 لتر عادي في الدقيقة (NL/min)، على التوالي. تم استخدام نموذج انحدار من الدرجة الثانية للتنبؤ بالاستجابة مع تحليل النتائج باستخدام برنامج Minitab الإحصائي (الإصدار 19) عند فاصل ثقة 95 ٪. أظهرت النتائج أنه يمكن استخدام CMS فقط و/أو في خليط مع PET للتحلل الحراري. تأثر ناتج غاز التخليق بالتأثيرات التفاعلية لدرجة الحرارة ومعدل تدفق غاز N2 بقيمة p كبيرة أقل من 0.05. ولوحظ أن درجة الحرارة كانت العامل الأكثر تأثيرًا بسبب قيمتها العالية البالغة 355.06. تم تحقيق العائد الأمثل لغاز التخليق عند درجة حرارة 800 درجة مئوية، ومعدل تدفق غاز N2 يبلغ 6 NL/دقيقة، وتركيز خام التغذية لخليط من 50 ٪ بالوزن من نشارة الخشب و 50 ٪ بالوزن من البلاستيك. في هذه الظروف، كان ناتج غاز التخليق الذي تم الحصول عليه 68.1 ٪ بالوزن. في الختام، تثبت الدراسة الحالية أن الانحلال الحراري المشترك لديه القدرة على تحويل الكتلة الحيوية والبلاستيك إلى وقود ومواد كيميائية خضراء أخرى.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.sciaf.2022.e01450&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.sciaf.2022.e01450&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Edem Cudjoe Bensah; Francis Kemausuor; Kodwo Miezah; Zsófia Kádár; Moses Mensah;Abstract A major challenge to commercial production of cellulosic ethanol pertains to the cost-effective breakdown of the complex and recalcitrant structure of lignocellulose into its components via pretreatment, the cost of enzymes for hydrolysis and fermentation, and the conversion rate of C5 sugars to ethanol, among others. While the industrialized and some emerging countries are gradually breaking grounds in cellulosic ethanol, most African countries have made little effort in research and development even though the continent is rich in lignocellulosic biomass. The paper estimates residues from widely available crops and municipal waste and determines their respective theoretical ethanol potential (around 22 billion litres annually). It further reviews stages involved in the production of cellulosic ethanol, focussing on processing methods that can be adapted to current situation in most African countries. The paper suggests that research and development should highlight favourable pretreatment methods such as extrusion, steaming/boiling, and chemical methods employing lime, KOH and crude glycerol (from biodiesel production), as well as the development of crude enzyme complexes from local materials. Though the falling price of enzymes is improving economic production of ethanol, advancements in heterogeneous catalytic hydrolysis will considerably favour economic production of ethanol in Africa due to the potential of recycling and reusing solid acid catalysts.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.04.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.04.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Edem Cudjoe Bensah; Francis Kemausuor; Kodwo Miezah; Zsófia Kádár; Moses Mensah;Abstract A major challenge to commercial production of cellulosic ethanol pertains to the cost-effective breakdown of the complex and recalcitrant structure of lignocellulose into its components via pretreatment, the cost of enzymes for hydrolysis and fermentation, and the conversion rate of C5 sugars to ethanol, among others. While the industrialized and some emerging countries are gradually breaking grounds in cellulosic ethanol, most African countries have made little effort in research and development even though the continent is rich in lignocellulosic biomass. The paper estimates residues from widely available crops and municipal waste and determines their respective theoretical ethanol potential (around 22 billion litres annually). It further reviews stages involved in the production of cellulosic ethanol, focussing on processing methods that can be adapted to current situation in most African countries. The paper suggests that research and development should highlight favourable pretreatment methods such as extrusion, steaming/boiling, and chemical methods employing lime, KOH and crude glycerol (from biodiesel production), as well as the development of crude enzyme complexes from local materials. Though the falling price of enzymes is improving economic production of ethanol, advancements in heterogeneous catalytic hydrolysis will considerably favour economic production of ethanol in Africa due to the potential of recycling and reusing solid acid catalysts.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.04.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.04.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Elsevier BV Isaac Mensah; Julius Cudjoe Ahiekpor; Nadine Herold; Edem Cudjoe Bensah; Alexander Pfriem; Edward Antwi; Bright Amponsem;La sciure de bois Celtis mildbraedii (CMS) du Ghana a été caractérisée pour étudier son adéquation avec le polyéthylène téréphtalate (PET) pour la production de gaz de synthèse par co-pyrolyse. Les propriétés physiques et chimiques évaluées comprennent les compositions proches et ultimes, la valeur du pH, le pouvoir calorifique supérieur (HHV) et la composition lignocellulosique. De plus, le comportement thermique à différentes vitesses de chauffage (5, 10 et 20 K/min) et la prédiction qualitative des composés organiques de la CMS ont été examinés à l'aide de techniques d'analyse thermogravimétrique (TG/DTG) et de spectroscopie NIR, respectivement. Résultats de l'analyse proche (humidité = 17,15±0,0 % en poids, cendres = 1,13±0,4 % en poids, matières volatiles = 68,39±0,4 % en poids, carbone fixe = 13,33±0,8 % en poids) ; analyse finale (C = 48,51 % en poids)%, H = 6,66 % en poids%, N = 0,51 en poids%, S = 0,02 en poids.%, O = 44,30 % en poids) ; des valeurs de pH (phase froide = 7,60, phase chaude = 6,30) ; HHV (15,37 – 18,03 MJ/kg) ; et une composition lignocellulosique (extraits = 13,80±0,57 % en poids, hémicellulose = 21,95±3,89 % en poids, lignine = 17,35±0,35 % en poids, cellulose = 46,90±2,97 % en poids) ont été obtenues. La perte de masse maximale était de 83,48 % à 289,8 °C à 5 K/min. Il a été conclu que la CMS est une ressource de biomasse à fort potentiel pour la production de gaz de synthèse avec une formule empirique de CH1.64O0.69N0.009S0.0001. El aserrín Celtis mildbraedii (CMS) de Ghana se caracterizó por investigar su idoneidad con tereftalato de polietileno (PET) para la producción de gas de síntesis a través de copirólisis. Las propiedades físicas y químicas evaluadas incluyen composiciones próximas y finales, valor de pH, valor de calentamiento más alto (HHV) y composición lignocelulósica. Además, el comportamiento térmico a diferentes velocidades de calentamiento (5, 10 y 20 K/min) y la predicción cualitativa de los compuestos orgánicos de CMS se examinaron mediante análisis termogravimétrico (TG/DTG) y técnicas de espectroscopía NIR, respectivamente. Resultados del análisis próximo (humedad = 17,15±0,0% en peso, ceniza = 1,13±0,4% en peso, materia volátil = 68,39±0,4% en peso, carbono fijo = 13,33±0,8% en peso); análisis final (C = 48,51% en peso%, H = 6.66 en peso.%, N = 0.51 en peso.%, S = 0.02 en peso.%, O = 44.30% en peso); valores de pH (fase fría = 7.60, fase caliente = 6.30); HHV (15.37 – 18.03 MJ/kg); y composición lignocelulósica (extractivos = 13.80±0.57% en peso, hemicelulosa = 21.95±3.89% en peso, lignina = 17.35±0.35% en peso, celulosa = 46.90±2.97% en peso). La pérdida de masa máxima fue del 83,48% a 289,8 °C a 5 K/min. Se concluyó que el CMS es un recurso de biomasa de alto potencial para la producción de gas de síntesis con una fórmula empírica de CH1.64O0.69N0.009S0.0001. تتميز نشارة الخشب Celtis mildbraedii (CMS) من غانا بالتحقيق في مدى ملاءمتها للبولي إيثيلين تيريفثالات (PET) لإنتاج غاز التخليق عبر الانحلال الحراري المشترك. تشمل الخصائص الفيزيائية والكيميائية التي تم تقييمها التركيبات التقريبية والنهائية، وقيمة الأس الهيدروجيني، وقيمة التسخين الأعلى (HHV)، والتركيبة السليلوزية اللجنينية. كما تم فحص السلوك الحراري بمعدلات تسخين مختلفة (5 و 10 و 20 كلفن/دقيقة) والتنبؤ النوعي للمركبات العضوية لـ CMS باستخدام تقنيات التحليل الجاذبية الحرارية (TG/DTG) وتقنيات التحليل الطيفي NIR، على التوالي. نتائج التحليل التقريبي (الرطوبة = 17.15±0.0 ٪ بالوزن، الرماد = 1.13±0.4 ٪ بالوزن، المادة المتطايرة = 68.39±0.4 ٪ بالوزن، الكربون الثابت = 13.33±0.8 ٪ بالوزن) ؛ التحليل النهائي (C = 48.51 بالوزن%، الارتفاع = 6.66 بالوزن٪، N = 0.51 بالوزن.%، S = 0.02 بالوزن%، O = 44.30 بالوزن %)؛ قيم الأس الهيدروجيني (الطور البارد = 7.60، الطور الساخن = 6.30 )؛ HHV (15.37 – 18.03 مللي جول/كجم )؛ والتركيب السليولوزي اللينيني (المستخلصات = 13.80±0.57 بالوزن %، نصف السليلوز = 21.95±3.89 بالوزن %، اللجنين = 17.35±0.35 بالوزن %، السليلوز = 46.90±2.97 بالوزن %). كان الحد الأقصى لفقدان الكتلة 83.48 ٪ عند 289.8 درجة مئوية عند 5 كيلومترات/دقيقة. تم استنتاج أن CMS هو مورد كتلة حيوية محتمل للغاية لإنتاج غاز التخليق مع صيغة تجريبية CH1.64O0.69N0.009S0.0001. Celtis mildbraedii sawdust (CMS) from Ghana was characterised to investigate its suitability with polyethylene terephthalate (PET) for syngas production via co-pyrolysis. The physical and chemical properties assessed include proximate and ultimate compositions, pH value, higher heating value (HHV), and lignocellulosic composition. Also, the thermal behaviour at different heating rates (5, 10, and 20 K/min) and qualitative prediction of organic compounds of CMS were examined using thermogravimetric analysis (TG/DTG) and NIR spectroscopy techniques, respectively. Results of proximate analysis (moisture = 17.15±0.0 wt.%, ash = 1.13±0.4 wt.%, volatile matter = 68.39±0.4 wt.%, fixed carbon = 13.33±0.8 wt.%); ultimate analysis (C = 48.51 wt.%, H = 6.66 wt.%, N = 0.51 wt.%, S = 0.02 wt.%, O = 44.30 wt.%); pH values (cold phase = 7.60, hot phase = 6.30); HHV (15.37 – 18.03 MJ/kg); and lignocellulosic composition (extractives = 13.80±0.57 wt.%, hemicellulose = 21.95±3.89 wt.%, lignin = 17.35±0.35 wt.%, cellulose = 46.90±2.97 wt.%) were obtained. The maximum mass loss was 83.48% at 289.8 °C at 5 K/min. It was concluded that CMS is a highly potential biomass resource for syngas production with an empirical formula of CH1.64O0.69N0.009S0.0001.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.sciaf.2022.e01208&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.sciaf.2022.e01208&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Elsevier BV Isaac Mensah; Julius Cudjoe Ahiekpor; Nadine Herold; Edem Cudjoe Bensah; Alexander Pfriem; Edward Antwi; Bright Amponsem;La sciure de bois Celtis mildbraedii (CMS) du Ghana a été caractérisée pour étudier son adéquation avec le polyéthylène téréphtalate (PET) pour la production de gaz de synthèse par co-pyrolyse. Les propriétés physiques et chimiques évaluées comprennent les compositions proches et ultimes, la valeur du pH, le pouvoir calorifique supérieur (HHV) et la composition lignocellulosique. De plus, le comportement thermique à différentes vitesses de chauffage (5, 10 et 20 K/min) et la prédiction qualitative des composés organiques de la CMS ont été examinés à l'aide de techniques d'analyse thermogravimétrique (TG/DTG) et de spectroscopie NIR, respectivement. Résultats de l'analyse proche (humidité = 17,15±0,0 % en poids, cendres = 1,13±0,4 % en poids, matières volatiles = 68,39±0,4 % en poids, carbone fixe = 13,33±0,8 % en poids) ; analyse finale (C = 48,51 % en poids)%, H = 6,66 % en poids%, N = 0,51 en poids%, S = 0,02 en poids.%, O = 44,30 % en poids) ; des valeurs de pH (phase froide = 7,60, phase chaude = 6,30) ; HHV (15,37 – 18,03 MJ/kg) ; et une composition lignocellulosique (extraits = 13,80±0,57 % en poids, hémicellulose = 21,95±3,89 % en poids, lignine = 17,35±0,35 % en poids, cellulose = 46,90±2,97 % en poids) ont été obtenues. La perte de masse maximale était de 83,48 % à 289,8 °C à 5 K/min. Il a été conclu que la CMS est une ressource de biomasse à fort potentiel pour la production de gaz de synthèse avec une formule empirique de CH1.64O0.69N0.009S0.0001. El aserrín Celtis mildbraedii (CMS) de Ghana se caracterizó por investigar su idoneidad con tereftalato de polietileno (PET) para la producción de gas de síntesis a través de copirólisis. Las propiedades físicas y químicas evaluadas incluyen composiciones próximas y finales, valor de pH, valor de calentamiento más alto (HHV) y composición lignocelulósica. Además, el comportamiento térmico a diferentes velocidades de calentamiento (5, 10 y 20 K/min) y la predicción cualitativa de los compuestos orgánicos de CMS se examinaron mediante análisis termogravimétrico (TG/DTG) y técnicas de espectroscopía NIR, respectivamente. Resultados del análisis próximo (humedad = 17,15±0,0% en peso, ceniza = 1,13±0,4% en peso, materia volátil = 68,39±0,4% en peso, carbono fijo = 13,33±0,8% en peso); análisis final (C = 48,51% en peso%, H = 6.66 en peso.%, N = 0.51 en peso.%, S = 0.02 en peso.%, O = 44.30% en peso); valores de pH (fase fría = 7.60, fase caliente = 6.30); HHV (15.37 – 18.03 MJ/kg); y composición lignocelulósica (extractivos = 13.80±0.57% en peso, hemicelulosa = 21.95±3.89% en peso, lignina = 17.35±0.35% en peso, celulosa = 46.90±2.97% en peso). La pérdida de masa máxima fue del 83,48% a 289,8 °C a 5 K/min. Se concluyó que el CMS es un recurso de biomasa de alto potencial para la producción de gas de síntesis con una fórmula empírica de CH1.64O0.69N0.009S0.0001. تتميز نشارة الخشب Celtis mildbraedii (CMS) من غانا بالتحقيق في مدى ملاءمتها للبولي إيثيلين تيريفثالات (PET) لإنتاج غاز التخليق عبر الانحلال الحراري المشترك. تشمل الخصائص الفيزيائية والكيميائية التي تم تقييمها التركيبات التقريبية والنهائية، وقيمة الأس الهيدروجيني، وقيمة التسخين الأعلى (HHV)، والتركيبة السليلوزية اللجنينية. كما تم فحص السلوك الحراري بمعدلات تسخين مختلفة (5 و 10 و 20 كلفن/دقيقة) والتنبؤ النوعي للمركبات العضوية لـ CMS باستخدام تقنيات التحليل الجاذبية الحرارية (TG/DTG) وتقنيات التحليل الطيفي NIR، على التوالي. نتائج التحليل التقريبي (الرطوبة = 17.15±0.0 ٪ بالوزن، الرماد = 1.13±0.4 ٪ بالوزن، المادة المتطايرة = 68.39±0.4 ٪ بالوزن، الكربون الثابت = 13.33±0.8 ٪ بالوزن) ؛ التحليل النهائي (C = 48.51 بالوزن%، الارتفاع = 6.66 بالوزن٪، N = 0.51 بالوزن.%، S = 0.02 بالوزن%، O = 44.30 بالوزن %)؛ قيم الأس الهيدروجيني (الطور البارد = 7.60، الطور الساخن = 6.30 )؛ HHV (15.37 – 18.03 مللي جول/كجم )؛ والتركيب السليولوزي اللينيني (المستخلصات = 13.80±0.57 بالوزن %، نصف السليلوز = 21.95±3.89 بالوزن %، اللجنين = 17.35±0.35 بالوزن %، السليلوز = 46.90±2.97 بالوزن %). كان الحد الأقصى لفقدان الكتلة 83.48 ٪ عند 289.8 درجة مئوية عند 5 كيلومترات/دقيقة. تم استنتاج أن CMS هو مورد كتلة حيوية محتمل للغاية لإنتاج غاز التخليق مع صيغة تجريبية CH1.64O0.69N0.009S0.0001. Celtis mildbraedii sawdust (CMS) from Ghana was characterised to investigate its suitability with polyethylene terephthalate (PET) for syngas production via co-pyrolysis. The physical and chemical properties assessed include proximate and ultimate compositions, pH value, higher heating value (HHV), and lignocellulosic composition. Also, the thermal behaviour at different heating rates (5, 10, and 20 K/min) and qualitative prediction of organic compounds of CMS were examined using thermogravimetric analysis (TG/DTG) and NIR spectroscopy techniques, respectively. Results of proximate analysis (moisture = 17.15±0.0 wt.%, ash = 1.13±0.4 wt.%, volatile matter = 68.39±0.4 wt.%, fixed carbon = 13.33±0.8 wt.%); ultimate analysis (C = 48.51 wt.%, H = 6.66 wt.%, N = 0.51 wt.%, S = 0.02 wt.%, O = 44.30 wt.%); pH values (cold phase = 7.60, hot phase = 6.30); HHV (15.37 – 18.03 MJ/kg); and lignocellulosic composition (extractives = 13.80±0.57 wt.%, hemicellulose = 21.95±3.89 wt.%, lignin = 17.35±0.35 wt.%, cellulose = 46.90±2.97 wt.%) were obtained. The maximum mass loss was 83.48% at 289.8 °C at 5 K/min. It was concluded that CMS is a highly potential biomass resource for syngas production with an empirical formula of CH1.64O0.69N0.009S0.0001.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.sciaf.2022.e01208&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.sciaf.2022.e01208&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013Publisher:Wiley Authors: Moses Mensah; Edem Cudjoe Bensah; Edem Cudjoe Bensah;Pretreatment of lignocellulose has received considerable research globally due to its influence on the technical, economic and environmental sustainability of cellulosic ethanol production. Some of the most promising pretreatment methods require the application of chemicals such as acids, alkali, salts, oxidants, and solvents. Thus, advances in research have enabled the development and integration of chemical-based pretreatment into proprietary ethanol production technologies in several pilot and demonstration plants globally, with potential to scale-up to commercial levels. This paper reviews known and emerging chemical pretreatment methods, highlighting recent findings and process innovations developed to offset inherent challenges via a range of interventions, notably, the combination of chemical pretreatment with other methods to improve carbohydrate preservation, reduce formation of degradation products, achieve high sugar yields at mild reaction conditions, reduce solvent loads and enzyme dose, reduce waste generation, and improve recovery of biomass components in pure forms. The use of chemicals such as ionic liquids, NMMO, and sulphite are promising once challenges in solvent recovery are overcome. For developing countries, alkali-based methods are relatively easy to deploy in decentralized, low-tech systems owing to advantages such as the requirement of simple reactors and the ease of operation.
International Journa... arrow_drop_down International Journal of Chemical EngineeringArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2013/719607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 273 citations 273 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Chemical EngineeringArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2013/719607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013Publisher:Wiley Authors: Moses Mensah; Edem Cudjoe Bensah; Edem Cudjoe Bensah;Pretreatment of lignocellulose has received considerable research globally due to its influence on the technical, economic and environmental sustainability of cellulosic ethanol production. Some of the most promising pretreatment methods require the application of chemicals such as acids, alkali, salts, oxidants, and solvents. Thus, advances in research have enabled the development and integration of chemical-based pretreatment into proprietary ethanol production technologies in several pilot and demonstration plants globally, with potential to scale-up to commercial levels. This paper reviews known and emerging chemical pretreatment methods, highlighting recent findings and process innovations developed to offset inherent challenges via a range of interventions, notably, the combination of chemical pretreatment with other methods to improve carbohydrate preservation, reduce formation of degradation products, achieve high sugar yields at mild reaction conditions, reduce solvent loads and enzyme dose, reduce waste generation, and improve recovery of biomass components in pure forms. The use of chemicals such as ionic liquids, NMMO, and sulphite are promising once challenges in solvent recovery are overcome. For developing countries, alkali-based methods are relatively easy to deploy in decentralized, low-tech systems owing to advantages such as the requirement of simple reactors and the ease of operation.
International Journa... arrow_drop_down International Journal of Chemical EngineeringArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2013/719607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 273 citations 273 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Chemical EngineeringArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2013/719607&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu