- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Sung-Ho Jo; Uendo Lee; Uendo Lee; Uendo Lee; Chang Won Yang; Chang Won Yang; Chang Won Yang; Tae-Young Mun; Ji-Hong Moon; Hoang Khoi Nguyen; Hoang Khoi Nguyen; Byung-Ho Song; Ho Won Ra; Sung-Jin Park; Jae-Goo Lee; Jae-Goo Lee; Myung Won Seo; Sang-Jun Yoon; Sung-Min Yoon;Abstract Oxy-combustion with a circulating fluidized bed (Oxy-CFBC) can facilitate the separation of high CO2 concentration and reduce emissions by biomass co-firing. This study investigated Oxy-CFBC characteristics such as temperature, solid hold-up, flue gas concentrations including CO2, pollutant emissions (SO2, NO, and CO), combustion efficiency and ash properties (slagging, fouling index) with increasing input oxygen levels (21–29 vol%), and biomass co-firing ratios (50, 70, and 100 wt% with domestic wood pellet). The possibility of bio-energy carbon capture and storage for negative CO2 emission was also evaluated using a 0.1 MWth Oxy-CFBC test-rig. The results show that combustion stably achieved with at least 90 vol% CO2 in the flue gas. Compared to air-firing, oxy-firing (with 24 vol% oxygen) reduced pollutant emissions to 29.4% NO, 31.9% SO2 and 18.5% CO. Increasing the biomass co-firing from 50 to 100 wt% decreased the NO, SO2 and CO content from 19.2 mg/MJ to 16.1 mg/MJ, 92.8 mg/MJ to 25.0 mg/MJ, and 7.5 mg/MJ to 5.5 mg/MJ, respectively. In contrast to blends of sub-bituminous coal and lignite, negative CO2 emission (approximately −647 g/kWth) was predicted for oxy-combustion only biomass.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Changwon Yang; Youngdoo Kim; Byeongryeol Bang; Soohwa Jeong; Jihong Moon; Tae-Young Mun; Sungho Jo; Jaegoo Lee; Uendo Lee;Abstract Implementation of circulating fluidized bed (CFB) boilers in the energy sector has witnessed a steady increase owing to their afforded advantages of operational flexibility in terms of compliance with several low-grade fuels and in-situ DeSOx and DeNOx capabilities. In recent years, the rise in global warming and development of intermittent power-generation technologies have stressed the need for development of techniques to afford high-efficiency low-emission (HELE) power-generation, effective carbon capture and storage, and flexible operation of thermal power plants. To meet these demands, the Future Energy Plant Convergence Research Center (FEP CRC) has investigated oxy-combustion technologies for CFB boilers that use low-grade fuels with calorific values
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2020.117206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2020.117206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Sung-Ho Jo; Uendo Lee; Uendo Lee; Uendo Lee; Chang Won Yang; Chang Won Yang; Chang Won Yang; Tae-Young Mun; Ji-Hong Moon; Hoang Khoi Nguyen; Hoang Khoi Nguyen; Byung-Ho Song; Ho Won Ra; Sung-Jin Park; Jae-Goo Lee; Jae-Goo Lee; Myung Won Seo; Sang-Jun Yoon; Sung-Min Yoon;Abstract Oxy-combustion with a circulating fluidized bed (Oxy-CFBC) can facilitate the separation of high CO2 concentration and reduce emissions by biomass co-firing. This study investigated Oxy-CFBC characteristics such as temperature, solid hold-up, flue gas concentrations including CO2, pollutant emissions (SO2, NO, and CO), combustion efficiency and ash properties (slagging, fouling index) with increasing input oxygen levels (21–29 vol%), and biomass co-firing ratios (50, 70, and 100 wt% with domestic wood pellet). The possibility of bio-energy carbon capture and storage for negative CO2 emission was also evaluated using a 0.1 MWth Oxy-CFBC test-rig. The results show that combustion stably achieved with at least 90 vol% CO2 in the flue gas. Compared to air-firing, oxy-firing (with 24 vol% oxygen) reduced pollutant emissions to 29.4% NO, 31.9% SO2 and 18.5% CO. Increasing the biomass co-firing from 50 to 100 wt% decreased the NO, SO2 and CO content from 19.2 mg/MJ to 16.1 mg/MJ, 92.8 mg/MJ to 25.0 mg/MJ, and 7.5 mg/MJ to 5.5 mg/MJ, respectively. In contrast to blends of sub-bituminous coal and lignite, negative CO2 emission (approximately −647 g/kWth) was predicted for oxy-combustion only biomass.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Changwon Yang; Youngdoo Kim; Byeongryeol Bang; Soohwa Jeong; Jihong Moon; Tae-Young Mun; Sungho Jo; Jaegoo Lee; Uendo Lee;Abstract Implementation of circulating fluidized bed (CFB) boilers in the energy sector has witnessed a steady increase owing to their afforded advantages of operational flexibility in terms of compliance with several low-grade fuels and in-situ DeSOx and DeNOx capabilities. In recent years, the rise in global warming and development of intermittent power-generation technologies have stressed the need for development of techniques to afford high-efficiency low-emission (HELE) power-generation, effective carbon capture and storage, and flexible operation of thermal power plants. To meet these demands, the Future Energy Plant Convergence Research Center (FEP CRC) has investigated oxy-combustion technologies for CFB boilers that use low-grade fuels with calorific values
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2020.117206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2020.117206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu