Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
9 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mark D. Gorrell; Mark D. Gorrell; Devanshi Seth; Paul S. Haber; +3 Authors

    The pathogenesis of alcoholic liver disease (ALD) remains uncertain. Fibrin production and degradation are altered in experimental liver injury. We have recently identified increased expression of a number of genes (annexin A2 (ANXA2), p11, tPA and PAI-1) that implicate fibrinolysis in ALD progression. Aim of our study was to study the direct effect of alcohol on fibrinolysis and plasmin activity in hepatic cell lines and in vivo.Expression of pro- and anti-fibrinolytic genes was determined in liver biopsies from patients with progressive ALD and in HepG2, Huh7 and LX-2 cells exposed to alcohol. The functional effects on fibrinolysis and plasmin activities were determined. C57BL6 female mice were given a single dose of alcohol and serum and liver triglyceride content and serum plasmin activity determined.Alcohol induced a significant up-regulation of ANXA2, PLG, PAI-1 and p11 in human ALD, cell lines and in mice exposed to alcohol. Up-regulation of ANXA2 and p11 was inhibited by the alcohol dehydrogenase inhibitor 4-methylpyrazole. Fibrinolysis and plasmin were increased in HepG2 and LX-2 cells by 10mM alcohol and was inhibited by ANXA2 blocking antibody. Plasmin also increased in mice given a moderate dose of alcohol. By contrast, there was striking up-regulation of PAI-1 in mice given a high dose of alcohol with associated decrease in plasmin.Alcohol directly alters hepatic expression of pro- and anti-fibrinolytic genes in a dose dependent manner with low dose promoting fibrinolysis and high dose inhibiting fibrinolysis. After a large dose of alcohol in vivo, the dominant effect was up-regulation of hepatic PAI-1 with suppression of plasmin. The effect of alcohol on fibrinolysis and plasmin is mediated in part by ANXA2. Alcohol directly influences hepatic pathways of fibrinolysis that may contribute to ALD.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Hepatolog...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Hepatology
    Article . 2008 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    47
    citations47
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Hepatolog...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Hepatology
      Article . 2008 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Helmut Bartsch; Tatjana Arslic-Schmitt; Kirstin-Berit Linhart; Devanshi Seth; +3 Authors

    Chronic ethanol consumption is a risk factor for several human cancers. A variety of mechanisms may contribute to this carcinogenic effect of alcohol including oxidative stress with the generation of reactive oxygen species (ROS), formed via inflammatory pathways or as byproducts of ethanol oxidation through cytochrome P4502E1 (CYP2E1). ROS may lead to lipidperoxidation (LPO) resulting in LPO-products such as 4-hydoxynonenal (4-HNE) or malondialdehyde. These compounds can react with DNA bases forming mutagenic and carcinogenic etheno-DNA adducts. Etheno-DNA adducts are generated in the liver (HepG2) cells over-expressing CYP2E1 when incubated with ethanol;and are inhibited by chlormethiazole. In liver biopsies etheno-DNA adducts correlated significantly with CYP2E1. Such a correlation was also found in the esophageal- and colorectal mucosa of alcoholics. Etheno-DNA adducts also increased in liver biopsies from patients with non alcoholic steatohepatitis (NASH). In various animal models with fatty liver either induced by high fat diets or genetically modified such as in the obese Zucker rat, CYP2E1 is induced and paralleled by high levels of etheno DNA-adducts which may be modified by additional alcohol administration. As elevation of adduct levels in NASH children were already detected at a young age, these lesions may contribute to hepatocellular cancer development later in life. Together these data strongly implicate CYP2E1 as an important mediator for etheno-DNA adduct formation, and this detrimental DNA damage may act as a driving force for malignant disease progression.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1007/978-3-...
    Part of book or chapter of book . 2018 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    10
    citations10
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1007/978-3-...
      Part of book or chapter of book . 2018 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Devanshi Seth; Devanshi Seth; Devanshi Seth; Van Long Nguyen; +1 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholism Clinical ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcoholism Clinical and Experimental Research
    Article . 2018 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholism Clinical ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcoholism Clinical and Experimental Research
      Article . 2018 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Wing-Kin Syn; Wing-Kin Syn; Anna Mae Diehl; Paul S. Haber; +5 Authors

    AbstractAlcoholic liver disease (ALD) is a primary consequence of heavy and prolonged drinking. ALD contributes to the bulk of liver disease burden worldwide. Progression of ALD is a multifactorial and multistep process that includes many genetic and environmental risk factors. The molecular pathogenesis of ALD involves alcohol metabolism and secondary mechanisms such as oxidative stress, endotoxin, cytokines and immune regulators. The histopathological manifestation of ALD occurs as an outcome of complex but controlled interactions between hepatic cell types. Hepatic stellate cells (HSCs) are the key drivers of fibrogenesis, but transformation of hepatocytes to myofibroblastoids also implicate parenchymal cells as playing an active role in hepatic fibrogenesis. Recent discoveries indicate that lipogenesis during the early stages of ALD is a risk for advancement to cirrhosis. Other recently identified novel molecules and physiological/cell signaling pathways include fibrinolysis, osteopontin, transforming growth factor‐β‐SMAD and hedgehog signaling, and involvement of novel cytokines in hepatic fibrogenesis. The observation that ALD and non‐alcoholic steatohepatitis share common pathways and genetic polymorphisms suggests operation of parallel pathogenic mechanisms. Future research involving genomics, epigenomics, deep sequencing and non‐coding regulatory elements holds promise to identify novel diagnostic and therapeutic targets for ALD. There is also a need for adequate animal models to study pathogenic mechanisms at the molecular level and targeted therapy.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Gastroent...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Gastroenterology and Hepatology
    Article . 2011 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    137
    citations137
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Gastroent...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Gastroenterology and Hepatology
      Article . 2011 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Fathima Shihana; Pradeep Manuneedhi Cholan; Stuart Fraser; Stefan H Oehlers; +1 Authors

    AbstractBackgroundAccumulation of lipid in the liver is the first hallmark of both alcohol‐related liver disease (ALD) and non‐alcohol‐related fatty liver disease (NAFLD). Recent studies indicate that specific mutations in lipid genes confer risk and might influence disease progression to irreversible liver cirrhosis. This study aimed to understand the function/s of lipid risk genes driving disease development in zebrafish genetic models of alcohol‐related and non‐alcohol‐related fatty liver.MethodsWe used zebrafish larvae to investigate the effect of alcohol and high fat to model fatty liver and tested the utility of this model to study lipid risk gene functions. CRISPR/Cas9 gene editing was used to create knockdowns in 5 days post‐fertilisation zebrafish larvae for the available orthologs of human cirrhosis risk genes (pnpla3, faf2, tm6sf2). To establish fatty liver models, larvae were exposed to ethanol and a high‐fat diet (HFD) consisting of chicken egg yolk. Changes in morphology (imaging), survival, liver injury (biochemical tests, histopathology), gene expression (qPCR) and lipid accumulation (dye‐specific live imaging) were analysed across treatment groups to test the functions of these genes.ResultsExposure of 5‐day post‐fertilisation (dpf) WT larvae to 2% ethanol or HFD for 48 h developed measurable hepatic steatosis. CRISPR‐Cas9 genome editing depleted pnpla3, faf2 and tm6sf2 gene expression in these CRISPR knockdown larvae (crispants). Depletion significantly increased the effects of ethanol and HFD toxicity by increasing hepatic steatosis and hepatic neutrophil recruitment ≥2‐fold in all three crispants. Furthermore, ethanol or HFD exposure significantly altered the expression of genes associated with ethanol metabolism (cyp2y3) and lipid metabolism‐related gene expression, including atgl (triglyceride hydrolysis), axox1, echs1 (fatty acid β‐oxidation), fabp10a (transport), hmgcra (metabolism), notch1 (signalling) and srebp1 (lipid synthesis), in all three pnpla3, faf2 and tm6sf2 crispants. Nile Red staining in all three crispants revealed significantly increased lipid droplet size and triglyceride accumulation in the livers following exposure to ethanol or HFD.ConclusionsWe identified roles for pnpla3, faf2 and tm6sf2 genes in triglyceride accumulation and fatty acid oxidation pathways in a zebrafish larvae model of fatty liver.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Liver Internationalarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Liver International
    Article . 2023 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    https://doi.org/10.1101/2023.0...
    Article . 2023 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    9
    citations9
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Liver Internationalarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Liver International
      Article . 2023 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      https://doi.org/10.1101/2023.0...
      Article . 2023 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Phillip Paull; Van Long Nguyen; Devanshi Seth; Devanshi Seth; +2 Authors

    Currently available markers and methods to evaluate alcohol consumption are indirect and suboptimal, or rely on self-report, which have inherent problems. Direct metabolites of alcohol, phosphatidylethanol (PEth), ethyl sulfate (EtS), and ethyl glucuronide (EtG), are known to improve diagnostic accuracy. In this study, methods were established for the identification of PEth in erythrocytes and EtG and EtS in serum using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The three biomarkers were tested and validated in volunteer teetotalers (n = 4) and drinkers (n = 10), and applied in patients (n = 8) hospitalized with alcohol-related problems. Linearity of each assay was demonstrated from 22.5 to 900 nM for EtG, 40-3175 nM for EtS, and 21-750 nM for PEth. The methods were highly selective, precise (<5% coefficient of variation), and had optimal accuracy (within 10% of the nominal value) for all three analytes. Recovery for all three compounds exceeded 90%. A preliminary investigation into the window of detection of these biomarkers after a single occasion of moderate alcohol consumption revealed that EtG and EtS could be detected and quantified over the short term (days) and PEth over the long term (weeks). All three biomarkers showed high sensitivity and specificity in distinguishing between abstinence and any alcohol use at the cut-off values of 22.5 nM for EtG, 40 nM for EtS, and 21 nM for PEth. We have established simultaneous assays for EtG, EtS, and PEth for routine clinical use in confirming abstinence and exposure, and detecting under-reporting of alcohol use, relevant in clinical and non-clinical settings.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcohol
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    33
    citations33
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcohol
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Pierluigi Toniutto; Stefano Romeo; Stefano Romeo; Edmondo Falleti; +16 Authors

    The genetic polymorphism with an isoleucine-to-methionine substitution at position 148 (rs738409 C>G) in the patatin-like phospholipase domain protein 3 (PNPLA3) gene confers risk of steatosis. PNPLA3 polymorphism is shown to be associated with alcoholic liver disease (ALD). We performed a systematic review and meta-analysis to examine association of this genetic polymorphism with ALD spectrum and its severity.Medline, Embase, and Cochrane Library were searched for studies on association of PNPLA3 polymorphism and ALD spectrum: alcoholic fatty liver (AFL), alcoholic liver injury (ALI), alcoholic cirrhosis (AC), and hepatocellular carcinoma (HCC). Pooled data are reported as odds ratio (OR) with 95% confidence interval. Heterogeneity was assessed using the I(2) statistics and publication bias using Egger's test and Begg and Mazumdar's test. Individual participant data obtained from five studies were used for subgroup analyses.Among 10 studies included in this pooled analysis, compared with controls, OR for rs738409 CG and GG among ALI patients was 1.45 (1.24-1.69) and 2.22 (1.50-3.28), respectively, compared with CC. Respective OR among AC patients was 2.09 (1.79-2.44) and 3.37 (2.49-4.58) and among AC patients with HCC was 2.87 (1.61-5.10) and 12.41 (6.99-22.03). Data for AFL were inconsistent. Among ALD patients, OR of CG and GG genotypes was 2.62 (1.73-3.97) and 8.45 (2.52-28.37), respectively, for AC compared with fatty liver (FL) patients. Similar OR for AC compared with ALI was 1.98 (1.24-3.17) and 3.86 (1.18-12.60). The OR for CG and GG genotypes among AC patients for HCC occurrence was 1.43 (0.76-2.72) and 2.81 (1.57-5.01), respectively. Individual participant data analysis showed age to predispose to AC among ALI patients.PNPLA3 genetic polymorphism (rs738409 C>G) is associated with increased risk for the entire spectrum of ALD among drinkers including ALI, AC, and HCC. Studies are needed to clarify association of PNPLA3 polymorphism and steatosis in alcoholics. PNPLA3 gene may potentially be a therapeutic target in ALD.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio della ricer...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The American Journal of Gastroenterology
    Article . 2015 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    133
    citations133
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: M. Raj Lakshman; Richard Amdur; Mamatha Garige; Magnus A. Azuine; +6 Authors

    Hepatic steatosis and steatohepatitis are frequent results of long-term ethanol exposure. We have previously demonstrated that long-term ethanol down-regulates Galbetal, 4GlcNAc alpha2, 6-sialyltransferase (ST6Gal1), leading to defective glycosylation of a number of proteins including apolipoprotein (apo) E and apo J and the appearance of asialoconjugates in the blood of continuously alcohol-fed animals as well as in human alcoholics. In the current study, we have explored the possibility of whether ethanol-induced down-regulation of ST6Gal1 could contribute toward alcoholic steatosis in human alcoholics presumably because of impaired lipid and lipoprotein transport caused by this down-regulation. Real-time quantitative polymerase chain reaction analyses of liver samples from nondrinkers, moderate drinkers, and heavy drinkers as well as from subjects with and without alcoholic liver disease revealed direct evidence that the down-regulation of ST6Gal1 may be due to ethanol per se. The ST6Gal1 messenger RNA level was reduced by as much as 70% in moderate and heavy drinkers as well as in patients with alcoholic liver disease, but was not changed in subjects with liver disease due to causes other than alcohol exposure. Biochemical and histopathologic analysis demonstrated that the liver total cholesterol was increased by more than 30% (P < .05) and 75% (P < .01), respectively, in moderate and heavy drinkers compared with nondrinkers, with even more dramatic changes in triglyceride levels. Significantly, there was a strong inverse correlation between ST6Gal1 messenger RNA level and liver lipid deposit (F = 8.68, P < .001) by statistical analysis. Thus, it is suggested that alcohol-mediated down-regulation of hepatic ST6Gal1 gene leads to defective glycosylation of lipid-carrying apolipoproteins such as apo E and apo J, resulting in defective intracellular lipid and lipoprotein transport, which in turn may contribute to alcoholic steatosis.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Metabolismarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Metabolism
    Article . 2008 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    23
    citations23
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Metabolismarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Metabolism
      Article . 2008 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Christoph Meyer; Willem J.S. de Villiers; Alain Vonlaufen; Phoebe A. Phillips; +20 Authors

    Alcohol is recognized as a direct hepatotoxin, but the precise molecular pathways that are important for the initiation and progression of alcohol‐induced tissue injury are not completely understood. The current understanding of alcohol toxicity to organs suggests that alcohol initiates injury by generation of oxidative and nonoxidative ethanol metabolites and via translocation of gut‐derived endotoxin. These processes lead to cellular injury and stimulation of the inflammatory responses mediated through a variety of molecules. With continuing alcohol abuse, the injury progresses through impairment of tissue regeneration and extracellular matrix (ECM) turnover, leading to fibrogenesis and cirrhosis. Several cell types are involved in this process, the predominant being stellate cells, macrophages, and parenchymal cells. In response to alcohol, growth factors and cytokines activate many signaling cascades that regulate fibrogenesis. This mini‐review brings together research focusing on the underlying mechanisms of alcohol‐mediated injury in a number of organs. It highlights the various processes and molecules that are likely involved in inflammation, immune modulation, susceptibility to infection, ECM turnover and fibrogenesis in the liver, pancreas, and lung triggered by alcohol abuse.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcoholism Clinical and Experimental Research
    Article . 2009 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    Digital.CSIC
    Article . 2010 . Peer-reviewed
    Data sources: Digital.CSIC
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    31
    citations31
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    visibility43
    visibilityviews43
    downloaddownloads54
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcoholism Clinical and Experimental Research
      Article . 2009 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      Digital.CSIC
      Article . 2010 . Peer-reviewed
      Data sources: Digital.CSIC
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
9 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mark D. Gorrell; Mark D. Gorrell; Devanshi Seth; Paul S. Haber; +3 Authors

    The pathogenesis of alcoholic liver disease (ALD) remains uncertain. Fibrin production and degradation are altered in experimental liver injury. We have recently identified increased expression of a number of genes (annexin A2 (ANXA2), p11, tPA and PAI-1) that implicate fibrinolysis in ALD progression. Aim of our study was to study the direct effect of alcohol on fibrinolysis and plasmin activity in hepatic cell lines and in vivo.Expression of pro- and anti-fibrinolytic genes was determined in liver biopsies from patients with progressive ALD and in HepG2, Huh7 and LX-2 cells exposed to alcohol. The functional effects on fibrinolysis and plasmin activities were determined. C57BL6 female mice were given a single dose of alcohol and serum and liver triglyceride content and serum plasmin activity determined.Alcohol induced a significant up-regulation of ANXA2, PLG, PAI-1 and p11 in human ALD, cell lines and in mice exposed to alcohol. Up-regulation of ANXA2 and p11 was inhibited by the alcohol dehydrogenase inhibitor 4-methylpyrazole. Fibrinolysis and plasmin were increased in HepG2 and LX-2 cells by 10mM alcohol and was inhibited by ANXA2 blocking antibody. Plasmin also increased in mice given a moderate dose of alcohol. By contrast, there was striking up-regulation of PAI-1 in mice given a high dose of alcohol with associated decrease in plasmin.Alcohol directly alters hepatic expression of pro- and anti-fibrinolytic genes in a dose dependent manner with low dose promoting fibrinolysis and high dose inhibiting fibrinolysis. After a large dose of alcohol in vivo, the dominant effect was up-regulation of hepatic PAI-1 with suppression of plasmin. The effect of alcohol on fibrinolysis and plasmin is mediated in part by ANXA2. Alcohol directly influences hepatic pathways of fibrinolysis that may contribute to ALD.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Hepatolog...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Hepatology
    Article . 2008 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    47
    citations47
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Hepatolog...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Hepatology
      Article . 2008 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Helmut Bartsch; Tatjana Arslic-Schmitt; Kirstin-Berit Linhart; Devanshi Seth; +3 Authors

    Chronic ethanol consumption is a risk factor for several human cancers. A variety of mechanisms may contribute to this carcinogenic effect of alcohol including oxidative stress with the generation of reactive oxygen species (ROS), formed via inflammatory pathways or as byproducts of ethanol oxidation through cytochrome P4502E1 (CYP2E1). ROS may lead to lipidperoxidation (LPO) resulting in LPO-products such as 4-hydoxynonenal (4-HNE) or malondialdehyde. These compounds can react with DNA bases forming mutagenic and carcinogenic etheno-DNA adducts. Etheno-DNA adducts are generated in the liver (HepG2) cells over-expressing CYP2E1 when incubated with ethanol;and are inhibited by chlormethiazole. In liver biopsies etheno-DNA adducts correlated significantly with CYP2E1. Such a correlation was also found in the esophageal- and colorectal mucosa of alcoholics. Etheno-DNA adducts also increased in liver biopsies from patients with non alcoholic steatohepatitis (NASH). In various animal models with fatty liver either induced by high fat diets or genetically modified such as in the obese Zucker rat, CYP2E1 is induced and paralleled by high levels of etheno DNA-adducts which may be modified by additional alcohol administration. As elevation of adduct levels in NASH children were already detected at a young age, these lesions may contribute to hepatocellular cancer development later in life. Together these data strongly implicate CYP2E1 as an important mediator for etheno-DNA adduct formation, and this detrimental DNA damage may act as a driving force for malignant disease progression.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1007/978-3-...
    Part of book or chapter of book . 2018 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    10
    citations10
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1007/978-3-...
      Part of book or chapter of book . 2018 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Devanshi Seth; Devanshi Seth; Devanshi Seth; Van Long Nguyen; +1 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholism Clinical ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcoholism Clinical and Experimental Research
    Article . 2018 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholism Clinical ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcoholism Clinical and Experimental Research
      Article . 2018 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Wing-Kin Syn; Wing-Kin Syn; Anna Mae Diehl; Paul S. Haber; +5 Authors

    AbstractAlcoholic liver disease (ALD) is a primary consequence of heavy and prolonged drinking. ALD contributes to the bulk of liver disease burden worldwide. Progression of ALD is a multifactorial and multistep process that includes many genetic and environmental risk factors. The molecular pathogenesis of ALD involves alcohol metabolism and secondary mechanisms such as oxidative stress, endotoxin, cytokines and immune regulators. The histopathological manifestation of ALD occurs as an outcome of complex but controlled interactions between hepatic cell types. Hepatic stellate cells (HSCs) are the key drivers of fibrogenesis, but transformation of hepatocytes to myofibroblastoids also implicate parenchymal cells as playing an active role in hepatic fibrogenesis. Recent discoveries indicate that lipogenesis during the early stages of ALD is a risk for advancement to cirrhosis. Other recently identified novel molecules and physiological/cell signaling pathways include fibrinolysis, osteopontin, transforming growth factor‐β‐SMAD and hedgehog signaling, and involvement of novel cytokines in hepatic fibrogenesis. The observation that ALD and non‐alcoholic steatohepatitis share common pathways and genetic polymorphisms suggests operation of parallel pathogenic mechanisms. Future research involving genomics, epigenomics, deep sequencing and non‐coding regulatory elements holds promise to identify novel diagnostic and therapeutic targets for ALD. There is also a need for adequate animal models to study pathogenic mechanisms at the molecular level and targeted therapy.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Gastroent...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Gastroenterology and Hepatology
    Article . 2011 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    137
    citations137
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Gastroent...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Gastroenterology and Hepatology
      Article . 2011 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Fathima Shihana; Pradeep Manuneedhi Cholan; Stuart Fraser; Stefan H Oehlers; +1 Authors

    AbstractBackgroundAccumulation of lipid in the liver is the first hallmark of both alcohol‐related liver disease (ALD) and non‐alcohol‐related fatty liver disease (NAFLD). Recent studies indicate that specific mutations in lipid genes confer risk and might influence disease progression to irreversible liver cirrhosis. This study aimed to understand the function/s of lipid risk genes driving disease development in zebrafish genetic models of alcohol‐related and non‐alcohol‐related fatty liver.MethodsWe used zebrafish larvae to investigate the effect of alcohol and high fat to model fatty liver and tested the utility of this model to study lipid risk gene functions. CRISPR/Cas9 gene editing was used to create knockdowns in 5 days post‐fertilisation zebrafish larvae for the available orthologs of human cirrhosis risk genes (pnpla3, faf2, tm6sf2). To establish fatty liver models, larvae were exposed to ethanol and a high‐fat diet (HFD) consisting of chicken egg yolk. Changes in morphology (imaging), survival, liver injury (biochemical tests, histopathology), gene expression (qPCR) and lipid accumulation (dye‐specific live imaging) were analysed across treatment groups to test the functions of these genes.ResultsExposure of 5‐day post‐fertilisation (dpf) WT larvae to 2% ethanol or HFD for 48 h developed measurable hepatic steatosis. CRISPR‐Cas9 genome editing depleted pnpla3, faf2 and tm6sf2 gene expression in these CRISPR knockdown larvae (crispants). Depletion significantly increased the effects of ethanol and HFD toxicity by increasing hepatic steatosis and hepatic neutrophil recruitment ≥2‐fold in all three crispants. Furthermore, ethanol or HFD exposure significantly altered the expression of genes associated with ethanol metabolism (cyp2y3) and lipid metabolism‐related gene expression, including atgl (triglyceride hydrolysis), axox1, echs1 (fatty acid β‐oxidation), fabp10a (transport), hmgcra (metabolism), notch1 (signalling) and srebp1 (lipid synthesis), in all three pnpla3, faf2 and tm6sf2 crispants. Nile Red staining in all three crispants revealed significantly increased lipid droplet size and triglyceride accumulation in the livers following exposure to ethanol or HFD.ConclusionsWe identified roles for pnpla3, faf2 and tm6sf2 genes in triglyceride accumulation and fatty acid oxidation pathways in a zebrafish larvae model of fatty liver.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Liver Internationalarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Liver International
    Article . 2023 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    https://doi.org/10.1101/2023.0...
    Article . 2023 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    9
    citations9
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Liver Internationalarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Liver International
      Article . 2023 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      https://doi.org/10.1101/2023.0...
      Article . 2023 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Phillip Paull; Van Long Nguyen; Devanshi Seth; Devanshi Seth; +2 Authors

    Currently available markers and methods to evaluate alcohol consumption are indirect and suboptimal, or rely on self-report, which have inherent problems. Direct metabolites of alcohol, phosphatidylethanol (PEth), ethyl sulfate (EtS), and ethyl glucuronide (EtG), are known to improve diagnostic accuracy. In this study, methods were established for the identification of PEth in erythrocytes and EtG and EtS in serum using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The three biomarkers were tested and validated in volunteer teetotalers (n = 4) and drinkers (n = 10), and applied in patients (n = 8) hospitalized with alcohol-related problems. Linearity of each assay was demonstrated from 22.5 to 900 nM for EtG, 40-3175 nM for EtS, and 21-750 nM for PEth. The methods were highly selective, precise (<5% coefficient of variation), and had optimal accuracy (within 10% of the nominal value) for all three analytes. Recovery for all three compounds exceeded 90%. A preliminary investigation into the window of detection of these biomarkers after a single occasion of moderate alcohol consumption revealed that EtG and EtS could be detected and quantified over the short term (days) and PEth over the long term (weeks). All three biomarkers showed high sensitivity and specificity in distinguishing between abstinence and any alcohol use at the cut-off values of 22.5 nM for EtG, 40 nM for EtS, and 21 nM for PEth. We have established simultaneous assays for EtG, EtS, and PEth for routine clinical use in confirming abstinence and exposure, and detecting under-reporting of alcohol use, relevant in clinical and non-clinical settings.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcohol
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    33
    citations33
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcohol
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Pierluigi Toniutto; Stefano Romeo; Stefano Romeo; Edmondo Falleti; +16 Authors

    The genetic polymorphism with an isoleucine-to-methionine substitution at position 148 (rs738409 C>G) in the patatin-like phospholipase domain protein 3 (PNPLA3) gene confers risk of steatosis. PNPLA3 polymorphism is shown to be associated with alcoholic liver disease (ALD). We performed a systematic review and meta-analysis to examine association of this genetic polymorphism with ALD spectrum and its severity.Medline, Embase, and Cochrane Library were searched for studies on association of PNPLA3 polymorphism and ALD spectrum: alcoholic fatty liver (AFL), alcoholic liver injury (ALI), alcoholic cirrhosis (AC), and hepatocellular carcinoma (HCC). Pooled data are reported as odds ratio (OR) with 95% confidence interval. Heterogeneity was assessed using the I(2) statistics and publication bias using Egger's test and Begg and Mazumdar's test. Individual participant data obtained from five studies were used for subgroup analyses.Among 10 studies included in this pooled analysis, compared with controls, OR for rs738409 CG and GG among ALI patients was 1.45 (1.24-1.69) and 2.22 (1.50-3.28), respectively, compared with CC. Respective OR among AC patients was 2.09 (1.79-2.44) and 3.37 (2.49-4.58) and among AC patients with HCC was 2.87 (1.61-5.10) and 12.41 (6.99-22.03). Data for AFL were inconsistent. Among ALD patients, OR of CG and GG genotypes was 2.62 (1.73-3.97) and 8.45 (2.52-28.37), respectively, for AC compared with fatty liver (FL) patients. Similar OR for AC compared with ALI was 1.98 (1.24-3.17) and 3.86 (1.18-12.60). The OR for CG and GG genotypes among AC patients for HCC occurrence was 1.43 (0.76-2.72) and 2.81 (1.57-5.01), respectively. Individual participant data analysis showed age to predispose to AC among ALI patients.PNPLA3 genetic polymorphism (rs738409 C>G) is associated with increased risk for the entire spectrum of ALD among drinkers including ALI, AC, and HCC. Studies are needed to clarify association of PNPLA3 polymorphism and steatosis in alcoholics. PNPLA3 gene may potentially be a therapeutic target in ALD.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio della ricer...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The American Journal of Gastroenterology
    Article . 2015 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    133
    citations133
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: M. Raj Lakshman; Richard Amdur; Mamatha Garige; Magnus A. Azuine; +6 Authors

    Hepatic steatosis and steatohepatitis are frequent results of long-term ethanol exposure. We have previously demonstrated that long-term ethanol down-regulates Galbetal, 4GlcNAc alpha2, 6-sialyltransferase (ST6Gal1), leading to defective glycosylation of a number of proteins including apolipoprotein (apo) E and apo J and the appearance of asialoconjugates in the blood of continuously alcohol-fed animals as well as in human alcoholics. In the current study, we have explored the possibility of whether ethanol-induced down-regulation of ST6Gal1 could contribute toward alcoholic steatosis in human alcoholics presumably because of impaired lipid and lipoprotein transport caused by this down-regulation. Real-time quantitative polymerase chain reaction analyses of liver samples from nondrinkers, moderate drinkers, and heavy drinkers as well as from subjects with and without alcoholic liver disease revealed direct evidence that the down-regulation of ST6Gal1 may be due to ethanol per se. The ST6Gal1 messenger RNA level was reduced by as much as 70% in moderate and heavy drinkers as well as in patients with alcoholic liver disease, but was not changed in subjects with liver disease due to causes other than alcohol exposure. Biochemical and histopathologic analysis demonstrated that the liver total cholesterol was increased by more than 30% (P < .05) and 75% (P < .01), respectively, in moderate and heavy drinkers compared with nondrinkers, with even more dramatic changes in triglyceride levels. Significantly, there was a strong inverse correlation between ST6Gal1 messenger RNA level and liver lipid deposit (F = 8.68, P < .001) by statistical analysis. Thus, it is suggested that alcohol-mediated down-regulation of hepatic ST6Gal1 gene leads to defective glycosylation of lipid-carrying apolipoproteins such as apo E and apo J, resulting in defective intracellular lipid and lipoprotein transport, which in turn may contribute to alcoholic steatosis.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Metabolismarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Metabolism
    Article . 2008 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    23
    citations23
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Metabolismarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Metabolism
      Article . 2008 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Christoph Meyer; Willem J.S. de Villiers; Alain Vonlaufen; Phoebe A. Phillips; +20 Authors

    Alcohol is recognized as a direct hepatotoxin, but the precise molecular pathways that are important for the initiation and progression of alcohol‐induced tissue injury are not completely understood. The current understanding of alcohol toxicity to organs suggests that alcohol initiates injury by generation of oxidative and nonoxidative ethanol metabolites and via translocation of gut‐derived endotoxin. These processes lead to cellular injury and stimulation of the inflammatory responses mediated through a variety of molecules. With continuing alcohol abuse, the injury progresses through impairment of tissue regeneration and extracellular matrix (ECM) turnover, leading to fibrogenesis and cirrhosis. Several cell types are involved in this process, the predominant being stellate cells, macrophages, and parenchymal cells. In response to alcohol, growth factors and cytokines activate many signaling cascades that regulate fibrogenesis. This mini‐review brings together research focusing on the underlying mechanisms of alcohol‐mediated injury in a number of organs. It highlights the various processes and molecules that are likely involved in inflammation, immune modulation, susceptibility to infection, ECM turnover and fibrogenesis in the liver, pancreas, and lung triggered by alcohol abuse.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcoholism Clinical and Experimental Research
    Article . 2009 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    Digital.CSIC
    Article . 2010 . Peer-reviewed
    Data sources: Digital.CSIC
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    31
    citations31
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    visibility43
    visibilityviews43
    downloaddownloads54
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcoholism Clinical and Experimental Research
      Article . 2009 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      Digital.CSIC
      Article . 2010 . Peer-reviewed
      Data sources: Digital.CSIC
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph