- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Ying Wang; Yuxin Yan; Hanxiao Liu; Xiang Luo; Tao Wu; Chenghang Zheng; Qingyang Lin; Xiang Gao;Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2025.115639&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2025.115639&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Abdulla Alhosani; Qingyang Lin; Alessio Scanziani; Edward Andrews; Kaiqiang Zhang; Branko Bijeljic; Martin J. Blunt;handle: 10044/1/86287
Abstract Carbon dioxide storage combined with enhanced oil recovery (CCS-EOR) is an important approach for reducing greenhouse gas emissions. We use pore-scale imaging to help understand CO2 storage and oil recovery during CCS-EOR at immiscible and near-miscible CO2 injection conditions. We study in situ immiscible CO2 flooding in an oil-wet reservoir rock at elevated temperature and pressure using X-ray micro-tomography. We observe the predicted, but hitherto unreported, three-phase wettability order in strongly oil-wet rocks, where water occupies the largest pores, oil the smallest, while CO2 occupies pores of intermediate size. We investigate the pore occupancy, existence of CO2 layers, recovery and CO2 trapping in the oil-wet rock at immiscible conditions and compare to the results obtained on the same rock type under slightly more weakly oil-wet near-miscible conditions, with the same wettability order. CO2 spreads in connected layers at near-miscible conditions, while it exists as disconnected ganglia in medium-sized pores at immiscible conditions. Hence, capillary trapping of CO2 by oil occurs at immiscible but not at near-miscible conditions. Moreover, capillary trapping of CO2 by water is not possible in both cases since CO2 is more wetting to the rock than water. The oil recovery by CO2 injection alone is reduced at immiscible conditions compared to near-miscible conditions, where low gas-oil capillary pressure improves microscopic displacement efficiency. Based on these results, to maximize the amount of oil recovered and CO2 stored at immiscible conditions, a water-alternating-gas injection strategy is suggested, while a strategy of continuous CO2 injection is recommended at near-miscible conditions.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/86287Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/86287Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Zhihao Zeng; Yujiao Li; Yunfei Ma; Xiaoqing Lin; Xiangbo Zou; Hao Zhang; Xiaodong Li; Qingyang Lin; Ming-Liang Qu; Zengyi Ma; Angjian Wu;The increasing utilization of CO2 for synthesizing high-value fuels or essential chemicals is a potentially effective approach to mitigating global warming and climate change. Compared to thermal catalytic CO2 conversion under harsh operating conditions (400∼500°C, 10 MPa), non-thermal plasma can overcome kinetic barriers and trigger reactions beyond thermal equilibrium at ambient temperature and pressure. In this study, the effects of operating conditions (discharge frequency, input power, and gas flow rate) and geometrical parameters (discharge length, discharge gap, and dielectric materials) have been extensively analyzed using typical cylindrical dielectric barrier discharge (DBD) plasma. The discharge characteristics changed by operating conditions (including waveforms of applied voltage and current) are compared, indicating higher applied voltage and lower gas flow rate can strengthen the filamentary discharges. The results demonstrate CO2 conversion rate increases with the increase of applied voltage and the decrease of CO2/H2 ratio, achieving its maximum value of 43.0% at 20 mL/min. The highest energy efficiency of 3771.9 μg/kJ for CO generation is obtained at the applied voltage of 5.5 kV and gas flow rate of 40 mL/min, respectively. Besides, the structure of plasma reactor also impacts the performance of CO2 conversion. On the one hand, the discharge gap has a significant role in the variation of CO2 conversion and product selectivity, which is attributed to the electric field density and corresponding electron-induced reaction. On the other hand, the circulating water-cooling jacket was used to find out the influence of reaction temperature, which switched the product from CO to CH4. This work will pave the way for a sustainable alternative towards future CO2 conversion and utilization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gerr.2024.100102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gerr.2024.100102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Authors: Al-Khulaifi, Y; Lin, Q; Blunt, MJ; Bijeljic, B;handle: 10044/1/54922
Abstract To investigate the impact of rock heterogeneity and flowrate on reaction rates and dissolution dynamics, four millimetre-scale Silurian dolomite samples were pre-screened based on their physical heterogeneity, defined by the simulated velocity distributions characterising each flow field. Two pairs of cores with similar heterogeneity were flooded with supercritical carbon-dioxide (scCO 2 ) saturated brine under reservoir conditions, 50 °C and 10 MPa, at a high (0.5 ml/min) and low (0.1 ml/min) flowrate. Changes to the pore structure brought about by dissolution were captured in situ using X-ray microtomography (micro-CT) imaging. Mass balance from effluent analysis showed a good agreement with calculations from imaging. Image calculated reaction rates ( r eff ) were 5-38 times lower than the corresponding batch reaction rate under the same conditions of temperature and pressure but without mass transfer limitations. For both high (Peclet number = 2600-1200) and low (Peclet number = 420-300) flow rates, an impact of the initial rock heterogeneity was observed on both reaction rates and permeability-porosity relationships.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10044/1/54922Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2017Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2017.11.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 60 citations 60 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10044/1/54922Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2017Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2017.11.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:American Geophysical Union (AGU) Saif, T; Lin, Q; Singh, K; Bijeljic, B; Blunt, MJ;doi: 10.1002/2016gl069279
handle: 10044/1/38391
AbstractThe structure and connectivity of the pore space during the pyrolysis of oil shales determines hydrocarbon flow behavior and ultimate recovery. We image the time evolution of the pore and microfracture networks during oil shale pyrolysis using synchrotron X‐ray microtomography. Immature Green River (Mahogany Zone) shale samples were thermally matured under vacuum conditions at temperatures up to 500°C while being periodically imaged with a 2 µm voxel size. The structural transformation of both organic‐rich and organic‐lean layers within the shale was quantified. The images reveal a dramatic change in porosity accompanying pyrolysis between 390 and 400°C with the formation of micron‐scale heterogeneous pores. With a further increase in temperature, the pores steadily expand resulting in connected microfracture networks that predominantly develop along the kerogen‐rich laminations.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/38391Data sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016gl069279&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 73 citations 73 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/38391Data sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016gl069279&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Tarik Saif; Qingyang Lin; Alan R. Butcher; Branko Bijeljic; Martin J. Blunt;handle: 10044/1/53192
Abstract The complexity of unconventional rock systems is expressed both in the compositional variance of the microstructure and the extensive heterogeneity of the pore space. Visualizing and quantifying the microstructure of oil shale before and after pyrolysis permits a more accurate determination of petrophysical properties which are important in modeling hydrocarbon production potential. We characterize the microstructural heterogeneity of oil shale using X-ray micro-tomography (µCT), automated ultra-high resolution scanning electron microscopy (SEM), MAPS Mineralogy (Modular Automated Processing System) and Focused Ion Beam Scanning Electron Microscopy (FIB-SEM). The organic-rich Eocene Green River (Mahogany zone) oil shale is characterized using a multi-scale multi-dimensional workflow both before and after pyrolysis. Observations in 2-D and 3-D and across nm-µm-mm length scales demonstrate both heterogeneity and anisotropy at every scale. Image acquisition and analysis using µCT and SEM reveal a microstructure of alternating kerogen-rich laminations interbedded with layers of fine-grained inorganic minerals. MAPS Mineralogy combined with ultrafast measurements reveal mineralogic textures dominated by dolomite, calcite, K-feldspar, quartz, pyrite and illitic clays along with their spatial distribution, augmenting conventional mineral analysis. From high resolution Backscattered electron (BSE) images, intra-organic, inter-organic-mineral, intra- and inter-mineral pores are observed with varying sizes and geometries. By using FIB milling and SEM imaging sequentially and repetitively, 3-D data sets were reconstructed. By setting 3-D gradient and marker-based watershed transforms, the organic matter, minerals and pore phases (including pore-back artifacts) were segmented and visualized and the pore-size distribution was computed. Following pyrolysis, fractures from the mm-to-µm scales were observed with preferential propagation along the kerogen-rich laminations and coalescence leading to an interconnected fracture network. The application of these techniques to worldwide oil shale deposits will allow significant insights into estimating mechanical and chemical proprieties of oil shale formations for modeling and designing oil shale pyrolysis processes.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10044/1/53192Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2017Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.05.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 260 citations 260 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10044/1/53192Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2017Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.05.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 United KingdomPublisher:Elsevier BV Funded by:EC | BIOAPPRONFS WETTEC| BIOAPPRONFS WETTAuthors: B. Li; Q.Y. Lin; Y.Y. Yan;In this paper a novel method of electro-osmosis (EO) based regeneration for solid desiccant is reported, and the potential of the method for application in HVAC particularly for dehumidification process in air conditioning system is discussed. The results of the measurement of water removal rate inside solid desiccant array show that the mass flow rate of EO driven mass flow is achievable at 0.953 g m2 s−1 with 20 V DC voltage on the installed electrodes. By comparing the theoretical and experimental results, the current limitations of theory and experimental apparatus were explored. The experimental results show that the energy consumption in EO integrated air conditioning system is averagely 23.3% lower than the conventional air conditioning system in respect of the different configurations in air handling process. In the case study, among the three potential locations for EO device, the position in Point C is the best choice with an ideal COP of 12.
Building and Environ... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2011.09.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Building and Environ... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2011.09.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Tarik Saif; Qingyang Lin; Ying Gao; Yousef Al-Khulaifi; Federica Marone; David Hollis; Martin J. Blunt; Branko Bijeljic;handle: 10044/1/64884
Abstract The comprehensive characterization and analysis of the evolution of micro-fracture networks in oil shales during pyrolysis is important to understand the complex petrophysical changes during hydrocarbon recovery. We used time-resolved X-ray microtomography to perform pore-scale dynamic imaging with a synchrotron light source to capture in 4-D (three-dimensional image + real time) the evolution of fracture initiation, growth, coalescence and closure. A laser-based heating system was used to pyrolyze a sample of Eocene Green River (Mahogany Zone) up to 600 °C with tomograms acquired every 30 s at 1.63 µm computed voxel size and analyzed using Digital Volume Correlation (DVC) for full 3-D strain and deformation maps. At 354 °C the first isolated micro-fractures were observed and by 378 °C, a connected fracture network was formed as the solid organic matter was transformed into volatile hydrocarbon components. With increasing temperature, we observed simultaneous pore space growth and coalescence as well as temporary closure of minor fractures caused by local compressive stresses. This indicates that the evolution of individual fractures not only depends on organic matter composition but also on the dynamic development of neighboring fractures. Our results demonstrate that combining synchrotron X-ray tomography, laser-based heating and DVC provides a powerful methodology for characterizing dynamics of multi-scale physical changes during oil shale pyrolysis to help optimize hydrocarbon recovery.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/64884Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.11.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 88 citations 88 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/64884Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.11.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 28 Jul 2021 United Kingdom, SwitzerlandPublisher:American Chemical Society (ACS) Funded by:UKRI | Optimisation of Electroch...UKRI| Optimisation of Electrochemical Flow and Transport Processes in Direct Methanol Fuel Cells using Direct Numerical SimulationsAdrian Mularczyk; Vahid Niasar; Federica Marone; Felix N. Büchi; Martin J. Blunt; Daniel Niblett; Qingyang Lin; Thomas J. Schmidt; Thomas J. Schmidt; Alexandru Vasile; Jens Eller;Extending the operating range of fuel cells to higher current densities is limited by the ability of the cell to remove the water produced by the electrochemical reaction, avoiding flooding of the gas diffusion layers. It is therefore of great interest to understand the complex and dynamic mechanisms of water cluster formation in an operando fuel cell setting as this can elucidate necessary changes to the gas diffusion layer properties with the goal of minimizing the number, size, and instability of the water clusters formed. In this study, we investigate the cluster formation process using X-ray tomographic microscopy at 1 Hz frequency combined with interfacial curvature analysis and volume-of-fluid simulations to assess the pressure evolution in the water phase. This made it possible to observe the increase in capillary pressure when the advancing water front had to overcome a throat between two neighboring pores and the nuanced interactions of volume and pressure evolution during the droplet formation and its feeding path instability. A 2 kPa higher breakthrough pressure compared to static ex situ capillary pressure versus saturation evaluations was observed, which suggests a rethinking of the dynamic liquid water invasion process in polymer electrolyte fuel cell gas diffusion layers. ACS Applied Materials & Interfaces, 13 (29) ISSN:1944-8244 ISSN:1944-8252
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/90342Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BY NC NDFull-Text: https://eprints.ncl.ac.uk/280764Data sources: Bielefeld Academic Search Engine (BASE)ACS Applied Materials & InterfacesArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2021License: CC BY NC NDData sources: Spiral - Imperial College Digital RepositoryThe University of Manchester - Institutional RepositoryArticle . 2021Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsami.1c04560&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/90342Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BY NC NDFull-Text: https://eprints.ncl.ac.uk/280764Data sources: Bielefeld Academic Search Engine (BASE)ACS Applied Materials & InterfacesArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2021License: CC BY NC NDData sources: Spiral - Imperial College Digital RepositoryThe University of Manchester - Institutional RepositoryArticle . 2021Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsami.1c04560&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Authors: Saif, T; Lin, Q; Bijeljic, B; Blunt, MJ;handle: 10044/1/49429
Abstract The microstructural evaluation of oil shale is challenging which demands the use of several complementary methods. In particular, an improved insight into the pore network structure and connectivity before, during, and after oil shale pyrolysis is critical to understanding hydrocarbon flow behavior and enhancing recovery. In this experimental study, bulk analyses are combined with traditional and advanced imaging methods to comprehensively characterize the internal microstructure and chemical composition of the world’s richest oil shale deposit, the Green River Formation (Mahogany Zone). Image analysis in two dimensions (2-D) using optical and scanning electron microscopy (SEM), and in three dimensions (3-D) using X-ray microtomography (µCT) reveals a complex and variable fine-grained microstructure dominated by organic-rich parallel laminations of the order of 10 µm thick which are tightly bound in a highly calcareous and heterogeneous mineral matrix. We also report the results of a detailed µCT study of the Mahogany oil shale with increasing pyrolysis temperature (300–500 °C) at 12 µm and 2 µm voxel sizes. The physical transformation of the internal microstructure and evolution of pore space during the thermal conversion of kerogen in oil shale to produce hydrocarbon products was characterized. The 3-D volumes of pyrolyzed oil shale were reconstructed and image processed to visualize and quantify the volume and connectivity of the pore space. The results show a significant increase in anisotropic porosity associated with pyrolysis between 400 and 500 °C with the formation of micro-scale connected pore channels developing principally along the kerogen-rich lamellar structures. Given the complexity and heterogeneity of oil shale, we also characterize the representative size at which porosity remains constant. Our results provide a direct observation of pore and microfracture development during oil shale pyrolysis and the petrophysical measurements from this study serve as valuable input parameters to modeling oil shale pyrolysis processes.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10044/1/49429Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2017Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2017.02.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 149 citations 149 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10044/1/49429Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2017Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2017.02.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Ying Wang; Yuxin Yan; Hanxiao Liu; Xiang Luo; Tao Wu; Chenghang Zheng; Qingyang Lin; Xiang Gao;Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2025.115639&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2025.115639&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Abdulla Alhosani; Qingyang Lin; Alessio Scanziani; Edward Andrews; Kaiqiang Zhang; Branko Bijeljic; Martin J. Blunt;handle: 10044/1/86287
Abstract Carbon dioxide storage combined with enhanced oil recovery (CCS-EOR) is an important approach for reducing greenhouse gas emissions. We use pore-scale imaging to help understand CO2 storage and oil recovery during CCS-EOR at immiscible and near-miscible CO2 injection conditions. We study in situ immiscible CO2 flooding in an oil-wet reservoir rock at elevated temperature and pressure using X-ray micro-tomography. We observe the predicted, but hitherto unreported, three-phase wettability order in strongly oil-wet rocks, where water occupies the largest pores, oil the smallest, while CO2 occupies pores of intermediate size. We investigate the pore occupancy, existence of CO2 layers, recovery and CO2 trapping in the oil-wet rock at immiscible conditions and compare to the results obtained on the same rock type under slightly more weakly oil-wet near-miscible conditions, with the same wettability order. CO2 spreads in connected layers at near-miscible conditions, while it exists as disconnected ganglia in medium-sized pores at immiscible conditions. Hence, capillary trapping of CO2 by oil occurs at immiscible but not at near-miscible conditions. Moreover, capillary trapping of CO2 by water is not possible in both cases since CO2 is more wetting to the rock than water. The oil recovery by CO2 injection alone is reduced at immiscible conditions compared to near-miscible conditions, where low gas-oil capillary pressure improves microscopic displacement efficiency. Based on these results, to maximize the amount of oil recovered and CO2 stored at immiscible conditions, a water-alternating-gas injection strategy is suggested, while a strategy of continuous CO2 injection is recommended at near-miscible conditions.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/86287Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/86287Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2020.103232&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Zhihao Zeng; Yujiao Li; Yunfei Ma; Xiaoqing Lin; Xiangbo Zou; Hao Zhang; Xiaodong Li; Qingyang Lin; Ming-Liang Qu; Zengyi Ma; Angjian Wu;The increasing utilization of CO2 for synthesizing high-value fuels or essential chemicals is a potentially effective approach to mitigating global warming and climate change. Compared to thermal catalytic CO2 conversion under harsh operating conditions (400∼500°C, 10 MPa), non-thermal plasma can overcome kinetic barriers and trigger reactions beyond thermal equilibrium at ambient temperature and pressure. In this study, the effects of operating conditions (discharge frequency, input power, and gas flow rate) and geometrical parameters (discharge length, discharge gap, and dielectric materials) have been extensively analyzed using typical cylindrical dielectric barrier discharge (DBD) plasma. The discharge characteristics changed by operating conditions (including waveforms of applied voltage and current) are compared, indicating higher applied voltage and lower gas flow rate can strengthen the filamentary discharges. The results demonstrate CO2 conversion rate increases with the increase of applied voltage and the decrease of CO2/H2 ratio, achieving its maximum value of 43.0% at 20 mL/min. The highest energy efficiency of 3771.9 μg/kJ for CO generation is obtained at the applied voltage of 5.5 kV and gas flow rate of 40 mL/min, respectively. Besides, the structure of plasma reactor also impacts the performance of CO2 conversion. On the one hand, the discharge gap has a significant role in the variation of CO2 conversion and product selectivity, which is attributed to the electric field density and corresponding electron-induced reaction. On the other hand, the circulating water-cooling jacket was used to find out the influence of reaction temperature, which switched the product from CO to CH4. This work will pave the way for a sustainable alternative towards future CO2 conversion and utilization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gerr.2024.100102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gerr.2024.100102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Authors: Al-Khulaifi, Y; Lin, Q; Blunt, MJ; Bijeljic, B;handle: 10044/1/54922
Abstract To investigate the impact of rock heterogeneity and flowrate on reaction rates and dissolution dynamics, four millimetre-scale Silurian dolomite samples were pre-screened based on their physical heterogeneity, defined by the simulated velocity distributions characterising each flow field. Two pairs of cores with similar heterogeneity were flooded with supercritical carbon-dioxide (scCO 2 ) saturated brine under reservoir conditions, 50 °C and 10 MPa, at a high (0.5 ml/min) and low (0.1 ml/min) flowrate. Changes to the pore structure brought about by dissolution were captured in situ using X-ray microtomography (micro-CT) imaging. Mass balance from effluent analysis showed a good agreement with calculations from imaging. Image calculated reaction rates ( r eff ) were 5-38 times lower than the corresponding batch reaction rate under the same conditions of temperature and pressure but without mass transfer limitations. For both high (Peclet number = 2600-1200) and low (Peclet number = 420-300) flow rates, an impact of the initial rock heterogeneity was observed on both reaction rates and permeability-porosity relationships.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10044/1/54922Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2017Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2017.11.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 60 citations 60 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10044/1/54922Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2017Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2017.11.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:American Geophysical Union (AGU) Saif, T; Lin, Q; Singh, K; Bijeljic, B; Blunt, MJ;doi: 10.1002/2016gl069279
handle: 10044/1/38391
AbstractThe structure and connectivity of the pore space during the pyrolysis of oil shales determines hydrocarbon flow behavior and ultimate recovery. We image the time evolution of the pore and microfracture networks during oil shale pyrolysis using synchrotron X‐ray microtomography. Immature Green River (Mahogany Zone) shale samples were thermally matured under vacuum conditions at temperatures up to 500°C while being periodically imaged with a 2 µm voxel size. The structural transformation of both organic‐rich and organic‐lean layers within the shale was quantified. The images reveal a dramatic change in porosity accompanying pyrolysis between 390 and 400°C with the formation of micron‐scale heterogeneous pores. With a further increase in temperature, the pores steadily expand resulting in connected microfracture networks that predominantly develop along the kerogen‐rich laminations.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/38391Data sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016gl069279&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 73 citations 73 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/38391Data sources: Bielefeld Academic Search Engine (BASE)Geophysical Research LettersArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016gl069279&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Tarik Saif; Qingyang Lin; Alan R. Butcher; Branko Bijeljic; Martin J. Blunt;handle: 10044/1/53192
Abstract The complexity of unconventional rock systems is expressed both in the compositional variance of the microstructure and the extensive heterogeneity of the pore space. Visualizing and quantifying the microstructure of oil shale before and after pyrolysis permits a more accurate determination of petrophysical properties which are important in modeling hydrocarbon production potential. We characterize the microstructural heterogeneity of oil shale using X-ray micro-tomography (µCT), automated ultra-high resolution scanning electron microscopy (SEM), MAPS Mineralogy (Modular Automated Processing System) and Focused Ion Beam Scanning Electron Microscopy (FIB-SEM). The organic-rich Eocene Green River (Mahogany zone) oil shale is characterized using a multi-scale multi-dimensional workflow both before and after pyrolysis. Observations in 2-D and 3-D and across nm-µm-mm length scales demonstrate both heterogeneity and anisotropy at every scale. Image acquisition and analysis using µCT and SEM reveal a microstructure of alternating kerogen-rich laminations interbedded with layers of fine-grained inorganic minerals. MAPS Mineralogy combined with ultrafast measurements reveal mineralogic textures dominated by dolomite, calcite, K-feldspar, quartz, pyrite and illitic clays along with their spatial distribution, augmenting conventional mineral analysis. From high resolution Backscattered electron (BSE) images, intra-organic, inter-organic-mineral, intra- and inter-mineral pores are observed with varying sizes and geometries. By using FIB milling and SEM imaging sequentially and repetitively, 3-D data sets were reconstructed. By setting 3-D gradient and marker-based watershed transforms, the organic matter, minerals and pore phases (including pore-back artifacts) were segmented and visualized and the pore-size distribution was computed. Following pyrolysis, fractures from the mm-to-µm scales were observed with preferential propagation along the kerogen-rich laminations and coalescence leading to an interconnected fracture network. The application of these techniques to worldwide oil shale deposits will allow significant insights into estimating mechanical and chemical proprieties of oil shale formations for modeling and designing oil shale pyrolysis processes.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10044/1/53192Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2017Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.05.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 260 citations 260 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10044/1/53192Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2017Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.05.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 United KingdomPublisher:Elsevier BV Funded by:EC | BIOAPPRONFS WETTEC| BIOAPPRONFS WETTAuthors: B. Li; Q.Y. Lin; Y.Y. Yan;In this paper a novel method of electro-osmosis (EO) based regeneration for solid desiccant is reported, and the potential of the method for application in HVAC particularly for dehumidification process in air conditioning system is discussed. The results of the measurement of water removal rate inside solid desiccant array show that the mass flow rate of EO driven mass flow is achievable at 0.953 g m2 s−1 with 20 V DC voltage on the installed electrodes. By comparing the theoretical and experimental results, the current limitations of theory and experimental apparatus were explored. The experimental results show that the energy consumption in EO integrated air conditioning system is averagely 23.3% lower than the conventional air conditioning system in respect of the different configurations in air handling process. In the case study, among the three potential locations for EO device, the position in Point C is the best choice with an ideal COP of 12.
Building and Environ... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2011.09.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Building and Environ... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2011.09.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Tarik Saif; Qingyang Lin; Ying Gao; Yousef Al-Khulaifi; Federica Marone; David Hollis; Martin J. Blunt; Branko Bijeljic;handle: 10044/1/64884
Abstract The comprehensive characterization and analysis of the evolution of micro-fracture networks in oil shales during pyrolysis is important to understand the complex petrophysical changes during hydrocarbon recovery. We used time-resolved X-ray microtomography to perform pore-scale dynamic imaging with a synchrotron light source to capture in 4-D (three-dimensional image + real time) the evolution of fracture initiation, growth, coalescence and closure. A laser-based heating system was used to pyrolyze a sample of Eocene Green River (Mahogany Zone) up to 600 °C with tomograms acquired every 30 s at 1.63 µm computed voxel size and analyzed using Digital Volume Correlation (DVC) for full 3-D strain and deformation maps. At 354 °C the first isolated micro-fractures were observed and by 378 °C, a connected fracture network was formed as the solid organic matter was transformed into volatile hydrocarbon components. With increasing temperature, we observed simultaneous pore space growth and coalescence as well as temporary closure of minor fractures caused by local compressive stresses. This indicates that the evolution of individual fractures not only depends on organic matter composition but also on the dynamic development of neighboring fractures. Our results demonstrate that combining synchrotron X-ray tomography, laser-based heating and DVC provides a powerful methodology for characterizing dynamics of multi-scale physical changes during oil shale pyrolysis to help optimize hydrocarbon recovery.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/64884Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.11.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 88 citations 88 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/64884Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.11.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 28 Jul 2021 United Kingdom, SwitzerlandPublisher:American Chemical Society (ACS) Funded by:UKRI | Optimisation of Electroch...UKRI| Optimisation of Electrochemical Flow and Transport Processes in Direct Methanol Fuel Cells using Direct Numerical SimulationsAdrian Mularczyk; Vahid Niasar; Federica Marone; Felix N. Büchi; Martin J. Blunt; Daniel Niblett; Qingyang Lin; Thomas J. Schmidt; Thomas J. Schmidt; Alexandru Vasile; Jens Eller;Extending the operating range of fuel cells to higher current densities is limited by the ability of the cell to remove the water produced by the electrochemical reaction, avoiding flooding of the gas diffusion layers. It is therefore of great interest to understand the complex and dynamic mechanisms of water cluster formation in an operando fuel cell setting as this can elucidate necessary changes to the gas diffusion layer properties with the goal of minimizing the number, size, and instability of the water clusters formed. In this study, we investigate the cluster formation process using X-ray tomographic microscopy at 1 Hz frequency combined with interfacial curvature analysis and volume-of-fluid simulations to assess the pressure evolution in the water phase. This made it possible to observe the increase in capillary pressure when the advancing water front had to overcome a throat between two neighboring pores and the nuanced interactions of volume and pressure evolution during the droplet formation and its feeding path instability. A 2 kPa higher breakthrough pressure compared to static ex situ capillary pressure versus saturation evaluations was observed, which suggests a rethinking of the dynamic liquid water invasion process in polymer electrolyte fuel cell gas diffusion layers. ACS Applied Materials & Interfaces, 13 (29) ISSN:1944-8244 ISSN:1944-8252
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/90342Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BY NC NDFull-Text: https://eprints.ncl.ac.uk/280764Data sources: Bielefeld Academic Search Engine (BASE)ACS Applied Materials & InterfacesArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2021License: CC BY NC NDData sources: Spiral - Imperial College Digital RepositoryThe University of Manchester - Institutional RepositoryArticle . 2021Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsami.1c04560&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/90342Data sources: Bielefeld Academic Search Engine (BASE)Newcastle University Library ePrints ServiceArticleLicense: CC BY NC NDFull-Text: https://eprints.ncl.ac.uk/280764Data sources: Bielefeld Academic Search Engine (BASE)ACS Applied Materials & InterfacesArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2021License: CC BY NC NDData sources: Spiral - Imperial College Digital RepositoryThe University of Manchester - Institutional RepositoryArticle . 2021Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsami.1c04560&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Authors: Saif, T; Lin, Q; Bijeljic, B; Blunt, MJ;handle: 10044/1/49429
Abstract The microstructural evaluation of oil shale is challenging which demands the use of several complementary methods. In particular, an improved insight into the pore network structure and connectivity before, during, and after oil shale pyrolysis is critical to understanding hydrocarbon flow behavior and enhancing recovery. In this experimental study, bulk analyses are combined with traditional and advanced imaging methods to comprehensively characterize the internal microstructure and chemical composition of the world’s richest oil shale deposit, the Green River Formation (Mahogany Zone). Image analysis in two dimensions (2-D) using optical and scanning electron microscopy (SEM), and in three dimensions (3-D) using X-ray microtomography (µCT) reveals a complex and variable fine-grained microstructure dominated by organic-rich parallel laminations of the order of 10 µm thick which are tightly bound in a highly calcareous and heterogeneous mineral matrix. We also report the results of a detailed µCT study of the Mahogany oil shale with increasing pyrolysis temperature (300–500 °C) at 12 µm and 2 µm voxel sizes. The physical transformation of the internal microstructure and evolution of pore space during the thermal conversion of kerogen in oil shale to produce hydrocarbon products was characterized. The 3-D volumes of pyrolyzed oil shale were reconstructed and image processed to visualize and quantify the volume and connectivity of the pore space. The results show a significant increase in anisotropic porosity associated with pyrolysis between 400 and 500 °C with the formation of micro-scale connected pore channels developing principally along the kerogen-rich lamellar structures. Given the complexity and heterogeneity of oil shale, we also characterize the representative size at which porosity remains constant. Our results provide a direct observation of pore and microfracture development during oil shale pyrolysis and the petrophysical measurements from this study serve as valuable input parameters to modeling oil shale pyrolysis processes.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10044/1/49429Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2017Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2017.02.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 149 citations 149 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/10044/1/49429Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2017Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2017.02.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu