- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2017Publisher:MDPI AG Authors: Roberto Pili; Hartmut Spliethoff; Christoph Wieland;doi: 10.3390/en10040548
Organic Rankine Cycles (ORCs) are nowadays a valuable technology to produce electricity from low and medium temperature heat sources, e.g., in geothermal, biomass and waste heat recovery applications. Dynamic simulations can help improve the flexibility and operation of such plants, and guarantee a better economic performance. In this work, a dynamic model for a multi-pass kettle evaporator of a geothermal ORC power plant has been developed and its dynamics have been validated against measured data. The model combines the finite volume approach on the tube side and a two-volume cavity on the shell side. To validate the dynamic model, a positive and a negative step function in heat source flow rate is applied. The simulation model performed well in both cases. The liquid level appeared the most challenging quantity to simulate. A better agreement in temperature was achieved by increasing the volume flow rate of the geothermal brine by 2% over the entire simulation. Measurement errors, discrepancies in working fluid and thermal brine properties and uncertainties in heat transfer correlations can account for this. In the future, the entire geothermal power plant will be simulated, and suggestions to improve its dynamics and control by means of simulations will be provided.
Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/4/548/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2017Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10040548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/4/548/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2017Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10040548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2019 SingaporePublisher:Elsevier BV Authors: Jiménez-Arreola, Manuel; Wieland, Christoph; Romagnoli, Alessandro;handle: 10220/49408 , 10356/90074
Abstract ORC is a mature technology that can be used for Waste Heat Recovery (WHR) of Internal Combustion (IC) Engines. Direct Evaporation of the organic fluid from the hot exhaust is an interesting option compared to the often preferred intermediary thermal oil loop choice due to its thermal efficiency potential and reduction of system footprint and weight. However, concerns due to dynamic variability of the hot source still hinder its consideration. In this paper, a comparison of the dynamic response of ORC evaporators with both indirect and direct evaporation is performed, under fluctuations of an IC engine exhaust according to relevant frequencies and amplitudes of a standard driving cycle. The results show the range of frequencies and amplitudes of hot source fluctuations for which direct evaporation is most feasible and the range for which special consideration must be taken.
DR-NTU (Digital Repo... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/10220/49408Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2019License: CC BY NC NDFull-Text: https://hdl.handle.net/10356/90074Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of NTUArticle . 2019License: © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Data sources: Digital Repository of NTUDigital Repository of NTUConference object . 2019License: © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Data sources: Digital Repository of NTUUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2019Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.01.376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert DR-NTU (Digital Repo... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/10220/49408Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2019License: CC BY NC NDFull-Text: https://hdl.handle.net/10356/90074Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of NTUArticle . 2019License: © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Data sources: Digital Repository of NTUDigital Repository of NTUConference object . 2019License: © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Data sources: Digital Repository of NTUUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2019Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.01.376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SingaporePublisher:Elsevier BV Roberto Pili; Alessandro Romagnoli; Manuel Jiménez-Arreola; Hartmut Spliethoff; Christoph Wieland;handle: 10356/141026
Computer-based simulations of Organic Rankine Cycles (ORC) have been extensively used in the last two decades to predict the behaviour of existing plants or already in the design phase. For time-varying heat sources, researchers typically rely on either quasi-steady state or dynamic simulations. In this work, the two approaches are compared and the trade-off between them is analysed, taking as benchmark waste heat recovery with ORC from a billet reheating furnace. The system is firstly optimized in MATLAB® using a quasi-steady state approach. The results are then compared with a corresponding dynamic simulation in Dymola. In the case of waste heat from billet reheat furnace, the quasi-steady state approach can successfully capture the fluctuations in waste heat. For heat source ramps from 110% to 40% the nominal value in 30 s, dynamic effects lead to 1.1% discrepancies in ORC net power. The results highlight the validity of the quasi-steady state approach for techno-economic optimization of ORC for industrial waste heat and provide a valuable guideline for developers, companies and researchers when choosing the most suitable tool for their analysis, helping them save time and costs to find the most appropriate approach.
Digital Repository o... arrow_drop_down Universitätsbibliographie, Universität Duisburg-EssenArticle . 2019Data sources: Universitätsbibliographie, Universität Duisburg-EssenDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.10.166&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Digital Repository o... arrow_drop_down Universitätsbibliographie, Universität Duisburg-EssenArticle . 2019Data sources: Universitätsbibliographie, Universität Duisburg-EssenDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.10.166&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Moritz Gleinser; Christoph Wieland; Hartmut Spliethoff;The transition in the energy market and the growing share of renewable energy sources have been boosting the research in new power cycles. For example, the concept of batch evaporation in the Misselhorn Cycle promises to increase the overall efficiency in low-temperature applications and therefore saves resources. In this paper, a dynamic evaporator model was extended in order to prove the feasibility of the Misselhorn Cycle despite its transient character. In this context, the thermal capacity of the wall material as well as the residence time of the heat source medium were added. The previous, underlying model predicted an improved system efficiency for the Misselhorn Cycle of about 50% compared to an Organic Rankine Cycle (ORC) at 100+C. Initially, the results of the extended model showed a negative influence of the inertial effects on the possible net power output (advantage over ORC only 10%). However, an unheated discharge phase and reduced dimensions of the heat exchanger could compensate these drawbacks and achieved results (about 40% better than ORC) in the same range as the previous, simple model predicted. These findings prove the general practical feasibility of the Misselhorn Cycle.The transition in the energy market and the growing share of renewable energy sources have been boosting the research in new power cycles. For example, the concept of batch evaporation in the Misselhorn Cycle promises to increase the overall efficiency in low-temperature applications and therefore saves resources. In this paper, a dynamic evaporator model was extended in order to prove the feasibility of the Misselhorn Cycle despite its transient character. In this context, the thermal capacity of the wall material as well as the residence time of the heat source medium were added. The previous, underlying model predicted an improved system efficiency for the Misselhorn Cycle of about 50% compared to an Organic Rankine Cycle (ORC) at 100+C. Initially, the results of the extended model showed a negative influence of the inertial effects on the possible net power output (advantage over ORC only 10%). However, an unheated discharge phase and reduced dimensions of the heat exchanger could compensate these drawbacks and achieved results (about 40% better than ORC) in the same range as the previous, simple model predicted. These findings prove the general practical feasibility of the Misselhorn Cycle.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.05.145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.05.145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Liu, Wei; Meinel, Dominik; Gleinser, Moritz; Wieland, Christoph; Spliethoff, Hartmut;Based on a sub-critical ORC (Organic Rankine Cycle) process, this study introduces the term OHST (Optimal Heat Source Temperature) with consideration of a suitable thermal match between heat source and working fluid. A theoretical formula is developed for predicting the OHST, which shows that OHST only depends on evaporation pressure and pinch point in the preheater and evaporator. A comparative study between the predicted OHSTs and those obtained from cycle simulations is performed, showing that the proposed formula is reliable, provided that HTF (Heat Transfer Fluid) is homogeneous and has good consistency in terms of heat capacity for different temperatures. To demonstrate the application of the proposed OHST-theory for thermodynamic optimization of ORC systems, a case study is presented based on a simple ORC coupled with thermal water at 140 °C. Consequently, using R227ea leads to the highest system efficiency of 10.38%, due to a better thermal match in the preheater and evaporator. In order to increase the exploitation of the thermal potential from the heat source, a dual-fluid-ORC is proposed, where R245fa and R227ea are considered for the high and low temperature ORC processes, respectively. Finally, this combination leads to the highest system efficiency of 11.07%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.07.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 19 citations 19 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.07.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SingaporePublisher:Elsevier BV Authors: Jiménez-Arreola, Manuel; Wieland, Christoph; Romagnoli, Alessandro;handle: 10220/46456 , 10356/89980
The Organic Rankine Cycle (ORC) is one of the main technologies for recovery of low grade heat. However, many of the applications, especially waste heat recovery, present the challenge of thermal power fluctuations of the heat carrier. These fluctuations result in sub-optimal component selection and poor cycle performance at off-design conditions. This study aims to characterize the dynamic behavior of an ORC evaporator under fluctuating load as a method for dynamic behavior optimization at the design stage. This is done by constructing response-time charts that highlight the dependence of the thermal inertia of the evaporator in three main design variables: heat exchanger geometry, heat exchanger wall material and working fluid thermal properties. The characterization can then be used at a particular application to choose the proper design parameters that can reduce some of the variability of the heat input. This is illustrated with a case study from an ORC evaporator recuperating waste heat from a billet reheating furnace.
DR-NTU (Digital Repo... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018License: CC BY NC NDFull-Text: https://hdl.handle.net/10356/89980Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2017License: CC BY NC NDFull-Text: http://hdl.handle.net/10220/46456Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of NTUArticle . 2017License: © 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Data sources: Digital Repository of NTUUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2017Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert DR-NTU (Digital Repo... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018License: CC BY NC NDFull-Text: https://hdl.handle.net/10356/89980Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2017License: CC BY NC NDFull-Text: http://hdl.handle.net/10220/46456Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of NTUArticle . 2017License: © 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Data sources: Digital Repository of NTUUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2017Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Sebastian Eyerer; Peter Eyerer; Markus Eicheldinger; Beatrice Tübke; Christoph Wieland; Hartmut Spliethoff;A new generation of refrigerants, the hydrofluoroolefines, has been introduced within the last years. These fluids have a significantly smaller Global Warming Potential compared to the state-of-the-art fluids, which are within the class of hydrofluorocarbons. The hydrofluoroolefines are unsaturated molecules consisting of double-bonded carbon atoms. Especially, compared to hydrofluorocarbons, which are saturated molecules, the interaction with polymers might differ. Therefore, this study investigates the compatibility between polymers and refrigerants, which are commonly used as working fluids in Organic Rankine Cycles or refrigeration units. The compatibility is evaluated due to a theoretical analysis of the relevant mechanisms of the fluid-polymer interaction and an experimental study. The investigated refrigerants are two state-of-the-art fluids, namely R245fa and R134a, as well as three next-generation refrigerants R1233zd-E, R1234yf and R1234ze-E. In addition, two blends, namely R450a and R513a, as well as a lubricant polyolester are investigated. The polymers comprise six elastomers and two thermoplastics, more specifically, two different compositions of ethylene-propylene-diene rubber, two compositions of fluororubber, chlorobutadiene rubber, nitrile-butadiene rubber, polytetrafluoroethylene and polypropylene. The material compatibility is evaluated by changes in volume, weight, Shore hardness as well as in small load hardness. Summing up, 64 different fluid-polymer combinations are tested at two different temperature levels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.08.142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.08.142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Gumpert, Barbara; Wieland, Christoph; Spliethoff, Hartmut;Abstract The geothermal energy production is expanding. How can these systems best be integrated into existing structures? To answer this question, a simplified district heating network model was set up and applied as well as validated to an existing 2000 customer district heating network in Bavaria. The network is powered by gas-fired heating and cogeneration plants. A geothermal plant with a significantly lower supply temperature will replace a heating plant. This paper investigates the arising operating conditions due to the replacement. Therefore, profiles of temperature, mass flow and pressure are analyzed. Furthermore, potential damage caused by temperature changes, a reduction in the supply temperature of the cogeneration plant as well as resulting CO2 emissions, primary energy consumption and necessary pumping power are examined. The results show that a geothermal plant with a lower supply temperature can be integrated into an existing district heating network, taking all operational restrictions into account. The resulting electricity demand for pumping in the network is approx. 5% higher than with a gas-fired heating plant. In return, annual savings of e.g. 116,000 tCO2 as well as about 437 GWh primary energy can be achieved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geothermics.2019.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geothermics.2019.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Pili, Roberto; Romagnoli, Alessandro; Kamossa, Kai; Schuster, Andreas; Spliethoff, Hartmut; Wieland, Christoph;Abstract Organic Rankine Cycles (ORC) offer a valuable alternative to recover waste heat from internal combustion engines (ICE) in transportation systems, leading to fuel energy savings and reduced emissions. Nevertheless, the additional weight of the ORC affects the net energy balance of the overall system and the ORC occupies additional volume that competes with vehicle transportation capacity. A lower income from delivered freight or passenger tickets will be therefore achieved. This work defines a benchmark for the economic feasibility of integrating an ORC into an ICE and the resulting economic impact of weight and volume in the transportation sector. It additionally investigates the current ORC situation on the market. The applied methodology defines a maximum allowable change of transport capacity caused by the integration of the ORC. The procedure is applied to a typical city bus, a truck of 40 t of payload capacity, a middle-size freight train (1000 t), an inland water vessel (Va RoRo, 2500 t) and ocean vessel (25,000 t). The results are compared with commercial ORC products. The findings of the present study are a theoretical and practical approach for the economic application of ORCs in the transportation sector. For maritime transportation, the situation appears highly favorable. For integration for trains and trucks appeared successful, but close to the limit line. For busses, a competitive integration requires a strong reduction in weight and volume. In future works, the potential for volume and mass reduction of the ORC has to be addressed together with the integration of an economic assessment for the ORC.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.04.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.04.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Wieland, Christoph; Meinel, Dominik; Eyerer, Sebastian; Spliethoff, Hartmut;Combined heat and power is highly favorable in order to prevent harmful CO2-emissions. Besides that, economic benefits go along due to higher full load operation hours. The present work investigates the flexibility and suitability of different Organic Rankine Cycles for combined heat and power concepts, since it can play a significant role to achieve climate goals. An integrated concept for heat decoupling based on a two-stage Organic Rankine Cycle with regenerative preheating from turbine bleeding is introduced. The heat extraction to the district heating system is directly in line with the receiver tank for the preheating. The flexibility of this integrated concept is determined for different isentropic fluids and siloxanes. Under general circumstances it is more favorable to apply a recuperator for dry fluids such as siloxanes, due to the high amount of sensible heat after the turbine outlet. It has been shown in this work, that the proposed regenerative preheating concept is more beneficial for combined heat and power. While other concepts are only applicable for base load heat demand or for peak load heat demand, this concept is suitable for the entire range of cover ratios of a district heating system. Thus, this concept offers highest flexibility in application and a good capacity utilisation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.08.193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.08.193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2017Publisher:MDPI AG Authors: Roberto Pili; Hartmut Spliethoff; Christoph Wieland;doi: 10.3390/en10040548
Organic Rankine Cycles (ORCs) are nowadays a valuable technology to produce electricity from low and medium temperature heat sources, e.g., in geothermal, biomass and waste heat recovery applications. Dynamic simulations can help improve the flexibility and operation of such plants, and guarantee a better economic performance. In this work, a dynamic model for a multi-pass kettle evaporator of a geothermal ORC power plant has been developed and its dynamics have been validated against measured data. The model combines the finite volume approach on the tube side and a two-volume cavity on the shell side. To validate the dynamic model, a positive and a negative step function in heat source flow rate is applied. The simulation model performed well in both cases. The liquid level appeared the most challenging quantity to simulate. A better agreement in temperature was achieved by increasing the volume flow rate of the geothermal brine by 2% over the entire simulation. Measurement errors, discrepancies in working fluid and thermal brine properties and uncertainties in heat transfer correlations can account for this. In the future, the entire geothermal power plant will be simulated, and suggestions to improve its dynamics and control by means of simulations will be provided.
Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/4/548/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2017Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10040548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/4/548/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2017Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10040548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2019 SingaporePublisher:Elsevier BV Authors: Jiménez-Arreola, Manuel; Wieland, Christoph; Romagnoli, Alessandro;handle: 10220/49408 , 10356/90074
Abstract ORC is a mature technology that can be used for Waste Heat Recovery (WHR) of Internal Combustion (IC) Engines. Direct Evaporation of the organic fluid from the hot exhaust is an interesting option compared to the often preferred intermediary thermal oil loop choice due to its thermal efficiency potential and reduction of system footprint and weight. However, concerns due to dynamic variability of the hot source still hinder its consideration. In this paper, a comparison of the dynamic response of ORC evaporators with both indirect and direct evaporation is performed, under fluctuations of an IC engine exhaust according to relevant frequencies and amplitudes of a standard driving cycle. The results show the range of frequencies and amplitudes of hot source fluctuations for which direct evaporation is most feasible and the range for which special consideration must be taken.
DR-NTU (Digital Repo... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/10220/49408Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2019License: CC BY NC NDFull-Text: https://hdl.handle.net/10356/90074Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of NTUArticle . 2019License: © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Data sources: Digital Repository of NTUDigital Repository of NTUConference object . 2019License: © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Data sources: Digital Repository of NTUUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2019Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.01.376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert DR-NTU (Digital Repo... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/10220/49408Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2019License: CC BY NC NDFull-Text: https://hdl.handle.net/10356/90074Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of NTUArticle . 2019License: © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Data sources: Digital Repository of NTUDigital Repository of NTUConference object . 2019License: © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Data sources: Digital Repository of NTUUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2019Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.01.376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SingaporePublisher:Elsevier BV Roberto Pili; Alessandro Romagnoli; Manuel Jiménez-Arreola; Hartmut Spliethoff; Christoph Wieland;handle: 10356/141026
Computer-based simulations of Organic Rankine Cycles (ORC) have been extensively used in the last two decades to predict the behaviour of existing plants or already in the design phase. For time-varying heat sources, researchers typically rely on either quasi-steady state or dynamic simulations. In this work, the two approaches are compared and the trade-off between them is analysed, taking as benchmark waste heat recovery with ORC from a billet reheating furnace. The system is firstly optimized in MATLAB® using a quasi-steady state approach. The results are then compared with a corresponding dynamic simulation in Dymola. In the case of waste heat from billet reheat furnace, the quasi-steady state approach can successfully capture the fluctuations in waste heat. For heat source ramps from 110% to 40% the nominal value in 30 s, dynamic effects lead to 1.1% discrepancies in ORC net power. The results highlight the validity of the quasi-steady state approach for techno-economic optimization of ORC for industrial waste heat and provide a valuable guideline for developers, companies and researchers when choosing the most suitable tool for their analysis, helping them save time and costs to find the most appropriate approach.
Digital Repository o... arrow_drop_down Universitätsbibliographie, Universität Duisburg-EssenArticle . 2019Data sources: Universitätsbibliographie, Universität Duisburg-EssenDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.10.166&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Digital Repository o... arrow_drop_down Universitätsbibliographie, Universität Duisburg-EssenArticle . 2019Data sources: Universitätsbibliographie, Universität Duisburg-EssenDR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.10.166&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Moritz Gleinser; Christoph Wieland; Hartmut Spliethoff;The transition in the energy market and the growing share of renewable energy sources have been boosting the research in new power cycles. For example, the concept of batch evaporation in the Misselhorn Cycle promises to increase the overall efficiency in low-temperature applications and therefore saves resources. In this paper, a dynamic evaporator model was extended in order to prove the feasibility of the Misselhorn Cycle despite its transient character. In this context, the thermal capacity of the wall material as well as the residence time of the heat source medium were added. The previous, underlying model predicted an improved system efficiency for the Misselhorn Cycle of about 50% compared to an Organic Rankine Cycle (ORC) at 100+C. Initially, the results of the extended model showed a negative influence of the inertial effects on the possible net power output (advantage over ORC only 10%). However, an unheated discharge phase and reduced dimensions of the heat exchanger could compensate these drawbacks and achieved results (about 40% better than ORC) in the same range as the previous, simple model predicted. These findings prove the general practical feasibility of the Misselhorn Cycle.The transition in the energy market and the growing share of renewable energy sources have been boosting the research in new power cycles. For example, the concept of batch evaporation in the Misselhorn Cycle promises to increase the overall efficiency in low-temperature applications and therefore saves resources. In this paper, a dynamic evaporator model was extended in order to prove the feasibility of the Misselhorn Cycle despite its transient character. In this context, the thermal capacity of the wall material as well as the residence time of the heat source medium were added. The previous, underlying model predicted an improved system efficiency for the Misselhorn Cycle of about 50% compared to an Organic Rankine Cycle (ORC) at 100+C. Initially, the results of the extended model showed a negative influence of the inertial effects on the possible net power output (advantage over ORC only 10%). However, an unheated discharge phase and reduced dimensions of the heat exchanger could compensate these drawbacks and achieved results (about 40% better than ORC) in the same range as the previous, simple model predicted. These findings prove the general practical feasibility of the Misselhorn Cycle.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.05.145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.05.145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Liu, Wei; Meinel, Dominik; Gleinser, Moritz; Wieland, Christoph; Spliethoff, Hartmut;Based on a sub-critical ORC (Organic Rankine Cycle) process, this study introduces the term OHST (Optimal Heat Source Temperature) with consideration of a suitable thermal match between heat source and working fluid. A theoretical formula is developed for predicting the OHST, which shows that OHST only depends on evaporation pressure and pinch point in the preheater and evaporator. A comparative study between the predicted OHSTs and those obtained from cycle simulations is performed, showing that the proposed formula is reliable, provided that HTF (Heat Transfer Fluid) is homogeneous and has good consistency in terms of heat capacity for different temperatures. To demonstrate the application of the proposed OHST-theory for thermodynamic optimization of ORC systems, a case study is presented based on a simple ORC coupled with thermal water at 140 °C. Consequently, using R227ea leads to the highest system efficiency of 10.38%, due to a better thermal match in the preheater and evaporator. In order to increase the exploitation of the thermal potential from the heat source, a dual-fluid-ORC is proposed, where R245fa and R227ea are considered for the high and low temperature ORC processes, respectively. Finally, this combination leads to the highest system efficiency of 11.07%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.07.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 19 citations 19 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.07.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SingaporePublisher:Elsevier BV Authors: Jiménez-Arreola, Manuel; Wieland, Christoph; Romagnoli, Alessandro;handle: 10220/46456 , 10356/89980
The Organic Rankine Cycle (ORC) is one of the main technologies for recovery of low grade heat. However, many of the applications, especially waste heat recovery, present the challenge of thermal power fluctuations of the heat carrier. These fluctuations result in sub-optimal component selection and poor cycle performance at off-design conditions. This study aims to characterize the dynamic behavior of an ORC evaporator under fluctuating load as a method for dynamic behavior optimization at the design stage. This is done by constructing response-time charts that highlight the dependence of the thermal inertia of the evaporator in three main design variables: heat exchanger geometry, heat exchanger wall material and working fluid thermal properties. The characterization can then be used at a particular application to choose the proper design parameters that can reduce some of the variability of the heat input. This is illustrated with a case study from an ORC evaporator recuperating waste heat from a billet reheating furnace.
DR-NTU (Digital Repo... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018License: CC BY NC NDFull-Text: https://hdl.handle.net/10356/89980Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2017License: CC BY NC NDFull-Text: http://hdl.handle.net/10220/46456Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of NTUArticle . 2017License: © 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Data sources: Digital Repository of NTUUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2017Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert DR-NTU (Digital Repo... arrow_drop_down DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2018License: CC BY NC NDFull-Text: https://hdl.handle.net/10356/89980Data sources: Bielefeld Academic Search Engine (BASE)DR-NTU (Digital Repository at Nanyang Technological University, Singapore)Article . 2017License: CC BY NC NDFull-Text: http://hdl.handle.net/10220/46456Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of NTUArticle . 2017License: © 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Data sources: Digital Repository of NTUUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2017Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Sebastian Eyerer; Peter Eyerer; Markus Eicheldinger; Beatrice Tübke; Christoph Wieland; Hartmut Spliethoff;A new generation of refrigerants, the hydrofluoroolefines, has been introduced within the last years. These fluids have a significantly smaller Global Warming Potential compared to the state-of-the-art fluids, which are within the class of hydrofluorocarbons. The hydrofluoroolefines are unsaturated molecules consisting of double-bonded carbon atoms. Especially, compared to hydrofluorocarbons, which are saturated molecules, the interaction with polymers might differ. Therefore, this study investigates the compatibility between polymers and refrigerants, which are commonly used as working fluids in Organic Rankine Cycles or refrigeration units. The compatibility is evaluated due to a theoretical analysis of the relevant mechanisms of the fluid-polymer interaction and an experimental study. The investigated refrigerants are two state-of-the-art fluids, namely R245fa and R134a, as well as three next-generation refrigerants R1233zd-E, R1234yf and R1234ze-E. In addition, two blends, namely R450a and R513a, as well as a lubricant polyolester are investigated. The polymers comprise six elastomers and two thermoplastics, more specifically, two different compositions of ethylene-propylene-diene rubber, two compositions of fluororubber, chlorobutadiene rubber, nitrile-butadiene rubber, polytetrafluoroethylene and polypropylene. The material compatibility is evaluated by changes in volume, weight, Shore hardness as well as in small load hardness. Summing up, 64 different fluid-polymer combinations are tested at two different temperature levels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.08.142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.08.142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Gumpert, Barbara; Wieland, Christoph; Spliethoff, Hartmut;Abstract The geothermal energy production is expanding. How can these systems best be integrated into existing structures? To answer this question, a simplified district heating network model was set up and applied as well as validated to an existing 2000 customer district heating network in Bavaria. The network is powered by gas-fired heating and cogeneration plants. A geothermal plant with a significantly lower supply temperature will replace a heating plant. This paper investigates the arising operating conditions due to the replacement. Therefore, profiles of temperature, mass flow and pressure are analyzed. Furthermore, potential damage caused by temperature changes, a reduction in the supply temperature of the cogeneration plant as well as resulting CO2 emissions, primary energy consumption and necessary pumping power are examined. The results show that a geothermal plant with a lower supply temperature can be integrated into an existing district heating network, taking all operational restrictions into account. The resulting electricity demand for pumping in the network is approx. 5% higher than with a gas-fired heating plant. In return, annual savings of e.g. 116,000 tCO2 as well as about 437 GWh primary energy can be achieved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geothermics.2019.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geothermics.2019.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Pili, Roberto; Romagnoli, Alessandro; Kamossa, Kai; Schuster, Andreas; Spliethoff, Hartmut; Wieland, Christoph;Abstract Organic Rankine Cycles (ORC) offer a valuable alternative to recover waste heat from internal combustion engines (ICE) in transportation systems, leading to fuel energy savings and reduced emissions. Nevertheless, the additional weight of the ORC affects the net energy balance of the overall system and the ORC occupies additional volume that competes with vehicle transportation capacity. A lower income from delivered freight or passenger tickets will be therefore achieved. This work defines a benchmark for the economic feasibility of integrating an ORC into an ICE and the resulting economic impact of weight and volume in the transportation sector. It additionally investigates the current ORC situation on the market. The applied methodology defines a maximum allowable change of transport capacity caused by the integration of the ORC. The procedure is applied to a typical city bus, a truck of 40 t of payload capacity, a middle-size freight train (1000 t), an inland water vessel (Va RoRo, 2500 t) and ocean vessel (25,000 t). The results are compared with commercial ORC products. The findings of the present study are a theoretical and practical approach for the economic application of ORCs in the transportation sector. For maritime transportation, the situation appears highly favorable. For integration for trains and trucks appeared successful, but close to the limit line. For busses, a competitive integration requires a strong reduction in weight and volume. In future works, the potential for volume and mass reduction of the ORC has to be addressed together with the integration of an economic assessment for the ORC.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.04.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.04.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Wieland, Christoph; Meinel, Dominik; Eyerer, Sebastian; Spliethoff, Hartmut;Combined heat and power is highly favorable in order to prevent harmful CO2-emissions. Besides that, economic benefits go along due to higher full load operation hours. The present work investigates the flexibility and suitability of different Organic Rankine Cycles for combined heat and power concepts, since it can play a significant role to achieve climate goals. An integrated concept for heat decoupling based on a two-stage Organic Rankine Cycle with regenerative preheating from turbine bleeding is introduced. The heat extraction to the district heating system is directly in line with the receiver tank for the preheating. The flexibility of this integrated concept is determined for different isentropic fluids and siloxanes. Under general circumstances it is more favorable to apply a recuperator for dry fluids such as siloxanes, due to the high amount of sensible heat after the turbine outlet. It has been shown in this work, that the proposed regenerative preheating concept is more beneficial for combined heat and power. While other concepts are only applicable for base load heat demand or for peak load heat demand, this concept is suitable for the entire range of cover ratios of a district heating system. Thus, this concept offers highest flexibility in application and a good capacity utilisation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.08.193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.08.193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu