Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
15 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Verdecchia R.;
    Verdecchia R.
    ORCID
    Harvested from ORCID Public Data File

    Verdecchia R. in OpenAIRE
    orcid Malavolta I.;
    Malavolta I.
    ORCID
    Harvested from ORCID Public Data File

    Malavolta I. in OpenAIRE
    orcid Lago P.;
    Lago P.
    ORCID
    Harvested from ORCID Public Data File

    Lago P. in OpenAIRE

    Architectural Technical Debt (ATD) regards sub-optimal design decisions that bring short-term benefits to the cost of long-term gradual deterioration of the quality of the architecture of a software system. The identification of ATD strongly influences the technical and economic sustainability of software systems and is attracting growing interest in the scientific community. During the years several approaches for ATD identification have been conceived, each of them addressing ATD from different perspectives and with heterogeneous characteristics. In this paper we apply the systematic mapping study methodology for identifying, classifying, and evaluating the state of the art on ATD identification from the following three perspectives: publication trends, characteristics, and potential for industrial adoption. Specifically, starting from a set of 509 potentially relevant studies, we systematically selected 47 primary studies and analyzed them according to a rigorously-defined classification framework. The analysis of the obtained results supports both researchers and practitioners by providing (i) an assessment of current research trends and gaps in ATD identification, (ii) a solid foundation for understanding existing (and future) research on ATD identification, and (iii) a rigorous evaluation of its potential for industrial adoption.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DANS (Data Archiving...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    http://www.ivanomalavolta.com/...
    Conference object
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1145/319416...
    Conference object . 2018 . Peer-reviewed
    License: ACM Copyright Policies
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    35
    citations35
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DANS (Data Archiving...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      http://www.ivanomalavolta.com/...
      Conference object
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1145/319416...
      Conference object . 2018 . Peer-reviewed
      License: ACM Copyright Policies
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw Stoico, Vincenzo;
    Stoico, Vincenzo
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Stoico, Vincenzo in OpenAIRE
    orcid bw Cortellessa, Vittorio;
    Cortellessa, Vittorio
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Cortellessa, Vittorio in OpenAIRE
    orcid bw Malavolta, Ivano;
    Malavolta, Ivano
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Malavolta, Ivano in OpenAIRE
    orcid bw Di Pompeo, Daniele;
    Di Pompeo, Daniele
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Di Pompeo, Daniele in OpenAIRE
    +1 Authors

    # LQN4Energy-Replication-Package This repository contains the replication package and dataset of the paper titled "An approach using performance models for supporting energy analysis of software systems". This study has been developed by: 1. [Vincenzo Stoico](https://scholar.google.com/citations?user=E8C9Uz4AAAAJ&hl=en)(University of L'Aquila) 2. [Vittorio Cortellessa](https://scholar.google.com/citations?hl=en&user=s4JPUOEAAAAJ)(University of L'Aquila) 3. [Ivano Malavolta](https://scholar.google.com/citations?hl=en&user=ya3htIoAAAAJ)(Vrije University Amsterdam) 4. [Daniele Di Pompeo](https://scholar.google.com/citations?hl=en&user=E2dr5vIAAAAJ)(University of L'Aquila) 5. [Luigi Pomante](https://scholar.google.com/citations?hl=en&user=q2_sZiMAAAAJ)(University of L'Aquila) for further details, comments, and/or suggestions, you can write an email to the following address: <vincenzo.stoico@graduate.univaq.it> ## Repository Description This repository is made by three directories: - `code`: it contains the scripts that read the dataset and generate the results for the Digital Camera and Train Ticket Booking System. Therefore, the response time for the supplied workloads, CPU utilization, the average power, i.e., e multiplier, and the average energy consumption. - `dc_energy_estimation.py`: generates the energy estimates for Digital Camera - `dc_overall_stats.py`: calculates the performance and the energy metrics from the measurements collected for Digital Camera - `ttbs_performance_stats.py`: calculates the performance metrics from the measurements retrieved for Train Ticket Booking System - `ttbs_energy_stats.py`: calculates the energy metrics from the measurements taken for Train Ticket Booking System - `ttbs_overall_stats.py`: generates the energy estimates and the charts comparing estimates and measurements for Train Ticket Booking System. It prints the Root Mean Square Error (RMSE) and the Mean Absolute Percentage Error (MAPE). - `dataset`: it has two subdirectories: `dc` and `ttbs` containing the data collected during the experiments performed for Digital Camera and Train Ticket Booking System, respectively; - `model`: it includes the Layered Queuing Networks we used to retrieve CPU Utilization and the response time for both case studies; ## How do I run this? The scripts are written in python, so you must have installed the latest version of python to run them. In addition, they require `pandas`, `matplotlib`, `numpy`, `scipy`. The suite to execute the Layered Queuing Networks must be installed to retrieve performance estimatations. It is possible to find it at the following repository: [https://github.com/layeredqueuing/V5](https://github.com/layeredqueuing/V5) After installation is complete, you can execute the list of commands indicated below to obtain the results for the case studies. The commands must be executed in the described order. The results will be generated in the `results/` directory. ### Digital Camera 1. move to the `~/code` folder 2. execute `python dc_overall_stats.py`, it will take ~1m 3. move to the `~/model` directory and execute `lqns dc.lqnx > ../results/dc_estimates.csv` 4. go back to the `~/code` folder and execute `python dc_energy_estimation.py` ### Train Ticket Booking System 1. move to the `~/code` folder 2. execute `python ttbs_performance_stats.py` 3. execute `python ttbs_energy_stats.py` 3. move to the `~/model` directory and execute `lqns ttbs.lqnx > ../results/ttbs_performance_estimates.csv` 4. go back to the `~/code` folder and execute `python ttbs_overall_stats.py`

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Dataset . 2023
    Data sources: Datacite
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility6
    visibilityviews6
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Dataset . 2023
      Data sources: Datacite
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid bw M Dordević;
    M Dordević
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    M Dordević in OpenAIRE
    orcid bw Michel Albonico;
    Michel Albonico
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Michel Albonico in OpenAIRE
    orcid Grace Lewis;
    Grace Lewis
    ORCID
    Harvested from ORCID Public Data File

    Grace Lewis in OpenAIRE
    orcid Ivano Malavolta;
    Ivano Malavolta
    ORCID
    Harvested from ORCID Public Data File

    Ivano Malavolta in OpenAIRE
    +1 Authors

    AbstractContextRobotic systems are known to perform computation-intensive tasks with limited computational resources and battery life. Such systems might benefit from offloading heavy workloads to the Cloud; however, in some cases, this implies high network traffic that degrades performance and energy consumption.GoalIn this study, we aim at evaluating the impact of different computation offloading strategies on performance and energy consumption in the context of autonomous robots.MethodWe conduct two controlled experiments involving a robotic mission based on the Turtlebot3 robot and ROS 1. The mission consists of three tasks that are recurrent in robotics and good candidates for computation offloading in research, namely, SLAM mapping, navigation stack, and object recognition. Each of the tasks is either executed on board or offloaded in a full-factorial experiment design. The obtained measures are then statistically analyzed.ResultsThe results show that offloading the object recognition task causes a more significant decrease in resource utilization and energy consumption than both SLAM mapping and navigation. However, object recognition affects the volume of network traffic significantly to the extent that it can easily cause network congestion.ConclusionsIn the context of our experiments (i.e.,those involving small-scale ground ROS-based mobile robots operating under WiFi networks), offloading object recognition is beneficial in terms of performance and energy consumption. Nevertheless, large network bandwidth needs to be available for object recognition offloading. While the image resolution and frame rate have a significant impact on not only the network traffic but also energy consumption and performance, these parameters need to be carefully set so that the results of this task can be always received in time, which is particularly crucial in real-time systems.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Empirical Software E...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Empirical Software Engineering
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    https://dx.doi.org/10.60692/y4...
    Other literature type . 2023
    Data sources: Datacite
    https://dx.doi.org/10.60692/8n...
    Other literature type . 2023
    Data sources: Datacite
    addClaim
    6
    citations6
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Empirical Software E...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Empirical Software Engineering
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      https://dx.doi.org/10.60692/y4...
      Other literature type . 2023
      Data sources: Datacite
      https://dx.doi.org/10.60692/8n...
      Other literature type . 2023
      Data sources: Datacite
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Floroiu, Maximilian Stefan; orcid Russo, Stefano;
    Russo, Stefano
    ORCID
    Harvested from ORCID Public Data File

    Russo, Stefano in OpenAIRE
    Giamattei, Luca; Guerriero, Antonio; +2 Authors

    With the expansion of cloud computing and data centers, the need has arisen to tackle their environmental impact. The increasing adoption of microservice architectures, while offering scalability and flexibility, poses new challenges in the effective management of systems' energy consumption.This study analyzes experimentally the effectiveness, with respect to energy consumption, of algorithms for Anomaly Detection (AD) and Root Cause Analysis (RCA) for (containerized) microservices systems. The study analyzes five AD and three RCA algorithms. Metrics to assess the effectiveness of AD algorithms are Precision, Recall, and F-Score. For RCA algorithms, the chose metric is Precision at level k. Two subjects of different complexity are used: Sock Shop and UNI-Cloud. Experiments use a cross-over paired comparison design, involving multiple randomized runs for robust measures.The experiments show that AD algorithms exhibit a relatively moderate performance. The mean adjusted Precision for Sock Shop is 61.5%, while it is 75% for the best-performing algorithms (BIRCH, KNN, and SVM) on UNI-Cloud. The Recall and F-Score for UNI-Cloud, for the same algorithms, are 75%, while for Sock Shop KNN yields the best outcome at roughly 45%. MicroRCA and RCD emerge as the top-performing algorithms for RCA.We found that the effectiveness of AD algorithms is strongly influenced by anomaly thresholds, emphasizing the importance of careful tuning such algorithms. RCA algorithms reveal promising results, particularly RCD and MicroRCA, which showed robust performance. However, challenges remain, as seen with the ϵ-diagnosis algorithm, suggesting the need for further refinement.For DevOps engineers, the findings highlight the need to carefully select and tune AD and RCA algorithms for energy, and to take into account system topology and monitoring configurations.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio della ricer...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1109/icws62...
    Conference object . 2024 . Peer-reviewed
    License: STM Policy #29
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio della ricer...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1109/icws62...
      Conference object . 2024 . Peer-reviewed
      License: STM Policy #29
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Wojciech Ziolkowski; Chuyi Tong; Stylianos Rammos; Mansi Mundra; +2 Authors

    Context. One of the primary uses of mobile devices is to send and receive instant messages via messaging apps. However, no evidence is still available about how receiving instant messages impacts the energy consumption of mobile devices.Goal. With this study we aim to empirically assess to what extent the number and distribution of received instant messages impact the energy consumption of Android devices.Method. The subjects of our experiment are WhatsApp and Telegram, two of the most known and used messaging apps. Each run of the experiment lasts 5 minutes and is executed on a Nexus 9 Android device. The independent variables of the experiment are: (i) the frequency of the received messages (i.e., 0, 10, 25, 50 per minute) and (ii) the distribution of messages arrival (i.e., evenly or in bursts). The dependent variable of the experiment is the energy consumption of the Android device in Joules.Results. We confirm that the energy consumption of the Android device tends to be proportional with the number of received messages across both apps. When the number of received messages is fixed, the frequency of their arrival does not significantly impact the energy consumption of the Android device.Conclusions. This study provides evidence that receiving instant messages can largely reduce the battery life of a user's Android device, even when the number of received messages is relatively low (i.e., 10 messages per minute). Moreover, sending bursts of messages does not lead to significant changes in terms of energy consumption. Developers can use this information to develop new features for their Instant Messaging apps for aggressively bundling messages without the risk of impacting the energy consumption of end users' devices.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Vrije Universiteit A...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1109/mobile...
    Conference object . 2021 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Vrije Universiteit A...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1109/mobile...
      Conference object . 2021 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Ahmed, Hesham;
    Ahmed, Hesham
    ORCID
    Harvested from ORCID Public Data File

    Ahmed, Hesham in OpenAIRE
    Boshchenko, Alina; Khan, Niaz Ali; Knyajev, Dmitriy; +4 Authors

    Context. Java and Kotlin are the two main programming languages used to create Android applications. Kotlin almost completely replicates the capabilities offered by Java and offers extra features, making it a popular choice among developers. From a sustainability perspective, it is crucial to assess the energy usage of Kotlin-based Android applications. Goal. The goal of this study is to explore how the energy consumption of Kotlin applications evolves over time. The study also aims at identifying the key factors that influence energy consumption, to inform developers on how the changes they make affect the energy consumed by their applications. Method. To investigate how Kotlin apps' energy consumption changes through releases, we study three open-source apps Kotlin apps that are also present in the Google Play store. We conduct a measurement-based experiment during which we assess the energy consumed by several releases of each studied application, for a total of 171 executions. Afterwards, we statistically analyse the collected data to identify relevant energy fluctuations (i.e.,, spikes, drops). Finally, we manually inspect the source code changes in the apps to identify possible causes of the identified energy fluctuations. Results. All three studied applications exhibit a growing trend for energy consumption over the course of their releases. Moreover, abnormal energy spikes are found for all applications. There are different causes behind these variations, including OS upgrades, new features, poorly chosen design patterns and libraries, UI issues, and unstable app versions. Conclusions. Our study provides evidence that a number of not fully understood factors can affect the energy consumption of a mobile application. Further work is needed to study their impact.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Vrije Universiteit A...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1109/ict4s5...
    Conference object . 2023 . Peer-reviewed
    License: STM Policy #29
    Data sources: Crossref
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility15
    visibilityviews15
    downloaddownloads6
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Vrije Universiteit A...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1109/ict4s5...
      Conference object . 2023 . Peer-reviewed
      License: STM Policy #29
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Christos Petalotis;
    Christos Petalotis
    ORCID
    Harvested from ORCID Public Data File

    Christos Petalotis in OpenAIRE
    orcid bw Luka Krumpak;
    Luka Krumpak
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Luka Krumpak in OpenAIRE
    orcid Maximilian Stefan Floroiu;
    Maximilian Stefan Floroiu
    ORCID
    Harvested from ORCID Public Data File

    Maximilian Stefan Floroiu in OpenAIRE
    Laréb Fatima Ahmad; +2 Authors

    Context: As the use of mobile devices has increased immensely through the years, the presence of analytics and advertisements on web and native applications has become prevalent. However, serving ads and analytics comes with costs, as they are associated with additional code and network requests to execute properly. Subsequently, more computing resources are used, having an impact on the energy consumption and the performance of web applications. Previous work has focused only on native Android applications, has used different metrics for performance, or has focused on other aspects of web applications. Goal: This paper aims to investigate the costs of including advertisements and analytics in web applications. This is done in terms of energy consumption and performance. For energy, the consumption is measured in Joules. For performance, the following metrics are used: first contentful paint and full page load time. The results of this study could influence the decisions of web developers and web browser vendors related to ads and analytics usage, while providing the foundation for further research on this topic. Method: To collect reliable and population-representative results, the research focused on 9 popular web applications included in the Tranco list. Energy consumption and performance metrics were gathered for 3 versions of each web application — original version with ads and analytics, without ads, and without analytics. A cross-over paired comparison design is conducted. Multiple executions of each run were performed in random order to ascertain rigorous measures. The experiment is carried out on an Android tablet using two browsers, Google Chrome and Opera. Results: Ads significantly impact the energy consumption of mobile web apps for both browsers, with a large effect size; analytics have a significant impact on the energy consumption of Chrome (with a medium effect size), but not on Opera. In terms of performance, both ads and analytics do not significantly impact the first contentful paint metric on both browsers; differently, both ads and analytics significantly impact the full page load time of the mobile web apps on both browsers, but with a small effect size. Conclusions: This study provides evidence that both ads and analytics can have a significant impact on the energy consumption and performance of mobile web apps loaded either on Opera or Chrome. Depending on the requirements of the mobile web app, it is advisable to limit both ads and analytics in a mobile web app in order to reduce its energy consumption and improve its full page load time. Special attention should be paid to the presence of ads since they resulted to be the most impactful in terms of energy consumption.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Information and Soft...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Information and Software Technology
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    https://doi.org/10.2139/ssrn.4...
    Article . 2023 . Peer-reviewed
    Data sources: Crossref
    addClaim
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Information and Soft...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Information and Software Technology
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      https://doi.org/10.2139/ssrn.4...
      Article . 2023 . Peer-reviewed
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Funke, Markus;
    Funke, Markus
    ORCID
    Harvested from ORCID Public Data File

    Funke, Markus in OpenAIRE
    Lago, Patricia; Adenekan, Esther; orcid Malavolta, Ivano;
    Malavolta, Ivano
    ORCID
    Harvested from ORCID Public Data File

    Malavolta, Ivano in OpenAIRE
    +1 Authors

    Integrating (and evaluating) energy efficiency tactics into daily industrial practice is challenging. This paper addresses the experimental evaluation of energy efficiency tactics in industrial contexts. Based on different real-world scenarios, we assess five energy efficiency tactics for cloud-based software through individual experiments conducted across two companies. The results of the experiments show significant improvements in energy efficiency for three tactics, with two others showing enhanced efficiency albeit without statistical significance. In addition to the experiments, we draw lessons learned and practical insights into utilizing tactics in industrial contexts. Our results could guide practitioners in selecting and applying the most suitable tactic for their individual context. By linking tactics that emerged in the literature with evidence-based measures, we help including sustainability in software architecture design decision making.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Vrije Universiteit A...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1109/icsa59...
    Conference object . 2024 . Peer-reviewed
    License: STM Policy #29
    Data sources: Crossref
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Vrije Universiteit A...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1109/icsa59...
      Conference object . 2024 . Peer-reviewed
      License: STM Policy #29
      Data sources: Crossref
      addClaim
  • Authors: orcid Ivano Malavolta;
    Ivano Malavolta
    ORCID
    Harvested from ORCID Public Data File

    Ivano Malavolta in OpenAIRE
    Stan Swanborn;

    Nowadays, robots are widely used in many areas of our lifes, such as autonomous storage, self-driving vehicles, drones, industrial automation, etc. Energy is a critical factor for robotic systems, especially for mobile robots where energy is a finite resource (e.g., surveillance autonomous rovers). Since software is becoming the central focus of modern robotic systems, it is important to understand how it influences the energy consumption of the entire system. However, there is no systematic study of the state of the art in energy efficiency of robotics software that could guide research or practitioners in finding solutions and tools to develop robotic systems with energy efficiency in mind the goal of this paper is to present a review of existing research on energy efficiency in robotics software. Specifically, we investigate on (i) the used metrics for energy efficiency, (ii) the application domains within the robotics area covered by research on energy efficiency, (iii) the identified major energy consumers within a robotic system, (iv) how existing approaches are evaluated, (v) the used energy models, (vi) the techniques supporting the development of energy-efficient robotics software, and (vii) which quality attributes tend to be traded off when dealing with energy efficiency in robotics. We also provide a replication package to assess, extend, and/or replicate the study the results of this work can guide researchers and practitioners in robotics and software engineering in better reasoning and contributing to energy-efficient robotics software.

    addClaim
    15
    citations15
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Katerina Chinnappan; orcid Ivano Malavolta;
    Ivano Malavolta
    ORCID
    Harvested from ORCID Public Data File

    Ivano Malavolta in OpenAIRE
    Emitza Guzman; Michel Albonico; +2 Authors

    Robots are becoming more and more commonplace in many industry settings. This successful adoption can be partly attributed to (1) their increasingly affordable cost and (2) the possibility of developing intelligent, software-driven robots. Unfortunately, robotics software consumes significant amounts of energy. Moreover, robots are often battery-driven, meaning that even a small energy improvement can help reduce its energy footprint and increase its autonomy and user experience. In this paper, we study the Robot Operating System (ROS) ecosystem, the de-facto standard for developing and prototyping robotics software. We analyze 527 energy-related data points (including commits, pull-requests, and issues on ROS-related repositories, ROS-related questions on StackOverflow, ROS Discourse, ROS Answers, and the official ROS Wiki). Our results include a quantification of the interest of roboticists on software energy efficiency, 10 recurrent causes, and 14 solutions of energy-related issues, and their implied trade-offs with respect to other quality attributes. Those contributions support roboticists and researchers towards having energy-efficient software in future robotics projects. 11 pages

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://arxiv.org/pdf...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    http://arxiv.org/pdf/2103.1376...
    Conference object
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.48550/ar...
    Article . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1109/msr525...
    Conference object . 2021 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://arxiv.org/pdf...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      http://arxiv.org/pdf/2103.1376...
      Conference object
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.48550/ar...
      Article . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1109/msr525...
      Conference object . 2021 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • chevron_right
Powered by OpenAIRE graph