- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Zhenxi Li; Fredrik N.G. Andersson; Lars J. Nilsson; Max Åhman;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2022.135550&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2022.135550&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, Germany, United States, GermanyPublisher:Informa UK Limited Funded by:EC | REINVENTEC| REINVENTLars J. Nilsson; Fredric Bauer; Max Åhman; Fredrik N. G. Andersson; Chris Bataille; Stephane de la Rue du Can; Karin Ericsson; Teis Hansen; Bengt Johansson; Stefan Lechtenböhmer; Mariësse van Sluisveld; Valentin Vogl;The target of zero emissions sets a new standard for industry and industrial policy. Industrial policy in the twenty-first century must aim to achieve zero emissions in the energy and emissions int...
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021License: CC BY NCFull-Text: https://escholarship.org/uc/item/4628f6zmData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14693062.2021.1957665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 104 citations 104 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021License: CC BY NCFull-Text: https://escholarship.org/uc/item/4628f6zmData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14693062.2021.1957665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SwedenPublisher:Informa UK Limited Authors: Åhman, Max; Nikoleris, Alexandra; Wyns, Tomas;doi: 10.4155/cmt.12.77
The global objective to limit human-induced warming to 2°C requires that global emissions are reduced by 50% by 2050. However, industrialized countries need to do much more. The principle of burden...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4155/cmt.12.77&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4155/cmt.12.77&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2016Publisher:Informa UK Limited Authors: Bengt Johansson; Max Åhman; Lars J Nilsson;If we are to limit global warming to 2 °C, all sectors in all countries must reduce their emissions of GHGs to zero not later than 2060–2080. Zero-emission options have been less explored and are less developed in the energy-intensive basic materials industries than in other sectors. Current climate policies have not yet motivated major efforts to decarbonize this sector, and it has been largely protected from climate policy due to the perceived risks of carbon leakage and a focus on short-term reduction targets to 2020. We argue that the future global climate policy regime must develop along three interlinked and strategic lines to facilitate a deep decarbonization of energy-intensive industries. First, the principle of common but differentiated responsibility must be reinterpreted to allow for a dialogue on fairness and the right to development in relation to industry. Second, a greater focus on the development, deployment and transfer of technology in this sector is called for. Third, the potential con...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14693062.2016.1167009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 166 citations 166 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14693062.2016.1167009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SwedenPublisher:Elsevier BV Authors: Rootzén, Johan; Nyberg, Theo; Karltorp, Kersti; Åhman, Max;Meeting the goals set out in the Paris Agreement will require rapid and deep reductions of greenhouse gas emissions (GHG) across all sectors of the global economy. Like all major societal transformations, this climate transition will impact both social and technical aspects of society and, depending on how it evolves, will reallocate social and economic benefits and costs differently. Recognising the importance of decarbonising key industry sectors with large GHG emissions and an significant impact on society, this study explores the opportunities and tensions involved in a transition of the petrochemical industry. We do so by analysing how access to natural resources, the petrochemical industry's role in the economy and the socio-political landscape in key petrochemical producing countries impacts prerequisites for change. The assessment shows that devising adequate policy responses, building legitimacy for change and potentially building bottom-up pressure for a timely climate transition are likely to look very different in the 10 countries with the greatest active petrochemical capacity in the world: China, the United States, India, South Korea, Saudi Arabia, Japan, Russia, Iran, Germany and Taiwan. The indicators used to explore the prerequisites for change all point to areas where actions and policies must advance for a transition to be realised. This includes efforts to cap fossil feedstock supply and production capacity, efforts to limit and ultimately reduce demand for plastics and fertilisers, and measures to formulate transition strategies and policies that capture and provide agency for communities and groups that are currently on the receiving end of negative health and environmental impacts from the petrochemical industry and that will also, in many cases, be most closely affected by a transition.
Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2023.103256&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2023.103256&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Preprint , Other literature type , Research 2020 SwedenPublisher:Unpublished Funded by:EC | VISUALMEDIAEC| VISUALMEDIAAuthors: Åhman, Max; Arens, Marlene; Vogl, Valentin;The energy intensive industry, producing basic materials, is responsible for 25 to 30% of today's global greenhouse gas emissions. The future supply of GHG neutral basic materials (e.g. steel, cement, aluminium, plastics, etc.) is a necessity for building a sustainable modern society. Deep decarbonisation of the energy intensive industries is technically possible but will require a major systemic shift in production processes and energy carriers used, which will require large public support in the form of subsidies and high carbon prices. A key barrier for implementing ambitious climate policies targeting energy intensive industries is the inherent conflict between the global nature of energy intensive industries and the existing climate policy framework that is based on nation states taking action according to the principle of “common but differentiated responsibilities”. This approach could lead to carbon leakage and the introduction of carbon trade measures has been the default proposition from academics to ameliorate these concerns. However, another way is to define the task of decarbonizing EIIs as a global task and not as a purely national matter and to cooperate internationally. In this paper we analyse what it takes to decarbonize energy intensive industry and what implications this transition can have for trade. From here we explore the opportunities for enhanced cooperation for deep decarbonisation for EIIs within the Paris Agreement. We argue for international cooperation by establishing a green materials club that would focus on long-term technology development. This could be a viable way to ease the current shortterm conflicts and mitigate the need for carbon tariffs. However, a green materials club should still be a part of a wider discussion around what is considered fair trade practices under the climate convention and how this relates to national interest and industrial policy for the decarbonisation of basic materials production. (Less)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13140/rg.2.2.14953.72807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13140/rg.2.2.14953.72807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Zhenxi Li; Max Åhman; Lars J. Nilsson; Fredric Bauer;Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.114540&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.114540&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2001Publisher:SAE International Authors: Bengt Johansson; Max Åhman;doi: 10.4271/2001-01-3248
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2001-01-3248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2001-01-3248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001Publisher:Elsevier BV Authors: Max Åhman;Abstract This study considers the technical potential concerning the energy efficiency attainable for vehicles with alternative powertrains within 10–20 years. The potential for electric vehicles (BEVs), hybrid electric vehicles (HEVs) and fuel-cell electric vehicles (FCEVs) is assessed and compared with the potential improvement in conventional vehicles with internal combustion engines (ICEVs). Primary energy efficiency is the measure used in this study for comparison. The calculations of primary energy efficiency are based on three different resources: fossil fuels, biomass, and primary electricity from wind, solar or hydropower. This study shows that there is potential for doubling the primary energy efficiency using alternative powertrains in vehicles such as BEVs, HEVs and FCEVs, compared with existing ICEVs. All vehicles with an alternative powertrain have a higher potential for primary energy efficiency than vehicles with an improved conventional powertrain. No “winner” amongst the alternative powertrains could be identified from a primary energy efficiency point of view.
Energy arrow_drop_down Fuel and Energy AbstractsArticle . 2002 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0360-5442(01)00049-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu112 citations 112 popularity Top 1% influence Top 1% impulse Average Powered by BIP!
more_vert Energy arrow_drop_down Fuel and Energy AbstractsArticle . 2002 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0360-5442(01)00049-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: Max Åhman; Lars J Nilsson;The accumulated experience and path-dependent development of petroleum-based transport fuels and internal combustion engine vehicles has created an apparent technological lock-in. Our analysis of a RApid Future vehicles and Fuels scenario (RAFF) for the EU shows that ambitious carbon emission reductions can be achieved even with projected increases in road transport. Furthermore, escaping the lock-in does not seem insurmountable. For this purpose, three strategic technology platforms should be supported: the electric drivetrain, the biochemical, and the thermo-chemical platforms. Each platform has its own characteristics and exhibits its own path dependencies that are relevant to consider with the aim of accelerating their development and application. Contrary to conventional wisdom indicating that governments should not pick winners, we argue that these three platforms should be subject to focused and concerted development efforts. They all offer advantages to transport as well as other applications, and they match low-carbon futures in which electricity and/or hydrogen are important energy carriers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jup.2007.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jup.2007.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Zhenxi Li; Fredrik N.G. Andersson; Lars J. Nilsson; Max Åhman;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2022.135550&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2022.135550&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, Germany, United States, GermanyPublisher:Informa UK Limited Funded by:EC | REINVENTEC| REINVENTLars J. Nilsson; Fredric Bauer; Max Åhman; Fredrik N. G. Andersson; Chris Bataille; Stephane de la Rue du Can; Karin Ericsson; Teis Hansen; Bengt Johansson; Stefan Lechtenböhmer; Mariësse van Sluisveld; Valentin Vogl;The target of zero emissions sets a new standard for industry and industrial policy. Industrial policy in the twenty-first century must aim to achieve zero emissions in the energy and emissions int...
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021License: CC BY NCFull-Text: https://escholarship.org/uc/item/4628f6zmData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14693062.2021.1957665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 104 citations 104 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021License: CC BY NCFull-Text: https://escholarship.org/uc/item/4628f6zmData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14693062.2021.1957665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SwedenPublisher:Informa UK Limited Authors: Åhman, Max; Nikoleris, Alexandra; Wyns, Tomas;doi: 10.4155/cmt.12.77
The global objective to limit human-induced warming to 2°C requires that global emissions are reduced by 50% by 2050. However, industrialized countries need to do much more. The principle of burden...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4155/cmt.12.77&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4155/cmt.12.77&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2016Publisher:Informa UK Limited Authors: Bengt Johansson; Max Åhman; Lars J Nilsson;If we are to limit global warming to 2 °C, all sectors in all countries must reduce their emissions of GHGs to zero not later than 2060–2080. Zero-emission options have been less explored and are less developed in the energy-intensive basic materials industries than in other sectors. Current climate policies have not yet motivated major efforts to decarbonize this sector, and it has been largely protected from climate policy due to the perceived risks of carbon leakage and a focus on short-term reduction targets to 2020. We argue that the future global climate policy regime must develop along three interlinked and strategic lines to facilitate a deep decarbonization of energy-intensive industries. First, the principle of common but differentiated responsibility must be reinterpreted to allow for a dialogue on fairness and the right to development in relation to industry. Second, a greater focus on the development, deployment and transfer of technology in this sector is called for. Third, the potential con...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14693062.2016.1167009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 166 citations 166 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14693062.2016.1167009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SwedenPublisher:Elsevier BV Authors: Rootzén, Johan; Nyberg, Theo; Karltorp, Kersti; Åhman, Max;Meeting the goals set out in the Paris Agreement will require rapid and deep reductions of greenhouse gas emissions (GHG) across all sectors of the global economy. Like all major societal transformations, this climate transition will impact both social and technical aspects of society and, depending on how it evolves, will reallocate social and economic benefits and costs differently. Recognising the importance of decarbonising key industry sectors with large GHG emissions and an significant impact on society, this study explores the opportunities and tensions involved in a transition of the petrochemical industry. We do so by analysing how access to natural resources, the petrochemical industry's role in the economy and the socio-political landscape in key petrochemical producing countries impacts prerequisites for change. The assessment shows that devising adequate policy responses, building legitimacy for change and potentially building bottom-up pressure for a timely climate transition are likely to look very different in the 10 countries with the greatest active petrochemical capacity in the world: China, the United States, India, South Korea, Saudi Arabia, Japan, Russia, Iran, Germany and Taiwan. The indicators used to explore the prerequisites for change all point to areas where actions and policies must advance for a transition to be realised. This includes efforts to cap fossil feedstock supply and production capacity, efforts to limit and ultimately reduce demand for plastics and fertilisers, and measures to formulate transition strategies and policies that capture and provide agency for communities and groups that are currently on the receiving end of negative health and environmental impacts from the petrochemical industry and that will also, in many cases, be most closely affected by a transition.
Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2023.103256&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2023.103256&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Preprint , Other literature type , Research 2020 SwedenPublisher:Unpublished Funded by:EC | VISUALMEDIAEC| VISUALMEDIAAuthors: Åhman, Max; Arens, Marlene; Vogl, Valentin;The energy intensive industry, producing basic materials, is responsible for 25 to 30% of today's global greenhouse gas emissions. The future supply of GHG neutral basic materials (e.g. steel, cement, aluminium, plastics, etc.) is a necessity for building a sustainable modern society. Deep decarbonisation of the energy intensive industries is technically possible but will require a major systemic shift in production processes and energy carriers used, which will require large public support in the form of subsidies and high carbon prices. A key barrier for implementing ambitious climate policies targeting energy intensive industries is the inherent conflict between the global nature of energy intensive industries and the existing climate policy framework that is based on nation states taking action according to the principle of “common but differentiated responsibilities”. This approach could lead to carbon leakage and the introduction of carbon trade measures has been the default proposition from academics to ameliorate these concerns. However, another way is to define the task of decarbonizing EIIs as a global task and not as a purely national matter and to cooperate internationally. In this paper we analyse what it takes to decarbonize energy intensive industry and what implications this transition can have for trade. From here we explore the opportunities for enhanced cooperation for deep decarbonisation for EIIs within the Paris Agreement. We argue for international cooperation by establishing a green materials club that would focus on long-term technology development. This could be a viable way to ease the current shortterm conflicts and mitigate the need for carbon tariffs. However, a green materials club should still be a part of a wider discussion around what is considered fair trade practices under the climate convention and how this relates to national interest and industrial policy for the decarbonisation of basic materials production. (Less)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13140/rg.2.2.14953.72807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13140/rg.2.2.14953.72807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Zhenxi Li; Max Åhman; Lars J. Nilsson; Fredric Bauer;Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.114540&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.114540&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2001Publisher:SAE International Authors: Bengt Johansson; Max Åhman;doi: 10.4271/2001-01-3248
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2001-01-3248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2001-01-3248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001Publisher:Elsevier BV Authors: Max Åhman;Abstract This study considers the technical potential concerning the energy efficiency attainable for vehicles with alternative powertrains within 10–20 years. The potential for electric vehicles (BEVs), hybrid electric vehicles (HEVs) and fuel-cell electric vehicles (FCEVs) is assessed and compared with the potential improvement in conventional vehicles with internal combustion engines (ICEVs). Primary energy efficiency is the measure used in this study for comparison. The calculations of primary energy efficiency are based on three different resources: fossil fuels, biomass, and primary electricity from wind, solar or hydropower. This study shows that there is potential for doubling the primary energy efficiency using alternative powertrains in vehicles such as BEVs, HEVs and FCEVs, compared with existing ICEVs. All vehicles with an alternative powertrain have a higher potential for primary energy efficiency than vehicles with an improved conventional powertrain. No “winner” amongst the alternative powertrains could be identified from a primary energy efficiency point of view.
Energy arrow_drop_down Fuel and Energy AbstractsArticle . 2002 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0360-5442(01)00049-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu112 citations 112 popularity Top 1% influence Top 1% impulse Average Powered by BIP!
more_vert Energy arrow_drop_down Fuel and Energy AbstractsArticle . 2002 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0360-5442(01)00049-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: Max Åhman; Lars J Nilsson;The accumulated experience and path-dependent development of petroleum-based transport fuels and internal combustion engine vehicles has created an apparent technological lock-in. Our analysis of a RApid Future vehicles and Fuels scenario (RAFF) for the EU shows that ambitious carbon emission reductions can be achieved even with projected increases in road transport. Furthermore, escaping the lock-in does not seem insurmountable. For this purpose, three strategic technology platforms should be supported: the electric drivetrain, the biochemical, and the thermo-chemical platforms. Each platform has its own characteristics and exhibits its own path dependencies that are relevant to consider with the aim of accelerating their development and application. Contrary to conventional wisdom indicating that governments should not pick winners, we argue that these three platforms should be subject to focused and concerted development efforts. They all offer advantages to transport as well as other applications, and they match low-carbon futures in which electricity and/or hydrogen are important energy carriers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jup.2007.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jup.2007.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu