- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Mark D. Gorrell; Mark D. Gorrell; Devanshi Seth; Paul S. Haber; Geoffrey W. McCaughan; Geoffrey W. McCaughan; Philip J. Hogg;pmid: 18289715
The pathogenesis of alcoholic liver disease (ALD) remains uncertain. Fibrin production and degradation are altered in experimental liver injury. We have recently identified increased expression of a number of genes (annexin A2 (ANXA2), p11, tPA and PAI-1) that implicate fibrinolysis in ALD progression. Aim of our study was to study the direct effect of alcohol on fibrinolysis and plasmin activity in hepatic cell lines and in vivo.Expression of pro- and anti-fibrinolytic genes was determined in liver biopsies from patients with progressive ALD and in HepG2, Huh7 and LX-2 cells exposed to alcohol. The functional effects on fibrinolysis and plasmin activities were determined. C57BL6 female mice were given a single dose of alcohol and serum and liver triglyceride content and serum plasmin activity determined.Alcohol induced a significant up-regulation of ANXA2, PLG, PAI-1 and p11 in human ALD, cell lines and in mice exposed to alcohol. Up-regulation of ANXA2 and p11 was inhibited by the alcohol dehydrogenase inhibitor 4-methylpyrazole. Fibrinolysis and plasmin were increased in HepG2 and LX-2 cells by 10mM alcohol and was inhibited by ANXA2 blocking antibody. Plasmin also increased in mice given a moderate dose of alcohol. By contrast, there was striking up-regulation of PAI-1 in mice given a high dose of alcohol with associated decrease in plasmin.Alcohol directly alters hepatic expression of pro- and anti-fibrinolytic genes in a dose dependent manner with low dose promoting fibrinolysis and high dose inhibiting fibrinolysis. After a large dose of alcohol in vivo, the dominant effect was up-regulation of hepatic PAI-1 with suppression of plasmin. The effect of alcohol on fibrinolysis and plasmin is mediated in part by ANXA2. Alcohol directly influences hepatic pathways of fibrinolysis that may contribute to ALD.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhep.2007.12.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhep.2007.12.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Journal 2018Publisher:Springer International Publishing Helmut Bartsch; Tatjana Arslic-Schmitt; Kirstin-Berit Linhart; Devanshi Seth; Teresa Peccerella; Helmut K. Seitz; Sebastian Mueller;pmid: 30362092
Chronic ethanol consumption is a risk factor for several human cancers. A variety of mechanisms may contribute to this carcinogenic effect of alcohol including oxidative stress with the generation of reactive oxygen species (ROS), formed via inflammatory pathways or as byproducts of ethanol oxidation through cytochrome P4502E1 (CYP2E1). ROS may lead to lipidperoxidation (LPO) resulting in LPO-products such as 4-hydoxynonenal (4-HNE) or malondialdehyde. These compounds can react with DNA bases forming mutagenic and carcinogenic etheno-DNA adducts. Etheno-DNA adducts are generated in the liver (HepG2) cells over-expressing CYP2E1 when incubated with ethanol;and are inhibited by chlormethiazole. In liver biopsies etheno-DNA adducts correlated significantly with CYP2E1. Such a correlation was also found in the esophageal- and colorectal mucosa of alcoholics. Etheno-DNA adducts also increased in liver biopsies from patients with non alcoholic steatohepatitis (NASH). In various animal models with fatty liver either induced by high fat diets or genetically modified such as in the obese Zucker rat, CYP2E1 is induced and paralleled by high levels of etheno DNA-adducts which may be modified by additional alcohol administration. As elevation of adduct levels in NASH children were already detected at a young age, these lesions may contribute to hepatocellular cancer development later in life. Together these data strongly implicate CYP2E1 as an important mediator for etheno-DNA adduct formation, and this detrimental DNA damage may act as a driving force for malignant disease progression.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2018 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-319-98788-0_6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2018 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-319-98788-0_6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Devanshi Seth; Devanshi Seth; Devanshi Seth; Van Long Nguyen; Van Long Nguyen;doi: 10.1111/acer.13851
pmid: 30059168
Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/acer.13851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/acer.13851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 United KingdomPublisher:Wiley Wing-Kin Syn; Wing-Kin Syn; Anna Mae Diehl; Paul S. Haber; Paul S. Haber; Devanshi Seth; Devanshi Seth; Devanshi Seth; Christopher P. Day;pmid: 21545524
AbstractAlcoholic liver disease (ALD) is a primary consequence of heavy and prolonged drinking. ALD contributes to the bulk of liver disease burden worldwide. Progression of ALD is a multifactorial and multistep process that includes many genetic and environmental risk factors. The molecular pathogenesis of ALD involves alcohol metabolism and secondary mechanisms such as oxidative stress, endotoxin, cytokines and immune regulators. The histopathological manifestation of ALD occurs as an outcome of complex but controlled interactions between hepatic cell types. Hepatic stellate cells (HSCs) are the key drivers of fibrogenesis, but transformation of hepatocytes to myofibroblastoids also implicate parenchymal cells as playing an active role in hepatic fibrogenesis. Recent discoveries indicate that lipogenesis during the early stages of ALD is a risk for advancement to cirrhosis. Other recently identified novel molecules and physiological/cell signaling pathways include fibrinolysis, osteopontin, transforming growth factor‐β‐SMAD and hedgehog signaling, and involvement of novel cytokines in hepatic fibrogenesis. The observation that ALD and non‐alcoholic steatohepatitis share common pathways and genetic polymorphisms suggests operation of parallel pathogenic mechanisms. Future research involving genomics, epigenomics, deep sequencing and non‐coding regulatory elements holds promise to identify novel diagnostic and therapeutic targets for ALD. There is also a need for adequate animal models to study pathogenic mechanisms at the molecular level and targeted therapy.
Journal of Gastroent... arrow_drop_down Journal of Gastroenterology and HepatologyArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNewcastle University Library ePrints ServiceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1440-1746.2011.06756.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu137 citations 137 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Gastroent... arrow_drop_down Journal of Gastroenterology and HepatologyArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNewcastle University Library ePrints ServiceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1440-1746.2011.06756.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Fathima Shihana; Pradeep Manuneedhi Cholan; Stuart Fraser; Stefan H Oehlers; Devanshi Seth;pmid: 37650211
AbstractBackgroundAccumulation of lipid in the liver is the first hallmark of both alcohol‐related liver disease (ALD) and non‐alcohol‐related fatty liver disease (NAFLD). Recent studies indicate that specific mutations in lipid genes confer risk and might influence disease progression to irreversible liver cirrhosis. This study aimed to understand the function/s of lipid risk genes driving disease development in zebrafish genetic models of alcohol‐related and non‐alcohol‐related fatty liver.MethodsWe used zebrafish larvae to investigate the effect of alcohol and high fat to model fatty liver and tested the utility of this model to study lipid risk gene functions. CRISPR/Cas9 gene editing was used to create knockdowns in 5 days post‐fertilisation zebrafish larvae for the available orthologs of human cirrhosis risk genes (pnpla3, faf2, tm6sf2). To establish fatty liver models, larvae were exposed to ethanol and a high‐fat diet (HFD) consisting of chicken egg yolk. Changes in morphology (imaging), survival, liver injury (biochemical tests, histopathology), gene expression (qPCR) and lipid accumulation (dye‐specific live imaging) were analysed across treatment groups to test the functions of these genes.ResultsExposure of 5‐day post‐fertilisation (dpf) WT larvae to 2% ethanol or HFD for 48 h developed measurable hepatic steatosis. CRISPR‐Cas9 genome editing depleted pnpla3, faf2 and tm6sf2 gene expression in these CRISPR knockdown larvae (crispants). Depletion significantly increased the effects of ethanol and HFD toxicity by increasing hepatic steatosis and hepatic neutrophil recruitment ≥2‐fold in all three crispants. Furthermore, ethanol or HFD exposure significantly altered the expression of genes associated with ethanol metabolism (cyp2y3) and lipid metabolism‐related gene expression, including atgl (triglyceride hydrolysis), axox1, echs1 (fatty acid β‐oxidation), fabp10a (transport), hmgcra (metabolism), notch1 (signalling) and srebp1 (lipid synthesis), in all three pnpla3, faf2 and tm6sf2 crispants. Nile Red staining in all three crispants revealed significantly increased lipid droplet size and triglyceride accumulation in the livers following exposure to ethanol or HFD.ConclusionsWe identified roles for pnpla3, faf2 and tm6sf2 genes in triglyceride accumulation and fatty acid oxidation pathways in a zebrafish larvae model of fatty liver.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/liv.15716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/liv.15716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Phillip Paull; Van Long Nguyen; Devanshi Seth; Devanshi Seth; Paul S. Haber; Kate M. Chitty;pmid: 29304397
Currently available markers and methods to evaluate alcohol consumption are indirect and suboptimal, or rely on self-report, which have inherent problems. Direct metabolites of alcohol, phosphatidylethanol (PEth), ethyl sulfate (EtS), and ethyl glucuronide (EtG), are known to improve diagnostic accuracy. In this study, methods were established for the identification of PEth in erythrocytes and EtG and EtS in serum using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The three biomarkers were tested and validated in volunteer teetotalers (n = 4) and drinkers (n = 10), and applied in patients (n = 8) hospitalized with alcohol-related problems. Linearity of each assay was demonstrated from 22.5 to 900 nM for EtG, 40-3175 nM for EtS, and 21-750 nM for PEth. The methods were highly selective, precise (<5% coefficient of variation), and had optimal accuracy (within 10% of the nominal value) for all three analytes. Recovery for all three compounds exceeded 90%. A preliminary investigation into the window of detection of these biomarkers after a single occasion of moderate alcohol consumption revealed that EtG and EtS could be detected and quantified over the short term (days) and PEth over the long term (weeks). All three biomarkers showed high sensitivity and specificity in distinguishing between abstinence and any alcohol use at the cut-off values of 22.5 nM for EtG, 40 nM for EtS, and 21 nM for PEth. We have established simultaneous assays for EtG, EtS, and PEth for routine clinical use in confirming abstinence and exposure, and detecting under-reporting of alcohol use, relevant in clinical and non-clinical settings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.alcohol.2017.08.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.alcohol.2017.08.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Italy, United Kingdom, ItalyPublisher:Ovid Technologies (Wolters Kluwer Health) Pierluigi Toniutto; Stefano Romeo; Stefano Romeo; Edmondo Falleti; Yong Fang Kuo; Habeeb Salameh; Julian Leathert; Antonio Molinaro; Christopher P. Day; Devanshi Seth; Devanshi Seth; Devanshi Seth; Hans Dieter Nischalke; Ann K. Daly; Angelika Erwin; Maria Antonella Burza; Evan Raff; Ashwani K. Singal; Stefano Ginanni Corradini; Spengler Ulrich;The genetic polymorphism with an isoleucine-to-methionine substitution at position 148 (rs738409 C>G) in the patatin-like phospholipase domain protein 3 (PNPLA3) gene confers risk of steatosis. PNPLA3 polymorphism is shown to be associated with alcoholic liver disease (ALD). We performed a systematic review and meta-analysis to examine association of this genetic polymorphism with ALD spectrum and its severity.Medline, Embase, and Cochrane Library were searched for studies on association of PNPLA3 polymorphism and ALD spectrum: alcoholic fatty liver (AFL), alcoholic liver injury (ALI), alcoholic cirrhosis (AC), and hepatocellular carcinoma (HCC). Pooled data are reported as odds ratio (OR) with 95% confidence interval. Heterogeneity was assessed using the I(2) statistics and publication bias using Egger's test and Begg and Mazumdar's test. Individual participant data obtained from five studies were used for subgroup analyses.Among 10 studies included in this pooled analysis, compared with controls, OR for rs738409 CG and GG among ALI patients was 1.45 (1.24-1.69) and 2.22 (1.50-3.28), respectively, compared with CC. Respective OR among AC patients was 2.09 (1.79-2.44) and 3.37 (2.49-4.58) and among AC patients with HCC was 2.87 (1.61-5.10) and 12.41 (6.99-22.03). Data for AFL were inconsistent. Among ALD patients, OR of CG and GG genotypes was 2.62 (1.73-3.97) and 8.45 (2.52-28.37), respectively, for AC compared with fatty liver (FL) patients. Similar OR for AC compared with ALI was 1.98 (1.24-3.17) and 3.86 (1.18-12.60). The OR for CG and GG genotypes among AC patients for HCC occurrence was 1.43 (0.76-2.72) and 2.81 (1.57-5.01), respectively. Individual participant data analysis showed age to predispose to AC among ALI patients.PNPLA3 genetic polymorphism (rs738409 C>G) is associated with increased risk for the entire spectrum of ALD among drinkers including ALI, AC, and HCC. Studies are needed to clarify association of PNPLA3 polymorphism and steatosis in alcoholics. PNPLA3 gene may potentially be a therapeutic target in ALD.
Archivio della ricer... arrow_drop_down The American Journal of GastroenterologyArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: CrossrefNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ajg.2015.137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 133 citations 133 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down The American Journal of GastroenterologyArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: CrossrefNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ajg.2015.137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV M. Raj Lakshman; Richard Amdur; Mamatha Garige; Magnus A. Azuine; Robert S. Redman; Maokai Gong; Leslie Castillo; Devanshi Seth; Paul S. Haber; Kenneth Hirsch;pmid: 19013288
Hepatic steatosis and steatohepatitis are frequent results of long-term ethanol exposure. We have previously demonstrated that long-term ethanol down-regulates Galbetal, 4GlcNAc alpha2, 6-sialyltransferase (ST6Gal1), leading to defective glycosylation of a number of proteins including apolipoprotein (apo) E and apo J and the appearance of asialoconjugates in the blood of continuously alcohol-fed animals as well as in human alcoholics. In the current study, we have explored the possibility of whether ethanol-induced down-regulation of ST6Gal1 could contribute toward alcoholic steatosis in human alcoholics presumably because of impaired lipid and lipoprotein transport caused by this down-regulation. Real-time quantitative polymerase chain reaction analyses of liver samples from nondrinkers, moderate drinkers, and heavy drinkers as well as from subjects with and without alcoholic liver disease revealed direct evidence that the down-regulation of ST6Gal1 may be due to ethanol per se. The ST6Gal1 messenger RNA level was reduced by as much as 70% in moderate and heavy drinkers as well as in patients with alcoholic liver disease, but was not changed in subjects with liver disease due to causes other than alcohol exposure. Biochemical and histopathologic analysis demonstrated that the liver total cholesterol was increased by more than 30% (P < .05) and 75% (P < .01), respectively, in moderate and heavy drinkers compared with nondrinkers, with even more dramatic changes in triglyceride levels. Significantly, there was a strong inverse correlation between ST6Gal1 messenger RNA level and liver lipid deposit (F = 8.68, P < .001) by statistical analysis. Thus, it is suggested that alcohol-mediated down-regulation of hepatic ST6Gal1 gene leads to defective glycosylation of lipid-carrying apolipoproteins such as apo E and apo J, resulting in defective intracellular lipid and lipoprotein transport, which in turn may contribute to alcoholic steatosis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.metabol.2008.07.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.metabol.2008.07.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 SpainPublisher:Wiley Christoph Meyer; Willem J.S. de Villiers; Alain Vonlaufen; Phoebe A. Phillips; Minoti V. Apte; Montserrat Marí; Nympha B. D'Souza El-Guindy; David Goldstein; Devanshi Seth; Zhihong Xu; Shu-yin Yang; Anna Fernández; NM Meindl-Beinker; Gopal C. Kundu; Jeremy S. Wilson; José C. Fernández-Checa; Carmen García-Ruiz; Manuela G. Neuman; Agus Darwanto; R M Pirola; Paul S. Haber; Anna Moles; Anna Colell; Steven Dooley;Alcohol is recognized as a direct hepatotoxin, but the precise molecular pathways that are important for the initiation and progression of alcohol‐induced tissue injury are not completely understood. The current understanding of alcohol toxicity to organs suggests that alcohol initiates injury by generation of oxidative and nonoxidative ethanol metabolites and via translocation of gut‐derived endotoxin. These processes lead to cellular injury and stimulation of the inflammatory responses mediated through a variety of molecules. With continuing alcohol abuse, the injury progresses through impairment of tissue regeneration and extracellular matrix (ECM) turnover, leading to fibrogenesis and cirrhosis. Several cell types are involved in this process, the predominant being stellate cells, macrophages, and parenchymal cells. In response to alcohol, growth factors and cytokines activate many signaling cascades that regulate fibrogenesis. This mini‐review brings together research focusing on the underlying mechanisms of alcohol‐mediated injury in a number of organs. It highlights the various processes and molecules that are likely involved in inflammation, immune modulation, susceptibility to infection, ECM turnover and fibrogenesis in the liver, pancreas, and lung triggered by alcohol abuse.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2010 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAAlcoholism Clinical and Experimental ResearchArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1530-0277.2009.01060.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 43visibility views 43 download downloads 54 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2010 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAAlcoholism Clinical and Experimental ResearchArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1530-0277.2009.01060.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Mark D. Gorrell; Mark D. Gorrell; Devanshi Seth; Paul S. Haber; Geoffrey W. McCaughan; Geoffrey W. McCaughan; Philip J. Hogg;pmid: 18289715
The pathogenesis of alcoholic liver disease (ALD) remains uncertain. Fibrin production and degradation are altered in experimental liver injury. We have recently identified increased expression of a number of genes (annexin A2 (ANXA2), p11, tPA and PAI-1) that implicate fibrinolysis in ALD progression. Aim of our study was to study the direct effect of alcohol on fibrinolysis and plasmin activity in hepatic cell lines and in vivo.Expression of pro- and anti-fibrinolytic genes was determined in liver biopsies from patients with progressive ALD and in HepG2, Huh7 and LX-2 cells exposed to alcohol. The functional effects on fibrinolysis and plasmin activities were determined. C57BL6 female mice were given a single dose of alcohol and serum and liver triglyceride content and serum plasmin activity determined.Alcohol induced a significant up-regulation of ANXA2, PLG, PAI-1 and p11 in human ALD, cell lines and in mice exposed to alcohol. Up-regulation of ANXA2 and p11 was inhibited by the alcohol dehydrogenase inhibitor 4-methylpyrazole. Fibrinolysis and plasmin were increased in HepG2 and LX-2 cells by 10mM alcohol and was inhibited by ANXA2 blocking antibody. Plasmin also increased in mice given a moderate dose of alcohol. By contrast, there was striking up-regulation of PAI-1 in mice given a high dose of alcohol with associated decrease in plasmin.Alcohol directly alters hepatic expression of pro- and anti-fibrinolytic genes in a dose dependent manner with low dose promoting fibrinolysis and high dose inhibiting fibrinolysis. After a large dose of alcohol in vivo, the dominant effect was up-regulation of hepatic PAI-1 with suppression of plasmin. The effect of alcohol on fibrinolysis and plasmin is mediated in part by ANXA2. Alcohol directly influences hepatic pathways of fibrinolysis that may contribute to ALD.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhep.2007.12.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhep.2007.12.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Journal 2018Publisher:Springer International Publishing Helmut Bartsch; Tatjana Arslic-Schmitt; Kirstin-Berit Linhart; Devanshi Seth; Teresa Peccerella; Helmut K. Seitz; Sebastian Mueller;pmid: 30362092
Chronic ethanol consumption is a risk factor for several human cancers. A variety of mechanisms may contribute to this carcinogenic effect of alcohol including oxidative stress with the generation of reactive oxygen species (ROS), formed via inflammatory pathways or as byproducts of ethanol oxidation through cytochrome P4502E1 (CYP2E1). ROS may lead to lipidperoxidation (LPO) resulting in LPO-products such as 4-hydoxynonenal (4-HNE) or malondialdehyde. These compounds can react with DNA bases forming mutagenic and carcinogenic etheno-DNA adducts. Etheno-DNA adducts are generated in the liver (HepG2) cells over-expressing CYP2E1 when incubated with ethanol;and are inhibited by chlormethiazole. In liver biopsies etheno-DNA adducts correlated significantly with CYP2E1. Such a correlation was also found in the esophageal- and colorectal mucosa of alcoholics. Etheno-DNA adducts also increased in liver biopsies from patients with non alcoholic steatohepatitis (NASH). In various animal models with fatty liver either induced by high fat diets or genetically modified such as in the obese Zucker rat, CYP2E1 is induced and paralleled by high levels of etheno DNA-adducts which may be modified by additional alcohol administration. As elevation of adduct levels in NASH children were already detected at a young age, these lesions may contribute to hepatocellular cancer development later in life. Together these data strongly implicate CYP2E1 as an important mediator for etheno-DNA adduct formation, and this detrimental DNA damage may act as a driving force for malignant disease progression.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2018 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-319-98788-0_6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2018 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-319-98788-0_6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Devanshi Seth; Devanshi Seth; Devanshi Seth; Van Long Nguyen; Van Long Nguyen;doi: 10.1111/acer.13851
pmid: 30059168
Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/acer.13851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/acer.13851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 United KingdomPublisher:Wiley Wing-Kin Syn; Wing-Kin Syn; Anna Mae Diehl; Paul S. Haber; Paul S. Haber; Devanshi Seth; Devanshi Seth; Devanshi Seth; Christopher P. Day;pmid: 21545524
AbstractAlcoholic liver disease (ALD) is a primary consequence of heavy and prolonged drinking. ALD contributes to the bulk of liver disease burden worldwide. Progression of ALD is a multifactorial and multistep process that includes many genetic and environmental risk factors. The molecular pathogenesis of ALD involves alcohol metabolism and secondary mechanisms such as oxidative stress, endotoxin, cytokines and immune regulators. The histopathological manifestation of ALD occurs as an outcome of complex but controlled interactions between hepatic cell types. Hepatic stellate cells (HSCs) are the key drivers of fibrogenesis, but transformation of hepatocytes to myofibroblastoids also implicate parenchymal cells as playing an active role in hepatic fibrogenesis. Recent discoveries indicate that lipogenesis during the early stages of ALD is a risk for advancement to cirrhosis. Other recently identified novel molecules and physiological/cell signaling pathways include fibrinolysis, osteopontin, transforming growth factor‐β‐SMAD and hedgehog signaling, and involvement of novel cytokines in hepatic fibrogenesis. The observation that ALD and non‐alcoholic steatohepatitis share common pathways and genetic polymorphisms suggests operation of parallel pathogenic mechanisms. Future research involving genomics, epigenomics, deep sequencing and non‐coding regulatory elements holds promise to identify novel diagnostic and therapeutic targets for ALD. There is also a need for adequate animal models to study pathogenic mechanisms at the molecular level and targeted therapy.
Journal of Gastroent... arrow_drop_down Journal of Gastroenterology and HepatologyArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNewcastle University Library ePrints ServiceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1440-1746.2011.06756.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu137 citations 137 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Gastroent... arrow_drop_down Journal of Gastroenterology and HepatologyArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNewcastle University Library ePrints ServiceArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1440-1746.2011.06756.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Fathima Shihana; Pradeep Manuneedhi Cholan; Stuart Fraser; Stefan H Oehlers; Devanshi Seth;pmid: 37650211
AbstractBackgroundAccumulation of lipid in the liver is the first hallmark of both alcohol‐related liver disease (ALD) and non‐alcohol‐related fatty liver disease (NAFLD). Recent studies indicate that specific mutations in lipid genes confer risk and might influence disease progression to irreversible liver cirrhosis. This study aimed to understand the function/s of lipid risk genes driving disease development in zebrafish genetic models of alcohol‐related and non‐alcohol‐related fatty liver.MethodsWe used zebrafish larvae to investigate the effect of alcohol and high fat to model fatty liver and tested the utility of this model to study lipid risk gene functions. CRISPR/Cas9 gene editing was used to create knockdowns in 5 days post‐fertilisation zebrafish larvae for the available orthologs of human cirrhosis risk genes (pnpla3, faf2, tm6sf2). To establish fatty liver models, larvae were exposed to ethanol and a high‐fat diet (HFD) consisting of chicken egg yolk. Changes in morphology (imaging), survival, liver injury (biochemical tests, histopathology), gene expression (qPCR) and lipid accumulation (dye‐specific live imaging) were analysed across treatment groups to test the functions of these genes.ResultsExposure of 5‐day post‐fertilisation (dpf) WT larvae to 2% ethanol or HFD for 48 h developed measurable hepatic steatosis. CRISPR‐Cas9 genome editing depleted pnpla3, faf2 and tm6sf2 gene expression in these CRISPR knockdown larvae (crispants). Depletion significantly increased the effects of ethanol and HFD toxicity by increasing hepatic steatosis and hepatic neutrophil recruitment ≥2‐fold in all three crispants. Furthermore, ethanol or HFD exposure significantly altered the expression of genes associated with ethanol metabolism (cyp2y3) and lipid metabolism‐related gene expression, including atgl (triglyceride hydrolysis), axox1, echs1 (fatty acid β‐oxidation), fabp10a (transport), hmgcra (metabolism), notch1 (signalling) and srebp1 (lipid synthesis), in all three pnpla3, faf2 and tm6sf2 crispants. Nile Red staining in all three crispants revealed significantly increased lipid droplet size and triglyceride accumulation in the livers following exposure to ethanol or HFD.ConclusionsWe identified roles for pnpla3, faf2 and tm6sf2 genes in triglyceride accumulation and fatty acid oxidation pathways in a zebrafish larvae model of fatty liver.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/liv.15716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/liv.15716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Phillip Paull; Van Long Nguyen; Devanshi Seth; Devanshi Seth; Paul S. Haber; Kate M. Chitty;pmid: 29304397
Currently available markers and methods to evaluate alcohol consumption are indirect and suboptimal, or rely on self-report, which have inherent problems. Direct metabolites of alcohol, phosphatidylethanol (PEth), ethyl sulfate (EtS), and ethyl glucuronide (EtG), are known to improve diagnostic accuracy. In this study, methods were established for the identification of PEth in erythrocytes and EtG and EtS in serum using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The three biomarkers were tested and validated in volunteer teetotalers (n = 4) and drinkers (n = 10), and applied in patients (n = 8) hospitalized with alcohol-related problems. Linearity of each assay was demonstrated from 22.5 to 900 nM for EtG, 40-3175 nM for EtS, and 21-750 nM for PEth. The methods were highly selective, precise (<5% coefficient of variation), and had optimal accuracy (within 10% of the nominal value) for all three analytes. Recovery for all three compounds exceeded 90%. A preliminary investigation into the window of detection of these biomarkers after a single occasion of moderate alcohol consumption revealed that EtG and EtS could be detected and quantified over the short term (days) and PEth over the long term (weeks). All three biomarkers showed high sensitivity and specificity in distinguishing between abstinence and any alcohol use at the cut-off values of 22.5 nM for EtG, 40 nM for EtS, and 21 nM for PEth. We have established simultaneous assays for EtG, EtS, and PEth for routine clinical use in confirming abstinence and exposure, and detecting under-reporting of alcohol use, relevant in clinical and non-clinical settings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.alcohol.2017.08.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.alcohol.2017.08.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Italy, United Kingdom, ItalyPublisher:Ovid Technologies (Wolters Kluwer Health) Pierluigi Toniutto; Stefano Romeo; Stefano Romeo; Edmondo Falleti; Yong Fang Kuo; Habeeb Salameh; Julian Leathert; Antonio Molinaro; Christopher P. Day; Devanshi Seth; Devanshi Seth; Devanshi Seth; Hans Dieter Nischalke; Ann K. Daly; Angelika Erwin; Maria Antonella Burza; Evan Raff; Ashwani K. Singal; Stefano Ginanni Corradini; Spengler Ulrich;The genetic polymorphism with an isoleucine-to-methionine substitution at position 148 (rs738409 C>G) in the patatin-like phospholipase domain protein 3 (PNPLA3) gene confers risk of steatosis. PNPLA3 polymorphism is shown to be associated with alcoholic liver disease (ALD). We performed a systematic review and meta-analysis to examine association of this genetic polymorphism with ALD spectrum and its severity.Medline, Embase, and Cochrane Library were searched for studies on association of PNPLA3 polymorphism and ALD spectrum: alcoholic fatty liver (AFL), alcoholic liver injury (ALI), alcoholic cirrhosis (AC), and hepatocellular carcinoma (HCC). Pooled data are reported as odds ratio (OR) with 95% confidence interval. Heterogeneity was assessed using the I(2) statistics and publication bias using Egger's test and Begg and Mazumdar's test. Individual participant data obtained from five studies were used for subgroup analyses.Among 10 studies included in this pooled analysis, compared with controls, OR for rs738409 CG and GG among ALI patients was 1.45 (1.24-1.69) and 2.22 (1.50-3.28), respectively, compared with CC. Respective OR among AC patients was 2.09 (1.79-2.44) and 3.37 (2.49-4.58) and among AC patients with HCC was 2.87 (1.61-5.10) and 12.41 (6.99-22.03). Data for AFL were inconsistent. Among ALD patients, OR of CG and GG genotypes was 2.62 (1.73-3.97) and 8.45 (2.52-28.37), respectively, for AC compared with fatty liver (FL) patients. Similar OR for AC compared with ALI was 1.98 (1.24-3.17) and 3.86 (1.18-12.60). The OR for CG and GG genotypes among AC patients for HCC occurrence was 1.43 (0.76-2.72) and 2.81 (1.57-5.01), respectively. Individual participant data analysis showed age to predispose to AC among ALI patients.PNPLA3 genetic polymorphism (rs738409 C>G) is associated with increased risk for the entire spectrum of ALD among drinkers including ALI, AC, and HCC. Studies are needed to clarify association of PNPLA3 polymorphism and steatosis in alcoholics. PNPLA3 gene may potentially be a therapeutic target in ALD.
Archivio della ricer... arrow_drop_down The American Journal of GastroenterologyArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: CrossrefNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ajg.2015.137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 133 citations 133 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio della ricer... arrow_drop_down The American Journal of GastroenterologyArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: CrossrefNewcastle University Library ePrints ServiceArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ajg.2015.137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV M. Raj Lakshman; Richard Amdur; Mamatha Garige; Magnus A. Azuine; Robert S. Redman; Maokai Gong; Leslie Castillo; Devanshi Seth; Paul S. Haber; Kenneth Hirsch;pmid: 19013288
Hepatic steatosis and steatohepatitis are frequent results of long-term ethanol exposure. We have previously demonstrated that long-term ethanol down-regulates Galbetal, 4GlcNAc alpha2, 6-sialyltransferase (ST6Gal1), leading to defective glycosylation of a number of proteins including apolipoprotein (apo) E and apo J and the appearance of asialoconjugates in the blood of continuously alcohol-fed animals as well as in human alcoholics. In the current study, we have explored the possibility of whether ethanol-induced down-regulation of ST6Gal1 could contribute toward alcoholic steatosis in human alcoholics presumably because of impaired lipid and lipoprotein transport caused by this down-regulation. Real-time quantitative polymerase chain reaction analyses of liver samples from nondrinkers, moderate drinkers, and heavy drinkers as well as from subjects with and without alcoholic liver disease revealed direct evidence that the down-regulation of ST6Gal1 may be due to ethanol per se. The ST6Gal1 messenger RNA level was reduced by as much as 70% in moderate and heavy drinkers as well as in patients with alcoholic liver disease, but was not changed in subjects with liver disease due to causes other than alcohol exposure. Biochemical and histopathologic analysis demonstrated that the liver total cholesterol was increased by more than 30% (P < .05) and 75% (P < .01), respectively, in moderate and heavy drinkers compared with nondrinkers, with even more dramatic changes in triglyceride levels. Significantly, there was a strong inverse correlation between ST6Gal1 messenger RNA level and liver lipid deposit (F = 8.68, P < .001) by statistical analysis. Thus, it is suggested that alcohol-mediated down-regulation of hepatic ST6Gal1 gene leads to defective glycosylation of lipid-carrying apolipoproteins such as apo E and apo J, resulting in defective intracellular lipid and lipoprotein transport, which in turn may contribute to alcoholic steatosis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.metabol.2008.07.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.metabol.2008.07.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 SpainPublisher:Wiley Christoph Meyer; Willem J.S. de Villiers; Alain Vonlaufen; Phoebe A. Phillips; Minoti V. Apte; Montserrat Marí; Nympha B. D'Souza El-Guindy; David Goldstein; Devanshi Seth; Zhihong Xu; Shu-yin Yang; Anna Fernández; NM Meindl-Beinker; Gopal C. Kundu; Jeremy S. Wilson; José C. Fernández-Checa; Carmen García-Ruiz; Manuela G. Neuman; Agus Darwanto; R M Pirola; Paul S. Haber; Anna Moles; Anna Colell; Steven Dooley;Alcohol is recognized as a direct hepatotoxin, but the precise molecular pathways that are important for the initiation and progression of alcohol‐induced tissue injury are not completely understood. The current understanding of alcohol toxicity to organs suggests that alcohol initiates injury by generation of oxidative and nonoxidative ethanol metabolites and via translocation of gut‐derived endotoxin. These processes lead to cellular injury and stimulation of the inflammatory responses mediated through a variety of molecules. With continuing alcohol abuse, the injury progresses through impairment of tissue regeneration and extracellular matrix (ECM) turnover, leading to fibrogenesis and cirrhosis. Several cell types are involved in this process, the predominant being stellate cells, macrophages, and parenchymal cells. In response to alcohol, growth factors and cytokines activate many signaling cascades that regulate fibrogenesis. This mini‐review brings together research focusing on the underlying mechanisms of alcohol‐mediated injury in a number of organs. It highlights the various processes and molecules that are likely involved in inflammation, immune modulation, susceptibility to infection, ECM turnover and fibrogenesis in the liver, pancreas, and lung triggered by alcohol abuse.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2010 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAAlcoholism Clinical and Experimental ResearchArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1530-0277.2009.01060.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 43visibility views 43 download downloads 54 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2010 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAAlcoholism Clinical and Experimental ResearchArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1530-0277.2009.01060.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu