- home
- Advanced Search
Filters
Year range
-chevron_right GO
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 DenmarkPublisher:Proceedings of the National Academy of Sciences Ida Vedel-Petersen; Jing Tang; Jing Tang; Guy Schurgers; Riikka Rinnan; Michelle Schollert; Michelle Schollert; Lars Iversen; Lars Iversen;SignificancePlants release to the atmosphere reactive gases, so-called volatile organic compounds (VOCs). The release of VOCs from vegetation is temperature-dependent and controlled by vegetation composition because different plant species release a distinct blend of VOCs. We used modelling approaches on ecosystem VOC release data collected across the Arctic, which is experiencing both rapid warming and vegetation changes. We show that warming strongly stimulates release of plant-derived VOCs and that vegetation changes also increase VOC release, albeit less than temperature directly, and with large geographic differences in the Pan-Arctic area. The increasing VOC flux from the Arctic tundra to the atmosphere may have implications via climate feedbacks, for example, through particle and cloud formation in these regions with low anthropogenic influence.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2008901117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2008901117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 DenmarkPublisher:Proceedings of the National Academy of Sciences Ida Vedel-Petersen; Jing Tang; Jing Tang; Guy Schurgers; Riikka Rinnan; Michelle Schollert; Michelle Schollert; Lars Iversen; Lars Iversen;SignificancePlants release to the atmosphere reactive gases, so-called volatile organic compounds (VOCs). The release of VOCs from vegetation is temperature-dependent and controlled by vegetation composition because different plant species release a distinct blend of VOCs. We used modelling approaches on ecosystem VOC release data collected across the Arctic, which is experiencing both rapid warming and vegetation changes. We show that warming strongly stimulates release of plant-derived VOCs and that vegetation changes also increase VOC release, albeit less than temperature directly, and with large geographic differences in the Pan-Arctic area. The increasing VOC flux from the Arctic tundra to the atmosphere may have implications via climate feedbacks, for example, through particle and cloud formation in these regions with low anthropogenic influence.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2008901117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2008901117&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu