- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Funded by:FCT | SFRH/BPD/125116/2016, FCT | PD/BD/142827/2018FCT| SFRH/BPD/125116/2016 ,FCT| PD/BD/142827/2018Bruno D. Tibúrcio; Dawei Liang; Joana Almeida; Dário Garcia; Miguel Catela; Hugo Costa; Cláudia R. Vistas;doi: 10.3390/en16124815
Significant numerical improvements in Fresnel lens Nd:YAG solar laser collection efficiency, laser quality factors and tracking error compensation capacity by two Fresnel lenses as primary solar concentrators are reported here. A Nd:YAG four-rod side-pumping configuration was investigated. The four-rod side-pumping scheme consisted of two large aspherical lenses and four semi-cylindrical pump cavities, where the Nd:YAG laser rods were placed, enabling an efficient solar pumping of the laser crystals. A 104.4 W continuous-wave multimode solar laser power was achieved, corresponding to 29.7 W/m2 collection efficiency, which is 1.68 times that of the most efficient experimental Nd:YAG side-pumped solar laser scheme with heliostat–parabolic mirror systems. End-side-pumped configuration has led to the most efficient multimode solar lasers, but it may cause more prejudicial thermal effects, poor beam quality factors and a lack of access to both rod end-faces to optimize the resonant cavity parameters. In the present work, an eight-folding-mirror laser beam merging technique was applied, aiming to attain one laser emission from the four laser rods that consist of the four-rod side-pumping scheme with a higher brightness figure of merit. A 79.8 W multimode laser output power was achieved with this arrangement, corresponding to 22.7 W/m2. The brightness figure of merit was 0.14 W, being 1.6, 21.9 and 15.7 times that of previous experimental Nd:YAG solar lasers pumped by Fresnel lenses. A significant advance in tracking error tolerance was also numerically attained, leading to a 1.5 times enhancement in tracking error width at 10% laser power loss (TEW10%) compared to previous experimental results.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/12/4815/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16124815&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/12/4815/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16124815&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 PortugalPublisher:MDPI AG Funded by:FCT | CEFITEC, FCT | PD/BD/128267/2016, FCT | SFRH/BPD/125116/2016 +1 projectsFCT| CEFITEC ,FCT| PD/BD/128267/2016 ,FCT| SFRH/BPD/125116/2016 ,FCT| PD/BD/142827/2018Hugo Costa; Joana Almeida; Dawei Liang; Miguel Catela; Dário Garcia; Bruno D. Tibúrcio; Cláudia R. Vistas;doi: 10.3390/en14175437
An alternative multirod solar laser end-side-pumping concept, based on the megawatt solar furnace in France, is proposed to significantly improve the TEM00-mode solar laser output power level and its beam brightness through a novel zigzag beam merging technique. A solar flux homogenizer was used to deliver nearly the same pump power to multiple core-doped Nd:YAG laser rods within a water-cooled pump cavity through a fused silica window. Compared to the previous multibeam solar laser station concepts for the same solar furnace, the present approach can allow the production of high-power TEM00-mode solar laser beams with high beam brightness. An average of 1.06 W TEM00-mode laser power was numerically extracted from each of 1657 rods, resulting in a total of 1.8 kW. More importantly, by mounting 399 rods at a 30° angle of inclination and employing the beam merging technique, a maximum of 5.2 kW total TEM00-mode laser power was numerically extracted from 37 laser beams, averaging 141 W from each merged beam. The highest solar laser beam brightness figure of merit achieved was 148 W, corresponding to an improvement of 23 times in relation to the previous experimental record.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5437/pdfData sources: Multidisciplinary Digital Publishing InstituteRepositório da Universidade Nova de LisboaArticle . 2021Data sources: Repositório da Universidade Nova de Lisboaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175437&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5437/pdfData sources: Multidisciplinary Digital Publishing InstituteRepositório da Universidade Nova de LisboaArticle . 2021Data sources: Repositório da Universidade Nova de Lisboaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175437&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Rodrigo Martins; Dawei Liang; Cláudia R. Vistas; Mariana Oliveira; Filipe Gonçalves; Joana Almeida;Abstract The first successful ablation of magnesium oxide through a home-made continuous-wave Cr:Nd:YAG ceramic solar laser is reported. A stationary heliostat-parabolic mirror solar energy collection and concentration system was used. A stable continuous-wave laser output power of 19.2 W was attained with laser beam brightness figure of merit 7.6 times higher than that of the previous scheme, enabling therefore the direct ablation of pure magnesium by our solar-pumped laser with only 1.6 m 2 effective collection area. This could be an important step towards renewable magnesium production, offering multiple advantages, such as reducing agent avoidance, in relation to that of the previous Fresnel lens Cr:Nd:YAG continuous-wave solar laser system.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2016.06.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2016.06.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 FrancePublisher:Elsevier BV Funded by:EC | SFERA-IIEC| SFERA-IIDawei Liang; Joana Almeida; Cláudia R. Vistas; Mariana Oliveira; Filipe Gonçalves; Emmanuel Guillot;Abstract Here we report a significant progress in solar-pumped laser slope efficiency and collection efficiency by pumping a 4.0 mm diameter grooved Nd:YAG single-crystal rod with a heliostat–parabolic mirror solar energy concentration system. The incoming solar radiation is firstly collected and focused by the system. An ellipsoid-shaped fused silica concentrator is then used to further compress the concentrated solar radiation into the grooved rod within a 2V-shaped pumping cavity. 4.5 W continuous-wave TEM00-mode (M2≤1.1) 1064 nm solar laser power is finally measured, attaining 2.36% laser slope efficiency, which is 3.37 and 2.91 times higher than previous records by Fresnel lens and parabolic mirror respectively. Record-high TEM00-mode solar laser collection efficiency of 4.0 W/m2 is also achieved.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.so...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.so...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Funded by:FCT | PD/BD/128267/2016, FCT | PD/BD/142827/2018, FCT | CEFITEC +1 projectsFCT| PD/BD/128267/2016 ,FCT| PD/BD/142827/2018 ,FCT| CEFITEC ,FCT| SFRH/BPD/125116/2016Dário Garcia; Dawei Liang; Cláudia R. Vistas; Hugo Costa; Miguel Catela; Bruno D. Tibúrcio; Joana Almeida;doi: 10.3390/en15145292
The efficiency potential of a small-size solar-pumped laser is studied here. The solar laser head was composed of a fused silica aspheric lens and a conical pump cavity, which coupled and redistributed the concentrated solar radiation from the focal zone of a parabolic mirror with an effective collection area of 0.293 m2 to end-side pump a Ce (0.1 at%):Nd (1.1 at%):YAG rod of 2.5 mm diameter and 25 mm length. Optimum solar laser design parameters were found through Zemax© non-sequential ray-tracing and LASCAD™ analysis. The utilization of the Ce:Nd:YAG medium with small diameter pumped by a small-scale solar concentrator was essential to significantly enhance the end-side pump solar laser efficiency and thermal performance. For 249 W incoming solar power at an irradiance of 850 W/m2, 11.2 W multimode solar laser power was measured, corresponding to the record solar-to-laser power conversion efficiency of 4.50%, being, to the best of our knowledge, 1.22 times higher than the previous record. Moreover, the highest solar laser collection efficiency of 38.22 W/m2 and slope efficiency of 6.8% were obtained, which are 1.18 and 1.02 times, respectively, higher than the previous records. The lowest threshold solar power of a Ce:Nd:YAG solar-pumped laser is also reported here.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/14/5292/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145292&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/14/5292/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145292&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other ORP type 2024 PortugalPublisher:MDPI AG Funded by:FCT | 2021.06172.BDFCT| 2021.06172.BDJoana Almeida; Hugo Costa; Cláudia R. Vistas; Bruno D. Tibúrcio; Ana Matos; Dawei Liang;doi: 10.3390/en17225630
handle: 10362/179491
A multirod Ce:Nd:YAG solar laser approach, using a Fresnel lens as a primary concentrator, is here proposed with the aim of considerably increasing the efficiency of solar-pumped lasers. Fresnel lenses are cost-effective, rendering solar lasers more economically competitive. In this work, solar-pumped radiation collected and concentrated using the Fresnel lens is received by a secondary three-dimensional compound parabolic concentrator which transmits and funnels the light toward the Ce:Nd:YAG laser rods within a water-cooled tertiary conical concentrator that enables efficient multipass pumping of the rods. To explore the full potential of the proposed approach, the performance of various multirod configurations is numerically evaluated. Through this study, configurations with three and seven Ce:Nd:YAG rods are identified as being the most efficient. A maximum continuous wave total laser power of 122.8 W is reached with the three-rod configuration, marking the highest value from a Ce:Nd:YAG solar laser, leading to solar-to-laser conversion and collection efficiencies of 7.31% and 69.50 W/m2, respectively. These results represent enhancements of 1.88 times and 1.79 times, respectively, over the previous experimental records from a Ce:Nd:YAG/YAG single-rod solar laser with a Fresnel lens. Furthermore, the above results are also 1.58 times and 1.68 times, respectively, greater than those associated with the most effective three-rod Ce:Nd:YAG solar laser utilizing a parabolic mirror as the main concentrator. The present study also shows the great usefulness of the simultaneous pumping of multiple laser rods in terms of reducing the thermal stress effects in active media, being the seven-rod configuration the one that offered the best compromise between maximum efficiency and thermal performance. This is crucial for the applicability of this sustainable technology, especially if we wish to scale our system to higher power laser levels.
Energies arrow_drop_down Repositório da Universidade Nova de LisboaArticle . 2024Data sources: Repositório da Universidade Nova de LisboaRepositório da Universidade Nova de LisboaOther ORP type . 2024Data sources: Repositório da Universidade Nova de Lisboaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17225630&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down Repositório da Universidade Nova de LisboaArticle . 2024Data sources: Repositório da Universidade Nova de LisboaRepositório da Universidade Nova de LisboaOther ORP type . 2024Data sources: Repositório da Universidade Nova de Lisboaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17225630&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Funded by:FCT | PD/BD/128267/2016, EC | SFERA-III, FCT | SFRH/BPD/125116/2016 +1 projectsFCT| PD/BD/128267/2016 ,EC| SFERA-III ,FCT| SFRH/BPD/125116/2016 ,FCT| PD/BD/142827/2018Cláudia R. Vistas; Dawei Liang; Dário Garcia; Miguel Catela; Bruno D. Tibúrcio; Hugo Costa; Emmanuel Guillot; Joana Almeida;doi: 10.3390/en15103577
The Ce:Nd:YAG is a recent active medium in solar-pumped lasers with great potential. This study focuses on the influence of two secondary concentrators: a fused silica aspherical lens and a rectangular fused silica light guide; and consequent pump light distribution on the output performance of a Ce:Nd:YAG side-pumped solar laser. The solar laser head with the aspherical lens concentrated the incident pump light on the central region of the rod, producing the highest continuous-wave 1064 nm solar laser power of 19.6 W from the Ce:Nd:YAG medium. However, the non-uniformity of the absorbed pump profile produced by the aspherical lens led to the rod fracture because of the high thermal load, limiting the maximum laser power. Nevertheless, the solar laser head with the light guide uniformly spread the pump light along the laser rod, minimizing the thermal load issues and producing a maximum laser power of 17.4 W. Despite the slight decrease in laser power, the use of the light guide avoided the laser rod fracture, demonstrating its potential to scale to higher laser power. Therefore, the pumping distribution on the rod may play a fundamental role for Ce:Nd:YAG solar laser systems design.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/10/3577/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15103577&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/10/3577/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15103577&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Funded by:FCT | SFRH/BPD/125116/2016FCT| SFRH/BPD/125116/2016Cláudia R. Vistas; Dawei Liang; Miguel Catela; Hugo Costa; Dário Garcia; Bruno D. Tibúrcio; Joana Almeida;doi: 10.3390/su15108218
A multirod solar laser approach is here proposed to attain uniform and stable multibeam emission under non-continuous solar tracking. A Fresnel lens was used as the primary concentrator. The laser head was composed of a second-stage aspherical lens with a light-guide homogenizer and a third-stage conical pump cavity with six Nd:YAG rods. The solar laser system was optimized through numerical analysis in both Zemax® and LASCAD™ software to obtain six 1064 nm laser beams of similar multimode power. To investigate the effect of the homogenizer on the laser performance, the laser head was compared with a similar one that only used the aspherical lens in the second stage. The approach with the light guide attained a slightly lower efficiency than the one without the light guide; however, the tracking error width at 10% laser power loss was higher and, most importantly, only a 2.17% coefficient of variation of the laser power emitted by the six rods at the tracking error angle of ±0.5° was obtained. This is 4.2 times better than the 52.31% obtained with the laser head without the homogenizer and 76 times better than that of the previous numerical work. The light guide is thus essential to ensure uniform and stable solar laser power extraction from all rods even under non-continuous solar tracking, making this prototype the ideal for multibeam laser applications where uniformity and stability of the laser power are indispensable. This renewable multibeam solar laser may replace the classical lamp- and diode-pumped lasers, therefore ensuring a sustainable laser power production pattern for both space and terrestrial applications.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/10/8218/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15108218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/10/8218/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15108218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:ASME International Hugo Costa; Cláudia R. Vistas; Joana Almeida; Miguel Catela; Bruno D. Tibúrcio; Dawei Liang; Dário Garcia;doi: 10.1115/1.4051223
Abstract A seven-rod/seven-TEM00 mode beam Fresnel lens solar laser pumping approach is here proposed. The Fresnel lens with 4.0 m2 collection area was used as the primary solar concentrator to pump seven 2.5 mm diameter, 15 mm length Nd:YAG rods within a conical pump cavity through a secondary fused silica aspheric concentrator. Within the pump cavity, solar pump rays not completely absorbed by one of the seven rods were furtherly absorbed by other rods, ensuring hence a high absorption efficiency and avoiding the serious thermal lensing and thermal stress issues associated with classical large rod solar lasers. Seven individual plane-concave large-mode resonators were adopted to enable a good overlap between solar pump mode and TEM00 laser oscillating mode. By using both zemax® and lascad® software, the maximum total TEM00 mode solar laser power of 54.65 W was numerically calculated by optimizing the radius parameter of the Fresnel lens, the diameter of the laser rod, and the radius of curvature of the laser resonator output mirror. TEM00 mode solar laser collection efficiency of 13.66 W/m2 and solar power-to-TEM00 mode laser power conversion efficiency of 1.44% were calculated, representing substantial enhancements of 4.66 times and 4.38 times, respectively, as compared with previous experimental records of the TEM00 mode solar laser pumped through a Fresnel lens with 0.785 m2 collection area. The feasibility of TEM00 mode solar laser power delivery by hollow-core photonic crystal fibers was finally studied.
Journal of Solar Ene... arrow_drop_down Journal of Solar Energy EngineeringArticle . 2021 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4051223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Solar Ene... arrow_drop_down Journal of Solar Energy EngineeringArticle . 2021 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4051223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 FrancePublisher:Elsevier BV Funded by:EC | SFERA-IIEC| SFERA-IIAuthors: Dawei Liang; Joana Almeida; Cláudia R. Vistas; Emmanuel Guillot;Abstract Here we report a significant advance in solar-pumped laser beam brightness by pumping a 3 mm diameter Nd:YAG single-crystal rod with a heliostat-parabolic mirror system. The incoming solar radiation is first collected and focused by the system. A rectangular fused silica light guide and a 2D-CPC concentrator are then combined to further compress the concentrated solar radiation into the laser rod within a V-shaped pumping cavity. 4.4 W continuous-wave TEM 00 mode ( M 2 ≤1.05) 1064 nm solar laser power is finally produced, attaining 4.0 W laser beam brightness figure of merit, which is 2.1 times higher than the previous record by a Fresnel lens. 0.81% TEM 00 mode laser slope efficiency is achieved.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.so...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2014.12.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.so...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2014.12.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Funded by:FCT | SFRH/BPD/125116/2016, FCT | PD/BD/142827/2018FCT| SFRH/BPD/125116/2016 ,FCT| PD/BD/142827/2018Bruno D. Tibúrcio; Dawei Liang; Joana Almeida; Dário Garcia; Miguel Catela; Hugo Costa; Cláudia R. Vistas;doi: 10.3390/en16124815
Significant numerical improvements in Fresnel lens Nd:YAG solar laser collection efficiency, laser quality factors and tracking error compensation capacity by two Fresnel lenses as primary solar concentrators are reported here. A Nd:YAG four-rod side-pumping configuration was investigated. The four-rod side-pumping scheme consisted of two large aspherical lenses and four semi-cylindrical pump cavities, where the Nd:YAG laser rods were placed, enabling an efficient solar pumping of the laser crystals. A 104.4 W continuous-wave multimode solar laser power was achieved, corresponding to 29.7 W/m2 collection efficiency, which is 1.68 times that of the most efficient experimental Nd:YAG side-pumped solar laser scheme with heliostat–parabolic mirror systems. End-side-pumped configuration has led to the most efficient multimode solar lasers, but it may cause more prejudicial thermal effects, poor beam quality factors and a lack of access to both rod end-faces to optimize the resonant cavity parameters. In the present work, an eight-folding-mirror laser beam merging technique was applied, aiming to attain one laser emission from the four laser rods that consist of the four-rod side-pumping scheme with a higher brightness figure of merit. A 79.8 W multimode laser output power was achieved with this arrangement, corresponding to 22.7 W/m2. The brightness figure of merit was 0.14 W, being 1.6, 21.9 and 15.7 times that of previous experimental Nd:YAG solar lasers pumped by Fresnel lenses. A significant advance in tracking error tolerance was also numerically attained, leading to a 1.5 times enhancement in tracking error width at 10% laser power loss (TEW10%) compared to previous experimental results.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/12/4815/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16124815&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/12/4815/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16124815&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 PortugalPublisher:MDPI AG Funded by:FCT | CEFITEC, FCT | PD/BD/128267/2016, FCT | SFRH/BPD/125116/2016 +1 projectsFCT| CEFITEC ,FCT| PD/BD/128267/2016 ,FCT| SFRH/BPD/125116/2016 ,FCT| PD/BD/142827/2018Hugo Costa; Joana Almeida; Dawei Liang; Miguel Catela; Dário Garcia; Bruno D. Tibúrcio; Cláudia R. Vistas;doi: 10.3390/en14175437
An alternative multirod solar laser end-side-pumping concept, based on the megawatt solar furnace in France, is proposed to significantly improve the TEM00-mode solar laser output power level and its beam brightness through a novel zigzag beam merging technique. A solar flux homogenizer was used to deliver nearly the same pump power to multiple core-doped Nd:YAG laser rods within a water-cooled pump cavity through a fused silica window. Compared to the previous multibeam solar laser station concepts for the same solar furnace, the present approach can allow the production of high-power TEM00-mode solar laser beams with high beam brightness. An average of 1.06 W TEM00-mode laser power was numerically extracted from each of 1657 rods, resulting in a total of 1.8 kW. More importantly, by mounting 399 rods at a 30° angle of inclination and employing the beam merging technique, a maximum of 5.2 kW total TEM00-mode laser power was numerically extracted from 37 laser beams, averaging 141 W from each merged beam. The highest solar laser beam brightness figure of merit achieved was 148 W, corresponding to an improvement of 23 times in relation to the previous experimental record.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5437/pdfData sources: Multidisciplinary Digital Publishing InstituteRepositório da Universidade Nova de LisboaArticle . 2021Data sources: Repositório da Universidade Nova de Lisboaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175437&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/17/5437/pdfData sources: Multidisciplinary Digital Publishing InstituteRepositório da Universidade Nova de LisboaArticle . 2021Data sources: Repositório da Universidade Nova de Lisboaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175437&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Rodrigo Martins; Dawei Liang; Cláudia R. Vistas; Mariana Oliveira; Filipe Gonçalves; Joana Almeida;Abstract The first successful ablation of magnesium oxide through a home-made continuous-wave Cr:Nd:YAG ceramic solar laser is reported. A stationary heliostat-parabolic mirror solar energy collection and concentration system was used. A stable continuous-wave laser output power of 19.2 W was attained with laser beam brightness figure of merit 7.6 times higher than that of the previous scheme, enabling therefore the direct ablation of pure magnesium by our solar-pumped laser with only 1.6 m 2 effective collection area. This could be an important step towards renewable magnesium production, offering multiple advantages, such as reducing agent avoidance, in relation to that of the previous Fresnel lens Cr:Nd:YAG continuous-wave solar laser system.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2016.06.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2016.06.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 FrancePublisher:Elsevier BV Funded by:EC | SFERA-IIEC| SFERA-IIDawei Liang; Joana Almeida; Cláudia R. Vistas; Mariana Oliveira; Filipe Gonçalves; Emmanuel Guillot;Abstract Here we report a significant progress in solar-pumped laser slope efficiency and collection efficiency by pumping a 4.0 mm diameter grooved Nd:YAG single-crystal rod with a heliostat–parabolic mirror solar energy concentration system. The incoming solar radiation is firstly collected and focused by the system. An ellipsoid-shaped fused silica concentrator is then used to further compress the concentrated solar radiation into the grooved rod within a 2V-shaped pumping cavity. 4.5 W continuous-wave TEM00-mode (M2≤1.1) 1064 nm solar laser power is finally measured, attaining 2.36% laser slope efficiency, which is 3.37 and 2.91 times higher than previous records by Fresnel lens and parabolic mirror respectively. Record-high TEM00-mode solar laser collection efficiency of 4.0 W/m2 is also achieved.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.so...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.so...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Funded by:FCT | PD/BD/128267/2016, FCT | PD/BD/142827/2018, FCT | CEFITEC +1 projectsFCT| PD/BD/128267/2016 ,FCT| PD/BD/142827/2018 ,FCT| CEFITEC ,FCT| SFRH/BPD/125116/2016Dário Garcia; Dawei Liang; Cláudia R. Vistas; Hugo Costa; Miguel Catela; Bruno D. Tibúrcio; Joana Almeida;doi: 10.3390/en15145292
The efficiency potential of a small-size solar-pumped laser is studied here. The solar laser head was composed of a fused silica aspheric lens and a conical pump cavity, which coupled and redistributed the concentrated solar radiation from the focal zone of a parabolic mirror with an effective collection area of 0.293 m2 to end-side pump a Ce (0.1 at%):Nd (1.1 at%):YAG rod of 2.5 mm diameter and 25 mm length. Optimum solar laser design parameters were found through Zemax© non-sequential ray-tracing and LASCAD™ analysis. The utilization of the Ce:Nd:YAG medium with small diameter pumped by a small-scale solar concentrator was essential to significantly enhance the end-side pump solar laser efficiency and thermal performance. For 249 W incoming solar power at an irradiance of 850 W/m2, 11.2 W multimode solar laser power was measured, corresponding to the record solar-to-laser power conversion efficiency of 4.50%, being, to the best of our knowledge, 1.22 times higher than the previous record. Moreover, the highest solar laser collection efficiency of 38.22 W/m2 and slope efficiency of 6.8% were obtained, which are 1.18 and 1.02 times, respectively, higher than the previous records. The lowest threshold solar power of a Ce:Nd:YAG solar-pumped laser is also reported here.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/14/5292/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145292&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/14/5292/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145292&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other ORP type 2024 PortugalPublisher:MDPI AG Funded by:FCT | 2021.06172.BDFCT| 2021.06172.BDJoana Almeida; Hugo Costa; Cláudia R. Vistas; Bruno D. Tibúrcio; Ana Matos; Dawei Liang;doi: 10.3390/en17225630
handle: 10362/179491
A multirod Ce:Nd:YAG solar laser approach, using a Fresnel lens as a primary concentrator, is here proposed with the aim of considerably increasing the efficiency of solar-pumped lasers. Fresnel lenses are cost-effective, rendering solar lasers more economically competitive. In this work, solar-pumped radiation collected and concentrated using the Fresnel lens is received by a secondary three-dimensional compound parabolic concentrator which transmits and funnels the light toward the Ce:Nd:YAG laser rods within a water-cooled tertiary conical concentrator that enables efficient multipass pumping of the rods. To explore the full potential of the proposed approach, the performance of various multirod configurations is numerically evaluated. Through this study, configurations with three and seven Ce:Nd:YAG rods are identified as being the most efficient. A maximum continuous wave total laser power of 122.8 W is reached with the three-rod configuration, marking the highest value from a Ce:Nd:YAG solar laser, leading to solar-to-laser conversion and collection efficiencies of 7.31% and 69.50 W/m2, respectively. These results represent enhancements of 1.88 times and 1.79 times, respectively, over the previous experimental records from a Ce:Nd:YAG/YAG single-rod solar laser with a Fresnel lens. Furthermore, the above results are also 1.58 times and 1.68 times, respectively, greater than those associated with the most effective three-rod Ce:Nd:YAG solar laser utilizing a parabolic mirror as the main concentrator. The present study also shows the great usefulness of the simultaneous pumping of multiple laser rods in terms of reducing the thermal stress effects in active media, being the seven-rod configuration the one that offered the best compromise between maximum efficiency and thermal performance. This is crucial for the applicability of this sustainable technology, especially if we wish to scale our system to higher power laser levels.
Energies arrow_drop_down Repositório da Universidade Nova de LisboaArticle . 2024Data sources: Repositório da Universidade Nova de LisboaRepositório da Universidade Nova de LisboaOther ORP type . 2024Data sources: Repositório da Universidade Nova de Lisboaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17225630&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down Repositório da Universidade Nova de LisboaArticle . 2024Data sources: Repositório da Universidade Nova de LisboaRepositório da Universidade Nova de LisboaOther ORP type . 2024Data sources: Repositório da Universidade Nova de Lisboaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17225630&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Funded by:FCT | PD/BD/128267/2016, EC | SFERA-III, FCT | SFRH/BPD/125116/2016 +1 projectsFCT| PD/BD/128267/2016 ,EC| SFERA-III ,FCT| SFRH/BPD/125116/2016 ,FCT| PD/BD/142827/2018Cláudia R. Vistas; Dawei Liang; Dário Garcia; Miguel Catela; Bruno D. Tibúrcio; Hugo Costa; Emmanuel Guillot; Joana Almeida;doi: 10.3390/en15103577
The Ce:Nd:YAG is a recent active medium in solar-pumped lasers with great potential. This study focuses on the influence of two secondary concentrators: a fused silica aspherical lens and a rectangular fused silica light guide; and consequent pump light distribution on the output performance of a Ce:Nd:YAG side-pumped solar laser. The solar laser head with the aspherical lens concentrated the incident pump light on the central region of the rod, producing the highest continuous-wave 1064 nm solar laser power of 19.6 W from the Ce:Nd:YAG medium. However, the non-uniformity of the absorbed pump profile produced by the aspherical lens led to the rod fracture because of the high thermal load, limiting the maximum laser power. Nevertheless, the solar laser head with the light guide uniformly spread the pump light along the laser rod, minimizing the thermal load issues and producing a maximum laser power of 17.4 W. Despite the slight decrease in laser power, the use of the light guide avoided the laser rod fracture, demonstrating its potential to scale to higher laser power. Therefore, the pumping distribution on the rod may play a fundamental role for Ce:Nd:YAG solar laser systems design.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/10/3577/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15103577&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/10/3577/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15103577&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Funded by:FCT | SFRH/BPD/125116/2016FCT| SFRH/BPD/125116/2016Cláudia R. Vistas; Dawei Liang; Miguel Catela; Hugo Costa; Dário Garcia; Bruno D. Tibúrcio; Joana Almeida;doi: 10.3390/su15108218
A multirod solar laser approach is here proposed to attain uniform and stable multibeam emission under non-continuous solar tracking. A Fresnel lens was used as the primary concentrator. The laser head was composed of a second-stage aspherical lens with a light-guide homogenizer and a third-stage conical pump cavity with six Nd:YAG rods. The solar laser system was optimized through numerical analysis in both Zemax® and LASCAD™ software to obtain six 1064 nm laser beams of similar multimode power. To investigate the effect of the homogenizer on the laser performance, the laser head was compared with a similar one that only used the aspherical lens in the second stage. The approach with the light guide attained a slightly lower efficiency than the one without the light guide; however, the tracking error width at 10% laser power loss was higher and, most importantly, only a 2.17% coefficient of variation of the laser power emitted by the six rods at the tracking error angle of ±0.5° was obtained. This is 4.2 times better than the 52.31% obtained with the laser head without the homogenizer and 76 times better than that of the previous numerical work. The light guide is thus essential to ensure uniform and stable solar laser power extraction from all rods even under non-continuous solar tracking, making this prototype the ideal for multibeam laser applications where uniformity and stability of the laser power are indispensable. This renewable multibeam solar laser may replace the classical lamp- and diode-pumped lasers, therefore ensuring a sustainable laser power production pattern for both space and terrestrial applications.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/10/8218/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15108218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/10/8218/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15108218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:ASME International Hugo Costa; Cláudia R. Vistas; Joana Almeida; Miguel Catela; Bruno D. Tibúrcio; Dawei Liang; Dário Garcia;doi: 10.1115/1.4051223
Abstract A seven-rod/seven-TEM00 mode beam Fresnel lens solar laser pumping approach is here proposed. The Fresnel lens with 4.0 m2 collection area was used as the primary solar concentrator to pump seven 2.5 mm diameter, 15 mm length Nd:YAG rods within a conical pump cavity through a secondary fused silica aspheric concentrator. Within the pump cavity, solar pump rays not completely absorbed by one of the seven rods were furtherly absorbed by other rods, ensuring hence a high absorption efficiency and avoiding the serious thermal lensing and thermal stress issues associated with classical large rod solar lasers. Seven individual plane-concave large-mode resonators were adopted to enable a good overlap between solar pump mode and TEM00 laser oscillating mode. By using both zemax® and lascad® software, the maximum total TEM00 mode solar laser power of 54.65 W was numerically calculated by optimizing the radius parameter of the Fresnel lens, the diameter of the laser rod, and the radius of curvature of the laser resonator output mirror. TEM00 mode solar laser collection efficiency of 13.66 W/m2 and solar power-to-TEM00 mode laser power conversion efficiency of 1.44% were calculated, representing substantial enhancements of 4.66 times and 4.38 times, respectively, as compared with previous experimental records of the TEM00 mode solar laser pumped through a Fresnel lens with 0.785 m2 collection area. The feasibility of TEM00 mode solar laser power delivery by hollow-core photonic crystal fibers was finally studied.
Journal of Solar Ene... arrow_drop_down Journal of Solar Energy EngineeringArticle . 2021 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4051223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Solar Ene... arrow_drop_down Journal of Solar Energy EngineeringArticle . 2021 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4051223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 FrancePublisher:Elsevier BV Funded by:EC | SFERA-IIEC| SFERA-IIAuthors: Dawei Liang; Joana Almeida; Cláudia R. Vistas; Emmanuel Guillot;Abstract Here we report a significant advance in solar-pumped laser beam brightness by pumping a 3 mm diameter Nd:YAG single-crystal rod with a heliostat-parabolic mirror system. The incoming solar radiation is first collected and focused by the system. A rectangular fused silica light guide and a 2D-CPC concentrator are then combined to further compress the concentrated solar radiation into the laser rod within a V-shaped pumping cavity. 4.4 W continuous-wave TEM 00 mode ( M 2 ≤1.05) 1064 nm solar laser power is finally produced, attaining 4.0 W laser beam brightness figure of merit, which is 2.1 times higher than the previous record by a Fresnel lens. 0.81% TEM 00 mode laser slope efficiency is achieved.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.so...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2014.12.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.so...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2014.12.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu