- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors:Nazir Ullah;
Nazir Ullah
Nazir Ullah in OpenAIREWaleed Mugahed Al-Rahmi;
Waleed Mugahed Al-Rahmi
Waleed Mugahed Al-Rahmi in OpenAIREAhmed Ibrahim Alzahrani;
Ahmed Ibrahim Alzahrani
Ahmed Ibrahim Alzahrani in OpenAIREOsama Alfarraj;
+1 AuthorsOsama Alfarraj
Osama Alfarraj in OpenAIRENazir Ullah;
Nazir Ullah
Nazir Ullah in OpenAIREWaleed Mugahed Al-Rahmi;
Waleed Mugahed Al-Rahmi
Waleed Mugahed Al-Rahmi in OpenAIREAhmed Ibrahim Alzahrani;
Ahmed Ibrahim Alzahrani
Ahmed Ibrahim Alzahrani in OpenAIREOsama Alfarraj;
Osama Alfarraj
Osama Alfarraj in OpenAIREFahad Mohammed Alblehai;
Fahad Mohammed Alblehai
Fahad Mohammed Alblehai in OpenAIREdoi: 10.3390/su13041801
The conventional education system in developing countries has been enhanced recently by implementing the latest technology of distributed ledger. Disruptive technology is a fundamental requirement for greater accountability and visibility. We explored the key factors affecting the intentions of educational institutions to use blockchain technology for e-learning. This study proposed an expanded model of Technology Acceptance Model by integrating the diffusion of innovation theory. Based on an online survey, the conceptual model was tested and validated using structural equation modeling. The results showed that compatibility had a significant impact on blockchain use in smart learning environments. Other significant effects were also found on adoption of blockchain technology. This study offers an expanded Technology Acceptance Model for implementing blockchain that could assist decision makers in building a smart learning environment for the educational institutes for the emerging economies.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/4/1801/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13041801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 118 citations 118 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/4/1801/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13041801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:MDPI AG Authors:Nazir Ullah;
Nazir Ullah
Nazir Ullah in OpenAIREWaleed S. Alnumay;
Waleed S. Alnumay
Waleed S. Alnumay in OpenAIREWaleed Mugahed Al-Rahmi;
Waleed Mugahed Al-Rahmi
Waleed Mugahed Al-Rahmi in OpenAIREAhmed Ibrahim Alzahrani;
+1 AuthorsAhmed Ibrahim Alzahrani
Ahmed Ibrahim Alzahrani in OpenAIRENazir Ullah;
Nazir Ullah
Nazir Ullah in OpenAIREWaleed S. Alnumay;
Waleed S. Alnumay
Waleed S. Alnumay in OpenAIREWaleed Mugahed Al-Rahmi;
Waleed Mugahed Al-Rahmi
Waleed Mugahed Al-Rahmi in OpenAIREAhmed Ibrahim Alzahrani;
Ahmed Ibrahim Alzahrani
Ahmed Ibrahim Alzahrani in OpenAIREHosam Al-Samarraie;
Hosam Al-Samarraie
Hosam Al-Samarraie in OpenAIREdoi: 10.3390/en13184783
In developed nations, the advent of distributed ledger technology is emerging as a new instrument for improving the traditional system in developing nations. Indeed, adopting blockchain technology is a necessary condition for the coming future of organizations. The distributed ledger technology provides better transparency and visibility. This study investigated the features that may influence the behavioral intention of energy experts to implement the distributed ledger technology for the energy management of developing countries. The proposed model is based on the Technology Acceptance Model construct and the diffusion of the innovation construct. Based on a survey of 178 experts working in the energy sector, the proposed model was tested using structural equation modeling. The findings showed that perceived ease of use, perceived usefulness, attitude, and cost saving had a positive and significant impact during the blockchain technology adoption. However, innovativeness showed a positive effect on the perceived ease of use whereas an insignificant impact on the perceived usefulness. The present study offers a holistic model for the implementation of innovative technologies. For the developers, it suggest rising disruptive technology solutions.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4783/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13184783&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4783/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13184783&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 MalaysiaPublisher:MDPI AG Authors:Waleed Mugahed Al-Rahmi;
Waleed Mugahed Al-Rahmi
Waleed Mugahed Al-Rahmi in OpenAIREAhmed Ibrahim Alzahrani;
Ahmed Ibrahim Alzahrani
Ahmed Ibrahim Alzahrani in OpenAIRENoraffandy Yahaya;
Nasser Alalwan; +1 AuthorsNoraffandy Yahaya
Noraffandy Yahaya in OpenAIREWaleed Mugahed Al-Rahmi;
Waleed Mugahed Al-Rahmi
Waleed Mugahed Al-Rahmi in OpenAIREAhmed Ibrahim Alzahrani;
Ahmed Ibrahim Alzahrani
Ahmed Ibrahim Alzahrani in OpenAIRENoraffandy Yahaya;
Nasser Alalwan;Noraffandy Yahaya
Noraffandy Yahaya in OpenAIREYusri Bin Kamin;
Yusri Bin Kamin
Yusri Bin Kamin in OpenAIREdoi: 10.3390/su12125052
Today, developments in information and communication technology (ICT) have a significant influence on education sustainability. In this study, the factors influencing students’ intentions towards using ICT in education sustainability, as well as their satisfaction from its use, were examined. This study aims to investigate student intentions to use information and communication technology, as well as their satisfaction with such use. Therefore, this study employed an extended model of the Technology Acceptance Model (TAM) as the research framework, and adopted quantitative data collection and analysis methods by surveying 502 university students who were chosen through stratified random sampling. Using structural equation modeling (SEM), student responses were sorted into eight study constructs and analyzed to explain their intentions towards technology use and satisfaction. A significant relationship was found between computer self-efficacy (CSE), subjective norms (SN), and perceived enjoyment (PE), which were significant determinants of perceived ease of use (PEU) and perceived usefulness (PU). PEU, PU, and attitudes towards computer use (ACU) influenced students’ intentions to use (SIU) ICT and students’ satisfaction (SS). The constructs succeeded in explaining usage intentions towards ICT among students and their satisfaction from this usage.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/12/5052/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversiti Teknologi Malaysia: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12125052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 112 citations 112 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/12/5052/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversiti Teknologi Malaysia: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12125052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Elsevier BV Authors:Fuad Noman;
Fuad Noman
Fuad Noman in OpenAIREGamal Alkawsi;
Gamal Alkawsi
Gamal Alkawsi in OpenAIREAmmar Ahmed Alkahtani;
Ammar Ahmed Alkahtani
Ammar Ahmed Alkahtani in OpenAIREAli Q. Al-Shetwi;
+4 AuthorsAli Q. Al-Shetwi
Ali Q. Al-Shetwi in OpenAIREFuad Noman;
Fuad Noman
Fuad Noman in OpenAIREGamal Alkawsi;
Gamal Alkawsi
Gamal Alkawsi in OpenAIREAmmar Ahmed Alkahtani;
Ammar Ahmed Alkahtani
Ammar Ahmed Alkahtani in OpenAIREAli Q. Al-Shetwi;
Ali Q. Al-Shetwi
Ali Q. Al-Shetwi in OpenAIRESieh Kiong Tiong;
Sieh Kiong Tiong
Sieh Kiong Tiong in OpenAIRENasser Alalwan;
Nasser Alalwan
Nasser Alalwan in OpenAIREJanaka Ekanayake;
Janaka Ekanayake
Janaka Ekanayake in OpenAIREAhmed Ibrahim Alzahrani;
Ahmed Ibrahim Alzahrani
Ahmed Ibrahim Alzahrani in OpenAIRELa prévision précise de la vitesse du vent est un facteur clé dans de nombreuses applications énergétiques, en particulier lorsque l'énergie éolienne est intégrée aux réseaux électriques. Cependant, en raison de la nature intermittente et non stationnaire de la vitesse du vent, il est difficile de la modéliser et de la prédire. En outre, l'utilisation de variables multivariées non corrélées en tant que variables d'entrée exogènes a souvent un impact négatif sur la performance des modèles de prédiction. Dans cet article, nous présentons une prédiction de la vitesse du vent à court terme en plusieurs étapes à l'aide de variables d'entrée exogènes multivariées. Nous mettons en œuvre différentes méthodes de sélection de variables pour sélectionner le meilleur ensemble de variables qui améliorent considérablement les performances des modèles de prédiction. Nous évaluons la performance de huit méthodes d'apprentissage par transfert, de quatre réseaux de neurones peu profonds (NN) et de la méthode de persistance sur la prédiction des valeurs futures de la vitesse du vent à l'aide d'horizons temporels à court terme, à court terme et à plusieurs étapes. Nous avons effectué l'évaluation sur des données de vitesse du vent échantillonnées sur deux ans, moyennées à des intervalles de 10 minutes. Les résultats montrent que le modèle non linéaire auto-régressif exogène (NARX) a surpassé toutes les autres méthodes, atteignant une erreur absolue moyenne (MAE) et une erreur quadratique moyenne (RMSE) de 0,2205 et 0,3405 pour les prédictions en plusieurs étapes, respectivement. Malgré la faible performance des méthodes d'apprentissage par transfert (c'est-à-dire 0,43 et 0,58 pour MAE et RMSE, respectivement), on pense que les résultats pourraient être encore améliorés avec une meilleure amélioration de la sélection des caractéristiques et des paramètres du modèle. La predicción precisa de la velocidad del viento es un factor clave en muchas aplicaciones energéticas, especialmente cuando la energía eólica se integra con las redes eléctricas. Sin embargo, debido a la naturaleza intermitente y no estacionaria de la velocidad del viento, modelar y predecir es un desafío. Además, el uso de variables multivariadas no correlacionadas como variables de entrada exógenas a menudo afecta negativamente el rendimiento de los modelos de predicción. En este artículo, presentamos una predicción de la velocidad del viento a corto plazo de varios pasos utilizando variables de entrada exógenas multivariadas. Implementamos diferentes métodos de selección de variables para seleccionar el mejor conjunto de variables que mejoren significativamente el rendimiento de los modelos de predicción. Evaluamos el rendimiento de ocho métodos de aprendizaje por transferencia, cuatro redes neuronales poco profundas (NN) y el método de persistencia para predecir los valores futuros de la velocidad del viento utilizando horizontes temporales de ultracorto plazo, de corto plazo y de varios pasos. Realizamos la evaluación sobre datos de velocidad del viento de alta muestra de dos años promediados a intervalos de 10 minutos. Los resultados muestran que el modelo exógeno autorregresivo no lineal (NARX) superó a todos los demás métodos, logrando un error absoluto medio medio (MAE) y un error cuadrático medio (RMSE) de 0.2205 y 0.3405 para predicciones de varios pasos, respectivamente. A pesar del menor rendimiento de los métodos de aprendizaje por transferencia (es decir, 0,43 y 0,58 para MAE y RMSE, respectivamente), se cree que los resultados podrían mejorarse aún más con una mejor mejora de la selección de características y los parámetros del modelo. Precise wind speed prediction is a key factor in many energy applications, especially when wind energy is integrated with power grids. However, because of the intermittent and nonstationary nature of wind speed, modeling and predicting it is a challenge. In addition, using uncorrelated multivariate variables as exogenous input variables often adversely impacts the performance of prediction models. In this paper, we present a multistep short-term wind speed prediction using multivariate exogenous input variables. We implement different variable selection methods to select the best set of variables that significantly improve the performance of prediction models. We evaluate the performance of eight transfer learning methods, four shallow neural networks (NNs), and the persistence method on predicting the future values of wind speed using ultrashort-term, short-term, and multistep time horizons. We performed the evaluation over two-year high-sampled wind speed data averaged at 10-minute intervals. Results show that Nonlinear Auto-Regressive Exogenous (NARX) model outperformed all other methods, achieving an average mean absolute error (MAE) and root mean square error (RMSE) of 0.2205 and 0.3405 for multistep predictions, respectively. Despite the lower performance of the transfer learning methods (i.e., 0.43 and 0.58 for MAE and RMSE, respectively), it is believed that results could be further improved with a better enhancement of the feature selection and model parameters. يعد التنبؤ الدقيق بسرعة الرياح عاملاً رئيسياً في العديد من تطبيقات الطاقة، خاصة عندما يتم دمج طاقة الرياح مع شبكات الطاقة. ومع ذلك، نظرًا للطبيعة المتقطعة وغير الثابتة لسرعة الرياح، فإن النمذجة والتنبؤ بها يمثلان تحديًا. بالإضافة إلى ذلك، فإن استخدام المتغيرات متعددة المتغيرات غير المترابطة كمتغيرات مدخلات خارجية غالبًا ما يؤثر سلبًا على أداء نماذج التنبؤ. في هذه الورقة، نقدم تنبؤًا متعدد الخطوات لسرعة الرياح على المدى القصير باستخدام متغيرات المدخلات الخارجية متعددة المتغيرات. ننفذ طرق اختيار متغيرات مختلفة لاختيار أفضل مجموعة من المتغيرات التي تحسن بشكل كبير أداء نماذج التنبؤ. نقوم بتقييم أداء ثماني طرق لتعلم النقل، وأربع شبكات عصبية ضحلة (NNs)، وطريقة المثابرة على التنبؤ بالقيم المستقبلية لسرعة الرياح باستخدام آفاق زمنية قصيرة الأجل وقصيرة الأجل ومتعددة الخطوات. أجرينا التقييم على مدى عامين من بيانات سرعة الرياح ذات العينات العالية بمتوسط 10 دقائق. تظهر النتائج أن نموذج التكرار التلقائي غير الخطي (NARX) تفوق على جميع الطرق الأخرى، حيث حقق متوسط متوسط الخطأ المطلق (MAE) وخطأ الجذر التربيعي (RMSE) 0.2205 و 0.3405 للتنبؤات متعددة الخطوات، على التوالي. على الرغم من الأداء المنخفض لأساليب تعلم النقل (أي 0.43 و 0.58 لـ MAE و RMSE، على التوالي)، يُعتقد أنه يمكن تحسين النتائج بشكل أكبر من خلال تحسين اختيار الميزات ومعلمات النموذج.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2020.10.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 38 citations 38 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2020.10.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu