- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 JapanPublisher:MDPI AG Authors:Takao Katsura;
Takashi Higashitani; Yuzhi Fang;Takao Katsura
Takao Katsura in OpenAIREYoshitaka Sakata;
+3 AuthorsYoshitaka Sakata
Yoshitaka Sakata in OpenAIRETakao Katsura;
Takashi Higashitani; Yuzhi Fang;Takao Katsura
Takao Katsura in OpenAIREYoshitaka Sakata;
Katsunori Nagano; Hitoshi Akai; Motoaki OE;Yoshitaka Sakata
Yoshitaka Sakata in OpenAIREdoi: 10.3390/en13061339
handle: 2115/78400
Considering the heat capacity inside vertical spiral ground heat exchanger (VSGHEX) in the simulation is one of the most noteworthy challenge to design the ground source heat pump (GSHP) system with VSGHEXs. In this paper, a new simulation model for VSGHEXs is developed by combining the ICS model with the CaRM. The developed simulation model can consider the heat capacity inside VSGHEX and provide dynamic calculation with high speed and appropriate precision. In order to apply the CaRM, the equivalent length was introduced. Then, the equivalent length was approximated by comparing the results of the CaRM and the numerical calculation. In addition, the calculation model of the VSGHEX was integrated into the design and simulation tool for the GSHP system. The accuracy of the tool was verified by comparing with the measurements. The error between supply temperatures of the measurements and calculation is approximately 2 °C at the maximum. Finally, assuming GSHP systems with VSGHEXs, whose spiral diameter was 500 mm and depth was 4 m, were installed in residential houses in Japan, the required numbers of VSGHEXs were estimated. The results showed a strong correlation between the total heating or cooling load and the required number. Therefore, the required number can be estimated by using the simplified approximate equation.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/6/1339/pdfData sources: Multidisciplinary Digital Publishing InstituteHokkaido University Collection of Scholarly and Academic PapersArticleLicense: CC BYFull-Text: http://hdl.handle.net/2115/78400Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/6/1339/pdfData sources: Multidisciplinary Digital Publishing InstituteHokkaido University Collection of Scholarly and Academic PapersArticleLicense: CC BYFull-Text: http://hdl.handle.net/2115/78400Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 JapanPublisher:MDPI AG Authors:Takao Katsura;
Takao Katsura
Takao Katsura in OpenAIREYoshitaka Sakata;
Lan Ding; Katsunori Nagano;Yoshitaka Sakata
Yoshitaka Sakata in OpenAIREdoi: 10.3390/en13174491
handle: 2115/79595
The authors developed a ground heat exchanger (GHE) calculation model influenced by the ground surface by applying the superposition theorem. Furthermore, a simulation tool for ground source heat pump (GSHP) systems affected by ground surface was developed by combining the GHE calculation model with the simulation tool for GSHP systems that the authors previously developed. In this paper, the outlines of GHE calculation model is explained. Next, in order to validate the calculation precision of the tool, a thermal response test (TRT) was carried out using a borehole GHE with a length of 30 m and the outlet temperature of the GHE calculated using the tool was compared to the measured one. The relative error between the temperatures of the heat carrier fluid in the GHE obtained by measurement and calculation was 3.3% and this result indicated that the tool can reproduce the measurement with acceptable precision. In addition, the authors assumed that the GSHP system was installed in residential houses and predicted the performances of GSHP systems using the GHEs with different lengths and numbers, but the same total length. The result showed that the average surface temperature of GHE with a length of 10 m becomes approximately 2 °C higher than the average surface temperature of a GHE with a length of 100 m in August.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/17/4491/pdfData sources: Multidisciplinary Digital Publishing InstituteHokkaido University Collection of Scholarly and Academic PapersArticleLicense: CC BYFull-Text: http://hdl.handle.net/2115/79595Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13174491&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/17/4491/pdfData sources: Multidisciplinary Digital Publishing InstituteHokkaido University Collection of Scholarly and Academic PapersArticleLicense: CC BYFull-Text: http://hdl.handle.net/2115/79595Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13174491&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 JapanPublisher:MDPI AG Authors:Heung Seok Chae;
Heung Seok Chae
Heung Seok Chae in OpenAIREKatsunori Nagano;
Katsunori Nagano
Katsunori Nagano in OpenAIREYoshitaka Sakata;
Yoshitaka Sakata
Yoshitaka Sakata in OpenAIRETakao Katsura;
+2 AuthorsTakao Katsura
Takao Katsura in OpenAIREHeung Seok Chae;
Heung Seok Chae
Heung Seok Chae in OpenAIREKatsunori Nagano;
Katsunori Nagano
Katsunori Nagano in OpenAIREYoshitaka Sakata;
Yoshitaka Sakata
Yoshitaka Sakata in OpenAIRETakao Katsura;
Takao Katsura
Takao Katsura in OpenAIREAhmed A. Serageldin;
Ahmed A. Serageldin
Ahmed A. Serageldin in OpenAIRETakeshi Kondo;
Takeshi Kondo
Takeshi Kondo in OpenAIREhandle: 2115/79194
A new practical method for thermal response test (TRT) is proposed herein to estimate the groundwater velocity and effective thermal conductivity of geological zones. The relaxation time of temperature (RTT) is applied to determine the depths of the zones. The RTT is the moment when the temperature in the borehole recovers to a certain level compared with that when the heating is stopped. The heat exchange rates of the zones are calculated from the vertical temperature profile measured by the optical-fiber distributed temperature sensors located in the supply and return sides of a U-tube. Finally, the temperature increments at the end time of the TRT are calculated according to the groundwater velocities and the effective thermal conductivity using the moving line source theory applied to the calculated heat exchange rates. These results are compared with the average temperature increment data measured from each zone, and the best-fitting value yields the groundwater velocities for each zone. Results show that the groundwater velocities for each zone are 2750, 58, and 0 m/y, whereas the effective thermal conductivities are 2.4, 2.4, and 2.1 W/(m∙K), respectively. The proposed methodology is evaluated by comparing it with the realistic long-term operation data of a ground source heat pump (GSHP) system in Kazuno City, Japan. The temperature error between the calculated results and measured data is 6.4% for two years. Therefore, the proposed methodology is effective for estimating the long-term performance analysis of GSHP systems.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/13/3297/pdfData sources: Multidisciplinary Digital Publishing InstituteHokkaido University Collection of Scholarly and Academic PapersArticleLicense: CC BYFull-Text: http://hdl.handle.net/2115/79194Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/13/3297/pdfData sources: Multidisciplinary Digital Publishing InstituteHokkaido University Collection of Scholarly and Academic PapersArticleLicense: CC BYFull-Text: http://hdl.handle.net/2115/79194Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13133297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 JapanPublisher:MDPI AG Funded by:FCT | D4FCT| D4Authors:Yoshitaka Sakata;
Yuma Akeyama;Yoshitaka Sakata
Yoshitaka Sakata in OpenAIRETakao Katsura;
Katsunori Nagano;Takao Katsura
Takao Katsura in OpenAIREdoi: 10.3390/en16062742
handle: 2115/89260
A residential ground-source heat pump system often requires a long payback time to recover the capital cost. Long-term uncertainty in such a system’s performance increases as the climate changes. This study compares 20-years hourly heating/cooling demands of a typical residence in the present (2000–2020) and in the future (2076–2095) for two locations in Japan. This study also calculated soil temperatures as heat sources through 1D heat-transfer simulation based on the A1B climate scenario in the Intergovernmental Panel on Climate Change’s Special Report. System performance and simple payback times were compared in one cold and one warm city in Japan (Sapporo and Tokyo, respectively). Soil temperatures at a middle depth of a borehole heat exchanger were predicted to increase in the future by ~1 °C, with insignificant effects on a borehole heat exchanger. Seasonal performance factors increased in Sapporo because thermal demands would be kept even in the future, but decreased in Tokyo, which has a higher ratio of the energy used in operating the system in cooling mode compared with its small heating demand. The simple payback time was estimated at 16.2 and >20 years in Sapporo and Tokyo, respectively, both in the present and future, with the constant energy prices. If oil and gas prices doubled, the payback time would be halved in Sapporo to 8.4 years but remain around 20 years or more in Tokyo.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/6/2742/pdfData sources: Multidisciplinary Digital Publishing InstituteHokkaido University Collection of Scholarly and Academic PapersArticleLicense: CC BYFull-Text: http://hdl.handle.net/2115/89260Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16062742&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/6/2742/pdfData sources: Multidisciplinary Digital Publishing InstituteHokkaido University Collection of Scholarly and Academic PapersArticleLicense: CC BYFull-Text: http://hdl.handle.net/2115/89260Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16062742&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 JapanPublisher:MDPI AG Authors:Yoshitaka Sakata;
Yoshitaka Sakata
Yoshitaka Sakata in OpenAIRETakao Katsura;
Takao Katsura
Takao Katsura in OpenAIREAhmed A. Serageldin;
Katsunori Nagano; +1 AuthorsAhmed A. Serageldin
Ahmed A. Serageldin in OpenAIREYoshitaka Sakata;
Yoshitaka Sakata
Yoshitaka Sakata in OpenAIRETakao Katsura;
Takao Katsura
Takao Katsura in OpenAIREAhmed A. Serageldin;
Katsunori Nagano; Motoaki Ooe;Ahmed A. Serageldin
Ahmed A. Serageldin in OpenAIREdoi: 10.3390/en14071872
handle: 2115/81533
The variability of ground thermal conductivity, based on underground conditions, is often ignored during the design of ground-source heat pump systems. This study shows a field evidence of such site-scale variations through thermal response tests in eight borehole heat exchangers aligned at a site on a terrace along the foothills of mountains in northern Japan. Conventional analysis of the overall ground thermal conductivity along the total installation length finds that the value at one borehole heat exchanger is 2.5 times that at the other seven boreholes. History matching analysis of underground distributed temperature measurements generates vertical partial ground thermal conductivity data for four depth layers. Based on the moving line heat source theory, the partial values are generally within a narrow range expected for gravel deposits. Darcy velocities of groundwater are estimated to be 74–204 m/y at the borehole with high conductivity, increasing in the shallow layers above a depth of 41 m. In contrast, the velocities at the other seven boreholes are one-to-two orders of magnitude smaller with no trend. These high and low velocity values are considered for the topography and permeability. However, the relatively slow groundwater velocities might not apparently increase the partial conductivity.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/7/1872/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14071872&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/7/1872/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14071872&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors:Hongzhi Liu;
Katsunori Nagano;Hongzhi Liu
Hongzhi Liu in OpenAIRETakao Katsura;
Yue Han;Takao Katsura
Takao Katsura in OpenAIREdoi: 10.3390/en13123133
In this study, a heat pump of 10 kW with vapor injection using refrigerant of R410A was developed. A vapor injection pipe connecting a gas–liquid separator at the outlet of the main expansion valve and the suction of a single-stage rotary compressor was designed. The heating performance of this vapor injection heat pump was investigated and analyzed at different compressor frequencies and primary temperatures. The experimental results show that for the heat pump without vapor injection, the heating capacity increased linearly with the compressor frequency, while the heating coefficient of performance (COP) decreased linearly with the compressor frequency for each tested primary temperature. The developed vapor injection technique is able to increase the heat pump system’s heating capacity and heating COP when the injection ratio R falls into the range 0.16–0.17. The refrigerant mass flow rate can be increased in the vapor injection heat pump cycle due to the decreased specific volume of the suction refrigerant. The power consumption of vapor injection heat pump cycle almost remains the same with that of the conventional heat pump cycle because of the increased refrigerant mass flow rate and the decreased compression ratio. Finally, it was found that the developed vapor injection cycle is preferable to decreasing the compressor’s discharge temperature.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/12/3133/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13123133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/12/3133/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13123133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors:Kunning Yang;
Kunning Yang
Kunning Yang in OpenAIRETakao Katsura;
Shigeyuki Nagasaka; Katsunori Nagano;Takao Katsura
Takao Katsura in OpenAIREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2023.113144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2023.113144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 JapanPublisher:MDPI AG Authors: Mostafa Ahmed;Ali Radwan;
Ahmed Serageldin;Ali Radwan
Ali Radwan in OpenAIRESaim Memon;
+2 AuthorsSaim Memon
Saim Memon in OpenAIREMostafa Ahmed;Ali Radwan;
Ahmed Serageldin;Ali Radwan
Ali Radwan in OpenAIRESaim Memon;
Saim Memon
Saim Memon in OpenAIRETakao Katsura;
Katsunori Nagano;Takao Katsura
Takao Katsura in OpenAIREdoi: 10.3390/su12197846
handle: 2115/79983
A zero-energy building (ZEB) requires an innovative integration of technologies, in which windows play a paramount role in energy reduction, storage, and generation. This study contributes to four innovative designs of sliding smart windows. It integrates air-gap (AG), phase change material (PCM), photovoltaic (PV), and vacuum glazing (VG) technologies. These smart sliding windows are proposed to generate electricity along with achieving efficient thermal insulations and heat storage simultaneously. A two-dimensional multiphysics thermal model that couples the PCM melting and solidification model, PV model, natural convection in the cavity, and the surface-to-surface radiation model in the vacuum gap are developed for the first time. The model is validated with data in the literature. The transient simulations were carried out to investigate the thermo-electrical performance of a window with an area of 1 m by 1 m for the meteorological conditions of Kuwait city on the 10th of June 2018, where the window was oriented to south direction. The results showed that the total solar heat energy gain per unit window area is 2.6 kWh, 0.02 kWh, 0.22 kWh, 1.48 kWh, and 0.2 kWh for the double AG, AG + PV + PCM + VG, PV + PCM + VG, AG + PV + PCM, and the ventilated AG + PV + PCM + VG, respectively. The results elucidate the advantages of the integration of VG in this integrated sliding smart window. The daily generated PV electrical energy in these systems is around 1.3 kWh, 1.43 kWh, and 1.38 kWh for the base case with double AG, PV + PCM + VG, and the ventilated AG + PV + PCM + VG respectively per unit window area.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/19/7846/pdfData sources: Multidisciplinary Digital Publishing InstituteHokkaido University Collection of Scholarly and Academic PapersArticleLicense: CC BYFull-Text: http://hdl.handle.net/2115/79983Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12197846&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/19/7846/pdfData sources: Multidisciplinary Digital Publishing InstituteHokkaido University Collection of Scholarly and Academic PapersArticleLicense: CC BYFull-Text: http://hdl.handle.net/2115/79983Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12197846&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors:Takao Katsura;
Katsuya Saito; Motoaki Oe; Katsunori Nagano;Takao Katsura
Takao Katsura in OpenAIREdoi: 10.3390/en17040891
Ground source heat pump systems are one of the renewable energy heat utilization technologies that can reduce the energy for HVAC and hot water supplies and consequently mitigate the progression of global warming. On the other hand, the development of ground heat exchangers that can be installed in small buildings with low installation costs is an important challenge for increasing the installation number of ground source heat pump systems in Japan. This study proposes H-shaped PC pile ground heat exchangers to reduce installation costs. The installation test and installation cost estimation of H-shaped PC pile ground heat exchangers showed that installation costs could be reduced to less than half compared to the conventional borehole double U-tube ground heat exchanger. The coefficient of heat extraction/injection of H-shaped PC pile ground heat exchangers was evaluated as 2.2–2.4 W/(m K) from the results of actual measurements during the heating and cooling operation of the GSHP system, and this was slightly high compared to the borehole single U-tube ground heat exchanger. In addition, the GSHP system with an 8 by 8 m long H-shaped PC pile ground heat exchanger could supply adequate heating output for the heating load of the residential house and operate with an SCOP of more than 3.0. Finally, the authors have confirmed that the GSHP system with H-shaped PC pile ground heat exchangers can reduce installation costs by 40% or more while maintaining the same running cost compared to conventional GSHP systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17040891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17040891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 JapanPublisher:MDPI AG Authors:Ahmed A. Serageldin;
Ahmed A. Serageldin
Ahmed A. Serageldin in OpenAIREAli Radwan;
Ali Radwan
Ali Radwan in OpenAIREYoshitaka Sakata;
Yoshitaka Sakata
Yoshitaka Sakata in OpenAIRETakao Katsura;
+1 AuthorsTakao Katsura
Takao Katsura in OpenAIREAhmed A. Serageldin;
Ahmed A. Serageldin
Ahmed A. Serageldin in OpenAIREAli Radwan;
Ali Radwan
Ali Radwan in OpenAIREYoshitaka Sakata;
Yoshitaka Sakata
Yoshitaka Sakata in OpenAIRETakao Katsura;
Katsunori Nagano;Takao Katsura
Takao Katsura in OpenAIREdoi: 10.3390/en13061418
handle: 2115/78401
New small-scale experiments are carried out to study the effect of groundwater flow on the thermal performance of water ground heat exchangers for ground source heat pump systems. Four heat exchanger configurations are investigated; single U-tube with circular cross-section (SUC), single U-tube with an oval cross-section (SUO), single U-tube with circular cross-section and single spacer with circular cross-section (SUC + SSC) and single U-tube with an oval cross-section and single spacer with circular cross-section (SUO + SSC). The soil temperature distributions along the horizontal and vertical axis are measured and recorded simultaneously with measuring the electrical energy injected into the fluid, and the borehole wall temperature is measured as well; consequently, the borehole thermal resistance (Rb) is calculated. Moreover, two dimensional and steady-state CFD simulations are validated against the experimental measurements at the groundwater velocity of 1000 m/year with an average error of 3%. Under saturated conditions without groundwater flow effect; using a spacer with SUC decreases the Rb by 13% from 0.15 m·K/W to 0.13 m·K/W, also using a spacer with the SUO decreases the Rb by 9% from 0.11 m·K/W to 0.1 m·K/W. In addition, the oval cross-section with spacer SUO + SSC decreases the Rb by 33% compared with SUC. Under the effect of groundwater flow of 1000 m/year; Rb of the SUC, SUO, SUC + SSC and SUO + SSC cases decrease by 15.5%, 12.3%, 6.1% and 4%, respectively, compared with the saturated condition.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/6/1418/pdfData sources: Multidisciplinary Digital Publishing InstituteHokkaido University Collection of Scholarly and Academic PapersArticleLicense: CC BYFull-Text: http://hdl.handle.net/2115/78401Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061418&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/6/1418/pdfData sources: Multidisciplinary Digital Publishing InstituteHokkaido University Collection of Scholarly and Academic PapersArticleLicense: CC BYFull-Text: http://hdl.handle.net/2115/78401Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061418&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu