- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 SpainPublisher:Springer Science and Business Media LLC Funded by:SGOV | INTEGRACION DE LA PRODUCC..., EC | STAR TREE, EC | MultiFUNGtionalitySGOV| INTEGRACION DE LA PRODUCCION Y DIVERSIDAD MICOLOGICA EN LA PLANIFICACION Y GESTION FORESTAL DE MASAS DE P. SYLVESTRIS Y P.PINASTER DEL NORESTE DE ESPAÑA ,EC| STAR TREE ,EC| MultiFUNGtionalityAuthors: Alday, Josu G.; Martínez de Aragón, Juan; de-Miguel, Sergio; Bonet, José Antonio;AbstractMushrooms are important non-wood-forest-products in many Mediterranean ecosystems, being highly vulnerable to climate change. However, the ecological scales of variation of mushroom productivity and diversity, and climate dependence has been usually overlooked due to a lack of available data. We determined the spatio-temporal variability of epigeous sporocarps and the climatic factors driving their fruiting to plan future sustainable management of wild mushrooms production. We collected fruiting bodies in Pinus sylvestris stands along an elevation gradient for 8 consecutive years. Overall, sporocarp biomass was mainly dependent on inter-annual variations, whereas richness was more spatial-scale dependent. Elevation was not significant, but there were clear elevational differences in biomass and richness patterns between ectomycorrhizal and saprotrophic guilds. The main driver of variation was late-summer-early-autumn precipitation. Thus, different scale processes (inter-annual vs. spatial-scale) drive sporocarp biomass and diversity patterns; temporal effects for biomass and ectomycorrhizal fungi vs. spatial scale for diversity and saprotrophic fungi. The significant role of precipitation across fungal guilds and spatio-temporal scales indicates that it is a limiting resource controlling sporocarp production and diversity in Mediterranean regions. The high spatial and temporal variability of mushrooms emphasize the need for long-term datasets of multiple spatial points to effectively characterize fungal fruiting patterns.
Scientific Reports arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep45824&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Scientific Reports arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep45824&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 25 Apr 2024Publisher:CORA.Repositori de Dades de Recerca Authors: Morera, Albert; Ponce, Ángel; Martínez de Aragón, Juan; Bonet Lledós, José Antonio; +1 AuthorsMorera, Albert; Ponce, Ángel; Martínez de Aragón, Juan; Bonet Lledós, José Antonio; Miguel Magaña, Sergio de;doi: 10.34810/data1293
Macrofungi are a diverse group of organisms essential for the functioning of natural ecosystems. Their fruiting bodies are key to their life cycle, providing insight into fungal diversity through biomass-based species abundance and facilitating the quantification of provisioning and cultural ecosystem services. However, research on the biomass of macrofungal fruiting bodies has been limited due to the significant efforts required for sampling and identification. We introduce a comprehensive database that contains both fresh and dry biomass data for 836 species and 221 genera of macrofungal fruiting bodies found in Mediterranean forest ecosystems. This database is the largest global collection of macrofungal fruiting body biomass data, featuring information from over 350,000 fruiting bodies collected over more than 25 years. It enhances presence-only databases of macrofungal fruiting bodies, supports more detailed macrofungal research, and provides a foundation for developing management strategies to conserve fungal diversity, their ecosystem services, and enhance ecosystem resilience against global changes. Microsoft Excel, null
https://dx.doi.org/1... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTACORA. Repositori de Dades de RecercaDataset . 2024License: CC BYData sources: CORA. Repositori de Dades de Recercaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.34810/data1293&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTACORA. Repositori de Dades de RecercaDataset . 2024License: CC BYData sources: CORA. Repositori de Dades de Recercaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.34810/data1293&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Wiley Carles Castaño; Björn D. Lindahl; Josu G. Alday; Andreas Hagenbo; Juan Martínez de Aragón; Javier Parladé; Joan Pera; José Antonio Bonet;Summary Soil microclimate is a potentially important regulator of the composition of plant‐associated fungal communities in climates with significant drought periods. Here, we investigated the spatio‐temporal dynamics of soil fungal communities in a Mediterranean Pinus pinaster forest in relation to soil moisture and temperature. Fungal communities in 336 soil samples collected monthly over 1 year from 28 long‐term experimental plots were assessed by PacBio sequencing of ITS2 amplicons. Total fungal biomass was estimated by analysing ergosterol. Community changes were analysed in the context of functional traits. Soil fungal biomass was lowest during summer and late winter and highest during autumn, concurrent with a greater relative abundance of mycorrhizal species. Intra‐annual spatio‐temporal changes in community composition correlated significantly with soil moisture and temperature. Mycorrhizal fungi were less affected by summer drought than free‐living fungi. In particular, mycorrhizal species of the short‐distance exploration type increased in relative abundance under dry conditions, whereas species of the long‐distance exploration type were more abundant under wetter conditions. Our observations demonstrate a potential for compositional and functional shifts in fungal communities in response to changing climatic conditions. Free‐living fungi and mycorrhizal species with extensive mycelia may be negatively affected by increasing drought periods in Mediterranean forest ecosystems.
New Phytologist arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTANew PhytologistArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.15205&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 109 citations 109 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert New Phytologist arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTANew PhytologistArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.15205&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Elsevier BV Funded by:EC | FirEUriskEC| FirEUriskJuan Martínez de Aragón; Javier Hedo; Rubén Díaz-Sierra; Matthias M. Boer; José Antonio Bonet; Prakash Thapa; Àngel Cunill Camprubí; Edurne Martínez del Castillo; Rodrigo Balaguer-Romano; Marta Yebra; Víctor Resco de Dios; Víctor Resco de Dios;Fuel moisture limits the availability of fuel to wildfires in many forest areas worldwide, but the effects of climate change on moisture constraints remain largely unknown. Here we addressed how climate affects fuel moisture in pine stands from Catalonia, NE Spain, and the potential effects of increasing climate aridity on burned area in the Pyrenees, a mesic mountainous area where fire is currently rare. We first quantified variation in fuel moisture in six sites distributed across an altitudinal gradient where the long-term mean annual temperature and precipitation vary by 6-15 °C and 395-933 mm, respectively. We observed significant spatial variation in live (78-162%) and dead (10-15%) fuel moisture across sites. The pattern of variation was negatively linked (r = |0.6|-|0.9|) to increases in vapor pressure deficit (VPD) and in the Aridity Index. Using seasonal fire records over 2006-2020, we observed that summer burned area in the Mediterranean forests of Northeast Spain and Southern France was strongly dependent on VPD (r = 0.93), the major driver (and predictor) of dead fuel moisture content (DFMC) at our sites. Based on the difference between VPD thresholds associated with large wildfire seasons in the Mediterranean (3.6 kPa) and the maximum VPD observed in surrounding Pyrenean mountains (3.1 kPa), we quantified the "safety margin" for Pyrenean forests (difference between actual VPD and that associated with large wildfires) at 0.5 kPa. The effects of live fuel moisture content (LFMC) on burned area were not significant under current conditions, a situation that may change with projected increases in climate aridity. Overall, our results indicate that DFMC in currently fire-free areas in Europe, like the Pyrenees, with vast amounts of fuel in many forest stands, may reach critical dryness thresholds beyond the safety margin and experience large wildfires after only mild increases in VPD, although LFMC can modulate the response.
Repositori Obert UdL arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe Science of The Total EnvironmentArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.149104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Repositori Obert UdL arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe Science of The Total EnvironmentArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.149104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 SpainPublisher:Springer Science and Business Media LLC Funded by:SGOV | INTEGRACION DE LA PRODUCC..., EC | STAR TREE, EC | MultiFUNGtionalitySGOV| INTEGRACION DE LA PRODUCCION Y DIVERSIDAD MICOLOGICA EN LA PLANIFICACION Y GESTION FORESTAL DE MASAS DE P. SYLVESTRIS Y P.PINASTER DEL NORESTE DE ESPAÑA ,EC| STAR TREE ,EC| MultiFUNGtionalityAuthors: Alday, Josu G.; Martínez de Aragón, Juan; de-Miguel, Sergio; Bonet, José Antonio;AbstractMushrooms are important non-wood-forest-products in many Mediterranean ecosystems, being highly vulnerable to climate change. However, the ecological scales of variation of mushroom productivity and diversity, and climate dependence has been usually overlooked due to a lack of available data. We determined the spatio-temporal variability of epigeous sporocarps and the climatic factors driving their fruiting to plan future sustainable management of wild mushrooms production. We collected fruiting bodies in Pinus sylvestris stands along an elevation gradient for 8 consecutive years. Overall, sporocarp biomass was mainly dependent on inter-annual variations, whereas richness was more spatial-scale dependent. Elevation was not significant, but there were clear elevational differences in biomass and richness patterns between ectomycorrhizal and saprotrophic guilds. The main driver of variation was late-summer-early-autumn precipitation. Thus, different scale processes (inter-annual vs. spatial-scale) drive sporocarp biomass and diversity patterns; temporal effects for biomass and ectomycorrhizal fungi vs. spatial scale for diversity and saprotrophic fungi. The significant role of precipitation across fungal guilds and spatio-temporal scales indicates that it is a limiting resource controlling sporocarp production and diversity in Mediterranean regions. The high spatial and temporal variability of mushrooms emphasize the need for long-term datasets of multiple spatial points to effectively characterize fungal fruiting patterns.
Scientific Reports arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep45824&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Scientific Reports arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep45824&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 25 Apr 2024Publisher:CORA.Repositori de Dades de Recerca Authors: Morera, Albert; Ponce, Ángel; Martínez de Aragón, Juan; Bonet Lledós, José Antonio; +1 AuthorsMorera, Albert; Ponce, Ángel; Martínez de Aragón, Juan; Bonet Lledós, José Antonio; Miguel Magaña, Sergio de;doi: 10.34810/data1293
Macrofungi are a diverse group of organisms essential for the functioning of natural ecosystems. Their fruiting bodies are key to their life cycle, providing insight into fungal diversity through biomass-based species abundance and facilitating the quantification of provisioning and cultural ecosystem services. However, research on the biomass of macrofungal fruiting bodies has been limited due to the significant efforts required for sampling and identification. We introduce a comprehensive database that contains both fresh and dry biomass data for 836 species and 221 genera of macrofungal fruiting bodies found in Mediterranean forest ecosystems. This database is the largest global collection of macrofungal fruiting body biomass data, featuring information from over 350,000 fruiting bodies collected over more than 25 years. It enhances presence-only databases of macrofungal fruiting bodies, supports more detailed macrofungal research, and provides a foundation for developing management strategies to conserve fungal diversity, their ecosystem services, and enhance ecosystem resilience against global changes. Microsoft Excel, null
https://dx.doi.org/1... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTACORA. Repositori de Dades de RecercaDataset . 2024License: CC BYData sources: CORA. Repositori de Dades de Recercaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.34810/data1293&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTADataset . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTACORA. Repositori de Dades de RecercaDataset . 2024License: CC BYData sources: CORA. Repositori de Dades de Recercaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.34810/data1293&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:Wiley Carles Castaño; Björn D. Lindahl; Josu G. Alday; Andreas Hagenbo; Juan Martínez de Aragón; Javier Parladé; Joan Pera; José Antonio Bonet;Summary Soil microclimate is a potentially important regulator of the composition of plant‐associated fungal communities in climates with significant drought periods. Here, we investigated the spatio‐temporal dynamics of soil fungal communities in a Mediterranean Pinus pinaster forest in relation to soil moisture and temperature. Fungal communities in 336 soil samples collected monthly over 1 year from 28 long‐term experimental plots were assessed by PacBio sequencing of ITS2 amplicons. Total fungal biomass was estimated by analysing ergosterol. Community changes were analysed in the context of functional traits. Soil fungal biomass was lowest during summer and late winter and highest during autumn, concurrent with a greater relative abundance of mycorrhizal species. Intra‐annual spatio‐temporal changes in community composition correlated significantly with soil moisture and temperature. Mycorrhizal fungi were less affected by summer drought than free‐living fungi. In particular, mycorrhizal species of the short‐distance exploration type increased in relative abundance under dry conditions, whereas species of the long‐distance exploration type were more abundant under wetter conditions. Our observations demonstrate a potential for compositional and functional shifts in fungal communities in response to changing climatic conditions. Free‐living fungi and mycorrhizal species with extensive mycelia may be negatively affected by increasing drought periods in Mediterranean forest ecosystems.
New Phytologist arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTANew PhytologistArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.15205&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 109 citations 109 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert New Phytologist arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTANew PhytologistArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.15205&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Elsevier BV Funded by:EC | FirEUriskEC| FirEUriskJuan Martínez de Aragón; Javier Hedo; Rubén Díaz-Sierra; Matthias M. Boer; José Antonio Bonet; Prakash Thapa; Àngel Cunill Camprubí; Edurne Martínez del Castillo; Rodrigo Balaguer-Romano; Marta Yebra; Víctor Resco de Dios; Víctor Resco de Dios;Fuel moisture limits the availability of fuel to wildfires in many forest areas worldwide, but the effects of climate change on moisture constraints remain largely unknown. Here we addressed how climate affects fuel moisture in pine stands from Catalonia, NE Spain, and the potential effects of increasing climate aridity on burned area in the Pyrenees, a mesic mountainous area where fire is currently rare. We first quantified variation in fuel moisture in six sites distributed across an altitudinal gradient where the long-term mean annual temperature and precipitation vary by 6-15 °C and 395-933 mm, respectively. We observed significant spatial variation in live (78-162%) and dead (10-15%) fuel moisture across sites. The pattern of variation was negatively linked (r = |0.6|-|0.9|) to increases in vapor pressure deficit (VPD) and in the Aridity Index. Using seasonal fire records over 2006-2020, we observed that summer burned area in the Mediterranean forests of Northeast Spain and Southern France was strongly dependent on VPD (r = 0.93), the major driver (and predictor) of dead fuel moisture content (DFMC) at our sites. Based on the difference between VPD thresholds associated with large wildfire seasons in the Mediterranean (3.6 kPa) and the maximum VPD observed in surrounding Pyrenean mountains (3.1 kPa), we quantified the "safety margin" for Pyrenean forests (difference between actual VPD and that associated with large wildfires) at 0.5 kPa. The effects of live fuel moisture content (LFMC) on burned area were not significant under current conditions, a situation that may change with projected increases in climate aridity. Overall, our results indicate that DFMC in currently fire-free areas in Europe, like the Pyrenees, with vast amounts of fuel in many forest stands, may reach critical dryness thresholds beyond the safety margin and experience large wildfires after only mild increases in VPD, although LFMC can modulate the response.
Repositori Obert UdL arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe Science of The Total EnvironmentArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.149104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Repositori Obert UdL arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe Science of The Total EnvironmentArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.149104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu