- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Ksawery Kuligowski; Izabela Konkol; Lesław Świerczek; Katarzyna Chojnacka; Adam Cenian; Szymon Szufa;doi: 10.3390/su15107997
Kitchen waste could be processed and recycled into safe fertilizers/soil improvers for sustainable agriculture through different methods: (1) Dried pellets from model kitchen waste treated with anaerobic effective microorganisms; and (2) Anaerobically digested kitchen waste. For comparison, a commercial mineral fertilizer was used. These methods were applied in two separate glasshouse experiments: one under cool (mainly winter) conditions (X–IV) and one under warm (mainly summer) conditions (VI–X) consisting of 3–4 subsequent harvests in northern Poland. Comparing the food waste agronomic performance after anaerobic digestion and effective microorganism treatments, especially under different climatic conditions, is a novel approach. Kitchen waste served as a much better fertilizer than mineral fertilizer, but only during the cool season. In addition, it provided 20–40% more plant yields for dosages >120 kg N/ha and a similar N uptake. In the warm season, in comparison to effective microorganism-incubated kitchen waste, its anaerobic digestion improved the relative agronomic effectiveness twice after 30 days of growth (82% versus 43%). However, the total effectiveness for anaerobically digested kitchen waste versus pelleted and effective microorganism-incubated kitchen waste was 32% versus 27% (N utilization-wise) and 36% versus 21% (plant biomass yield-wise). The Monod kinetic model was applied for the internal efficiency of N utilization; for the best fitting procedure, R2 > 0.96 for the cool season and R2 > 0.92 for the warm season. Kitchen waste introduced to the soil provided better soil properties than mineral fertilizer. The study contributes to the biological systems for waste recycling in agriculture, bioproduction processes, and the global food chain.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/10/7997/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15107997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/10/7997/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15107997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Hilal Unyay; Piotr Piersa; Magdalena Zabochnicka; Zdzisława Romanowska-Duda; Piotr Kuryło; Ksawery Kuligowski; Paweł Kazimierski; Taras Hutsol; Arkadiusz Dyjakon; Edyta Wrzesińska-Jędrusiak; Andrzej Obraniak; Szymon Szufa;doi: 10.3390/en16248083
The torrefaction process represents a thermal conversion technique conducted at relatively low temperatures ranging between 200 to 300 °C. Its objective is to produce fuel with a higher energy density by decomposing the reactive portion of hemicellulose. In this study, the kinetics of mass loss during torrefaction were investigated for willow. The experiments were carried out under isothermal conditions using thermogravimetric analysis. Batch torrefaction reactor designs were conducted and explained in detail. Co-combustion of willow with hard coal (origin: Katowice mine) in different mass ratios (25% biomass + 75% coal, 50% biomass + 50% coal, and 75% biomass + 25% coal) was conducted in addition to raw biomass torrefaction. TG/MS analysis (a combination of thermogravimetric analysis with mass spectrometry analysis) was performed in the research. The optimal torrefaction conditions for willow were identified as an average temperature of 245 °C and a residence time of 14 min, resulting in the lowest mass loss (30.15%). However, it was noted that the composition of torgas, a by-product of torrefaction, presents challenges in providing a combustible gas with sufficient heat flux to meet the energy needs of the process. Prolonged residence times over 15 min and higher average temperatures above 250 °C lead to excessive energy losses from volatile torrefaction products, making them suboptimal for willow. On the other hand, the co-combustion of torrefied biomass with hard coal offers advantages in reduced sulfur emissions but can lead to increased NOx emissions when biomass with a higher nitrogen content is co-combusted in proportions exceeding 50% biomass. This paper summarizes findings related to optimizing torrefaction conditions, challenges in torgas composition, and the emissions implications of co-combustion.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16248083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16248083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Tra Van Tung; Nguyen Thi To Nga; Huu Tap Van; Tran Hai Vu; Ksawery Kuligowski; Adam Cenian; Nguyen Quang Tuan; Phuoc-Cuong Le; Quoc Ba Tran;The fishmeal production industry is essential for providing protein for animal feed in the aquaculture sector. However, the industry faces challenges related to energy consumption and environmental sustainability. This study evaluates the energy efficiency and environmental benefits of waste heat recovery (WHR) technologies in a fishmeal production plant in Vietnam. Data were collected from the plant between 2016 and 2022, and a specific energy consumption (SEC) indicator and a comprehensive methodology were utilized. Implementing an economizer as a WHR technology resulted in a 55.5% decrease in SEC compared to the state before installation. The enhanced energy efficiency also translated to reduced energy consumption per output unit. Moreover, the economizer contributed to annual energy savings of 4537.57 GJ/year and cost savings of USD 26,474.49. Additionally, carbon dioxide (CO2) emissions associated with producing one ton of fishmeal decreased by 58.37%. These findings highlight the potential for WHR technologies to improve energy efficiency and reduce the environmental footprint of fishmeal production. The study’s results provide valuable insights for practitioners and policymakers in promoting energy efficiency practices and reducing environmental impact in this and similar industries.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151712712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151712712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Ksawery Kuligowski; Adam Cenian; Izabela Konkol; Lesław Świerczek; Katarzyna Chojnacka; Grzegorz Izydorczyk; Dawid Skrzypczak; Paulina Bandrów;doi: 10.3390/en16093883
The automotive upholstery industry, which processes bovine leathers, has struggled with vast amounts of solid waste, of which the majority are fractions, such as shavings and splits and offcuts, both containing chromium (Cr) and free of Cr. In this work, a novel leather waste-to-fertiliser approach has been tested: four lightly processed (incubation with effective microorganisms) and three aggressively processed (using pyrolysis or hydrolysis processes) tanned leather waste fractions were used. They were applied as organic nitrogen-based fertilisers in two separate glasshouse experiments, consisting of four subsequent harvests, under spring–autumn conditions in northern Poland. The Cr stressing effect caused by bovine shavings containing Cr and splits and offcuts containing Cr stimulated an increase in ryegrass growth after 30 days, providing twice the dry matter yield than bovine shavings free of Cr and splits and offcuts free of Cr, then (after 90 and 120 days) it inhibited growth. The Monod kinetics model was developed using the best fitting procedure (R2 > 0.94) for the efficiency of internal N use in ryegrass for the lightly processed fractions of tanned leather-waste fractions and each harvest. In the case of the processed leather waste-fractions, the relation was quasi linear, evidencing less growth inhibition and no over-fertilisation effects. The acid hydrolysate of bovine shavings containing Cr showed the best performance, reaching a relative agronomic effectiveness (RAE, N utilization-based) equal to 89%, 95%, 19%, and 38% for 30, 60, 90, and 120 days, respectively, and 71% in total. For the lightly processed fractions, it was lower than 12%. The future perspective should focus on steps including scaling up the tests to field conditions; transportation, storage, and application methods; effectiveness for other crops; usage in crop rotation systems; environmental impact assessment; production carbon footprint; commercial potential; and optimizing the production processes.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/9/3883/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16093883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/9/3883/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16093883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Ksawery Kuligowski; Joanna Strycharz; Nicole Nawrot; Jacek Kluska; Izabela Konkol; Ewa Wojciechowska; Adam Cenian;Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2025.115581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2025.115581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Ksawery Kuligowski; Izabela Konkol; Lesław Świerczek; Katarzyna Chojnacka; Adam Cenian; Szymon Szufa;doi: 10.3390/su15107997
Kitchen waste could be processed and recycled into safe fertilizers/soil improvers for sustainable agriculture through different methods: (1) Dried pellets from model kitchen waste treated with anaerobic effective microorganisms; and (2) Anaerobically digested kitchen waste. For comparison, a commercial mineral fertilizer was used. These methods were applied in two separate glasshouse experiments: one under cool (mainly winter) conditions (X–IV) and one under warm (mainly summer) conditions (VI–X) consisting of 3–4 subsequent harvests in northern Poland. Comparing the food waste agronomic performance after anaerobic digestion and effective microorganism treatments, especially under different climatic conditions, is a novel approach. Kitchen waste served as a much better fertilizer than mineral fertilizer, but only during the cool season. In addition, it provided 20–40% more plant yields for dosages >120 kg N/ha and a similar N uptake. In the warm season, in comparison to effective microorganism-incubated kitchen waste, its anaerobic digestion improved the relative agronomic effectiveness twice after 30 days of growth (82% versus 43%). However, the total effectiveness for anaerobically digested kitchen waste versus pelleted and effective microorganism-incubated kitchen waste was 32% versus 27% (N utilization-wise) and 36% versus 21% (plant biomass yield-wise). The Monod kinetic model was applied for the internal efficiency of N utilization; for the best fitting procedure, R2 > 0.96 for the cool season and R2 > 0.92 for the warm season. Kitchen waste introduced to the soil provided better soil properties than mineral fertilizer. The study contributes to the biological systems for waste recycling in agriculture, bioproduction processes, and the global food chain.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/10/7997/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15107997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/10/7997/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15107997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Hilal Unyay; Piotr Piersa; Magdalena Zabochnicka; Zdzisława Romanowska-Duda; Piotr Kuryło; Ksawery Kuligowski; Paweł Kazimierski; Taras Hutsol; Arkadiusz Dyjakon; Edyta Wrzesińska-Jędrusiak; Andrzej Obraniak; Szymon Szufa;doi: 10.3390/en16248083
The torrefaction process represents a thermal conversion technique conducted at relatively low temperatures ranging between 200 to 300 °C. Its objective is to produce fuel with a higher energy density by decomposing the reactive portion of hemicellulose. In this study, the kinetics of mass loss during torrefaction were investigated for willow. The experiments were carried out under isothermal conditions using thermogravimetric analysis. Batch torrefaction reactor designs were conducted and explained in detail. Co-combustion of willow with hard coal (origin: Katowice mine) in different mass ratios (25% biomass + 75% coal, 50% biomass + 50% coal, and 75% biomass + 25% coal) was conducted in addition to raw biomass torrefaction. TG/MS analysis (a combination of thermogravimetric analysis with mass spectrometry analysis) was performed in the research. The optimal torrefaction conditions for willow were identified as an average temperature of 245 °C and a residence time of 14 min, resulting in the lowest mass loss (30.15%). However, it was noted that the composition of torgas, a by-product of torrefaction, presents challenges in providing a combustible gas with sufficient heat flux to meet the energy needs of the process. Prolonged residence times over 15 min and higher average temperatures above 250 °C lead to excessive energy losses from volatile torrefaction products, making them suboptimal for willow. On the other hand, the co-combustion of torrefied biomass with hard coal offers advantages in reduced sulfur emissions but can lead to increased NOx emissions when biomass with a higher nitrogen content is co-combusted in proportions exceeding 50% biomass. This paper summarizes findings related to optimizing torrefaction conditions, challenges in torgas composition, and the emissions implications of co-combustion.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16248083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16248083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Tra Van Tung; Nguyen Thi To Nga; Huu Tap Van; Tran Hai Vu; Ksawery Kuligowski; Adam Cenian; Nguyen Quang Tuan; Phuoc-Cuong Le; Quoc Ba Tran;The fishmeal production industry is essential for providing protein for animal feed in the aquaculture sector. However, the industry faces challenges related to energy consumption and environmental sustainability. This study evaluates the energy efficiency and environmental benefits of waste heat recovery (WHR) technologies in a fishmeal production plant in Vietnam. Data were collected from the plant between 2016 and 2022, and a specific energy consumption (SEC) indicator and a comprehensive methodology were utilized. Implementing an economizer as a WHR technology resulted in a 55.5% decrease in SEC compared to the state before installation. The enhanced energy efficiency also translated to reduced energy consumption per output unit. Moreover, the economizer contributed to annual energy savings of 4537.57 GJ/year and cost savings of USD 26,474.49. Additionally, carbon dioxide (CO2) emissions associated with producing one ton of fishmeal decreased by 58.37%. These findings highlight the potential for WHR technologies to improve energy efficiency and reduce the environmental footprint of fishmeal production. The study’s results provide valuable insights for practitioners and policymakers in promoting energy efficiency practices and reducing environmental impact in this and similar industries.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151712712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151712712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Ksawery Kuligowski; Adam Cenian; Izabela Konkol; Lesław Świerczek; Katarzyna Chojnacka; Grzegorz Izydorczyk; Dawid Skrzypczak; Paulina Bandrów;doi: 10.3390/en16093883
The automotive upholstery industry, which processes bovine leathers, has struggled with vast amounts of solid waste, of which the majority are fractions, such as shavings and splits and offcuts, both containing chromium (Cr) and free of Cr. In this work, a novel leather waste-to-fertiliser approach has been tested: four lightly processed (incubation with effective microorganisms) and three aggressively processed (using pyrolysis or hydrolysis processes) tanned leather waste fractions were used. They were applied as organic nitrogen-based fertilisers in two separate glasshouse experiments, consisting of four subsequent harvests, under spring–autumn conditions in northern Poland. The Cr stressing effect caused by bovine shavings containing Cr and splits and offcuts containing Cr stimulated an increase in ryegrass growth after 30 days, providing twice the dry matter yield than bovine shavings free of Cr and splits and offcuts free of Cr, then (after 90 and 120 days) it inhibited growth. The Monod kinetics model was developed using the best fitting procedure (R2 > 0.94) for the efficiency of internal N use in ryegrass for the lightly processed fractions of tanned leather-waste fractions and each harvest. In the case of the processed leather waste-fractions, the relation was quasi linear, evidencing less growth inhibition and no over-fertilisation effects. The acid hydrolysate of bovine shavings containing Cr showed the best performance, reaching a relative agronomic effectiveness (RAE, N utilization-based) equal to 89%, 95%, 19%, and 38% for 30, 60, 90, and 120 days, respectively, and 71% in total. For the lightly processed fractions, it was lower than 12%. The future perspective should focus on steps including scaling up the tests to field conditions; transportation, storage, and application methods; effectiveness for other crops; usage in crop rotation systems; environmental impact assessment; production carbon footprint; commercial potential; and optimizing the production processes.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/9/3883/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16093883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/9/3883/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16093883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Ksawery Kuligowski; Joanna Strycharz; Nicole Nawrot; Jacek Kluska; Izabela Konkol; Ewa Wojciechowska; Adam Cenian;Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2025.115581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2025.115581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu