- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:MDPI AG Authors: A. Romani; V. Rognoli; M. Levi;doi: 10.3390/su13137269
handle: 11311/1178857
The transition toward circular economy models has been progressively promoted in the last few years. Different disciplines and strategies may significantly support this change. Although the specific contribution derived from design, material science, and additive manufacturing is well-established, their interdisciplinary relationship in circular economy contexts is relatively unexplored. This paper aims to review the main case studies related to new circular economy models for waste valorization through extrusion-based additive manufacturing, circular materials, and new design strategies. The general patterns were investigated through a comprehensive analysis of 74 case studies from academic research and design practice in the last six-year period (2015–2021), focusing on the application fields, the 3D printing technologies, and the materials. Further considerations and future trends were then included by looking at the relevant funded projects and case studies of 2021. A broader number of applications, circular materials, and technologies were explored by the academic context, concerning the practice-based scenario linked to more consolidated fields. Thanks to the development of new strategies and experiential tools, academic research and practice can be linked to foster new opportunities to implement circular economy models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13137269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13137269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:MDPI AG Authors: A. Romani; V. Rognoli; M. Levi;doi: 10.3390/su13137269
handle: 11311/1178857
The transition toward circular economy models has been progressively promoted in the last few years. Different disciplines and strategies may significantly support this change. Although the specific contribution derived from design, material science, and additive manufacturing is well-established, their interdisciplinary relationship in circular economy contexts is relatively unexplored. This paper aims to review the main case studies related to new circular economy models for waste valorization through extrusion-based additive manufacturing, circular materials, and new design strategies. The general patterns were investigated through a comprehensive analysis of 74 case studies from academic research and design practice in the last six-year period (2015–2021), focusing on the application fields, the 3D printing technologies, and the materials. Further considerations and future trends were then included by looking at the relevant funded projects and case studies of 2021. A broader number of applications, circular materials, and technologies were explored by the academic context, concerning the practice-based scenario linked to more consolidated fields. Thanks to the development of new strategies and experiential tools, academic research and practice can be linked to foster new opportunities to implement circular economy models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13137269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13137269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Iannaccone, Giovanni; Välimäki, Marja; Jansson, Elina; Sunnari, Antti; Corso, Gianni; Bernardi, Andrea; Levi, Marinella; Turri, Stefano; Hast, Jukka; Griffini; Gianmarco;handle: 11311/970593
The solution-based deposition of the metal back electrode in inverted polymer solar cells (PSCs) using roll-to-roll (R2R) compatible processing technologies is considered one of the crucial issues towards the upscaling of PSC technology, as it may allow the full exploitation of the high through-put and prospective low-costs envisaged by the R2R fabrication approach. In this work, a water-based solution-processable silver ink formulation with low annealing temperature was developed to be used as precursor for the fabrication of the metallic back-electrode in flexible inverted PSC devices fabricated by means of R2R-compatible printing techniques. In order to investigate the effect of the deposition of such reactive silver ink on the underlying PSC layers, different back-electrode architectures were investigated and thoroughly characterized. In addition, the influence of the thickness of the hole-transporting poly(ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) buffer layer on the functional performance of the PSC devices was also investigated and an optimized combination of back-electrode architecture and PEDOT:PSS thickness was found, that also allowed to obtain semi-transparent PSC devices. The results of this study demonstrate the possibility to employ R2R-compatible processing techniques for the deposition of the metallic back-electrode in flexible inverted PSCs from a solution-processable water-based reactive silver ink formulation characterized by low-annealing temperature, and provide useful insights into the key role played by the hole-transporting buffer layer in the realization of fully functional flexible PSC devices.
RE.PUBLIC@POLIMI Res... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.06.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 19 citations 19 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.06.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Iannaccone, Giovanni; Välimäki, Marja; Jansson, Elina; Sunnari, Antti; Corso, Gianni; Bernardi, Andrea; Levi, Marinella; Turri, Stefano; Hast, Jukka; Griffini; Gianmarco;handle: 11311/970593
The solution-based deposition of the metal back electrode in inverted polymer solar cells (PSCs) using roll-to-roll (R2R) compatible processing technologies is considered one of the crucial issues towards the upscaling of PSC technology, as it may allow the full exploitation of the high through-put and prospective low-costs envisaged by the R2R fabrication approach. In this work, a water-based solution-processable silver ink formulation with low annealing temperature was developed to be used as precursor for the fabrication of the metallic back-electrode in flexible inverted PSC devices fabricated by means of R2R-compatible printing techniques. In order to investigate the effect of the deposition of such reactive silver ink on the underlying PSC layers, different back-electrode architectures were investigated and thoroughly characterized. In addition, the influence of the thickness of the hole-transporting poly(ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) buffer layer on the functional performance of the PSC devices was also investigated and an optimized combination of back-electrode architecture and PEDOT:PSS thickness was found, that also allowed to obtain semi-transparent PSC devices. The results of this study demonstrate the possibility to employ R2R-compatible processing techniques for the deposition of the metallic back-electrode in flexible inverted PSCs from a solution-processable water-based reactive silver ink formulation characterized by low-annealing temperature, and provide useful insights into the key role played by the hole-transporting buffer layer in the realization of fully functional flexible PSC devices.
RE.PUBLIC@POLIMI Res... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.06.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 19 citations 19 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.06.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2016 ItalyPublisher:The Electrochemical Society Bernasconi R.; Credi C.; Natale G.; Tironi M.; Cuneo F.; Levi M.; Magagnin L.;handle: 11311/1180253
In the present paper the electroless metallization of 3D printed parts using stereolithography is investigated. Two different photocurable resins of large commercial diffusion and a self-formulated one are used as starting materials for printing. A first metal layer of NiP or Cu, obtained by an optimized pretreatment and plating process, is subsequently applied on the parts. It is also demonstrated the possibility of obtaining multilayers through the successive electrodeposition of different metals on the electroless treated parts. The resulting layers are characterized by SEM and profilometry.
RE.PUBLIC@POLIMI Res... arrow_drop_down ECS TransactionsArticle . 2016 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/07221.0009ecst&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down ECS TransactionsArticle . 2016 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/07221.0009ecst&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2016 ItalyPublisher:The Electrochemical Society Bernasconi R.; Credi C.; Natale G.; Tironi M.; Cuneo F.; Levi M.; Magagnin L.;handle: 11311/1180253
In the present paper the electroless metallization of 3D printed parts using stereolithography is investigated. Two different photocurable resins of large commercial diffusion and a self-formulated one are used as starting materials for printing. A first metal layer of NiP or Cu, obtained by an optimized pretreatment and plating process, is subsequently applied on the parts. It is also demonstrated the possibility of obtaining multilayers through the successive electrodeposition of different metals on the electroless treated parts. The resulting layers are characterized by SEM and profilometry.
RE.PUBLIC@POLIMI Res... arrow_drop_down ECS TransactionsArticle . 2016 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/07221.0009ecst&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down ECS TransactionsArticle . 2016 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/07221.0009ecst&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Authors: GRIFFINI, GIANMARCO ENRICO; LEVI, MARINELLA; TURRI, STEFANO;handle: 11311/970600
Abstract A study on the effect of different device parameters on the photophysical and photovoltaic behavior of thin-film luminescent solar concentrators (LSCs) is presented in this work. The concentration of the luminescent species, the thickness of the LSC film, the geometric gain of the LSC device and the composition and thickness of the white back reflector are systematically varied and their influence on LSC thin film properties and device performance is examined. It is shown that dye concentration and LSC film thickness have a major effect on the optical response of the LSC devices. The efficiency is found to decrease with increasing geometric gain, although saturation is observed for high geometric gains suggesting that LSC devices perform best for very large LSC areas. The surface roughness of the back reflector is found to play a key role in improving the efficiency of the LSC film because it induces a reduction of specular reflectivity and an increase of isotropic light scattering. The results of this study allow a greater understanding of the relationships between key LSC device parameters and the photophysical and photovoltaic behavior of planar thin-film LSC systems and provide useful guidelines for optimal design of thin-film LSC devices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.01.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 59 citations 59 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.01.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Authors: GRIFFINI, GIANMARCO ENRICO; LEVI, MARINELLA; TURRI, STEFANO;handle: 11311/970600
Abstract A study on the effect of different device parameters on the photophysical and photovoltaic behavior of thin-film luminescent solar concentrators (LSCs) is presented in this work. The concentration of the luminescent species, the thickness of the LSC film, the geometric gain of the LSC device and the composition and thickness of the white back reflector are systematically varied and their influence on LSC thin film properties and device performance is examined. It is shown that dye concentration and LSC film thickness have a major effect on the optical response of the LSC devices. The efficiency is found to decrease with increasing geometric gain, although saturation is observed for high geometric gains suggesting that LSC devices perform best for very large LSC areas. The surface roughness of the back reflector is found to play a key role in improving the efficiency of the LSC film because it induces a reduction of specular reflectivity and an increase of isotropic light scattering. The results of this study allow a greater understanding of the relationships between key LSC device parameters and the photophysical and photovoltaic behavior of planar thin-film LSC systems and provide useful guidelines for optimal design of thin-film LSC devices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.01.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 59 citations 59 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.01.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 ItalyPublisher:Elsevier BV Authors: GRIFFINI, GIANMARCO ENRICO; LEVI, MARINELLA; TURRI, STEFANO;handle: 11311/910357
Abstract Polymer-based thin-film luminescent solar concentrators (LSCs) currently rely on poly(methyl-methacrylate) (PMMA) as host matrix material. However, PMMA-based LSCs still suffer from degradation due to the limited photostability of the polymer. In this work, a new crosslinked fluoropolymer-based system is presented as a potential alternative host matrix material for the fabrication of durable polymer-based LSC devices. The new host matrix system is obtained by crosslinking a functional chloro-trifluoro-ethylene-vinyl-ether copolymer with an aliphatic isocyanurate crosslinker. It is shown that efficiency values comparable to those obtained with optimized PMMA-based thin film LSC devices can be reached with the new crosslinked fluoropolymer-based LSC system. In addition, superior long-term operational stability compared to PMMA-based devices can be obtained with the new fluoropolymer-based host matrix, as evidenced by long-term continuous light exposure tests (over 500 h) on operating LSC devices. The results of this work demonstrate that crosslinked fluorinated polymers represent a class of promising host matrix materials to achieve environmentally stable LSC devices.
RE.PUBLIC@POLIMI Res... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2013.05.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2013.05.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 ItalyPublisher:Elsevier BV Authors: GRIFFINI, GIANMARCO ENRICO; LEVI, MARINELLA; TURRI, STEFANO;handle: 11311/910357
Abstract Polymer-based thin-film luminescent solar concentrators (LSCs) currently rely on poly(methyl-methacrylate) (PMMA) as host matrix material. However, PMMA-based LSCs still suffer from degradation due to the limited photostability of the polymer. In this work, a new crosslinked fluoropolymer-based system is presented as a potential alternative host matrix material for the fabrication of durable polymer-based LSC devices. The new host matrix system is obtained by crosslinking a functional chloro-trifluoro-ethylene-vinyl-ether copolymer with an aliphatic isocyanurate crosslinker. It is shown that efficiency values comparable to those obtained with optimized PMMA-based thin film LSC devices can be reached with the new crosslinked fluoropolymer-based LSC system. In addition, superior long-term operational stability compared to PMMA-based devices can be obtained with the new fluoropolymer-based host matrix, as evidenced by long-term continuous light exposure tests (over 500 h) on operating LSC devices. The results of this work demonstrate that crosslinked fluorinated polymers represent a class of promising host matrix materials to achieve environmentally stable LSC devices.
RE.PUBLIC@POLIMI Res... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2013.05.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2013.05.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 ItalyPublisher:Elsevier BV Authors: GRIFFINI, GIANMARCO ENRICO; BRAMBILLA, LUIGI; LEVI, MARINELLA; DEL ZOPPO, MIRELLA ELVIRA ANGELA; +1 AuthorsGRIFFINI, GIANMARCO ENRICO; BRAMBILLA, LUIGI; LEVI, MARINELLA; DEL ZOPPO, MIRELLA ELVIRA ANGELA; TURRI, STEFANO;handle: 11311/739373
Abstract A study on the photo-degradation mechanism of a perylene-based thin-film organic luminescent solar concentrator (OLSC) is presented in this work. By exposing the OLSC thin film in air to continuous illumination in strong free-radical generating conditions, potential degradation pathways in the dye molecule could be proposed. Significant modifications to the molecular structure of the organic dye were observed upon light-exposure by means of photoluminescence, UV–vis and FTIR spectroscopy. In addition, online GC–MS analysis of volatile degradation products allowed to identify a potential degradation mechanism for the dye molecule in the OLSC thin film, initiating with the disruption of the lateral phenyl substituents attached to the perylene core of the organic dye. In addition, a correlation was found between chemical modifications occurring to the organic dye molecule and operational stability of OLSC devices, clarifying the effect of dye photo-degradation on device performance. These findings provide a deeper understanding of the photo-degradation mechanism of perylene-based OLSC devices and allow for the development of efficient stabilization strategies to lengthen OLSC lifetime.
RE.PUBLIC@POLIMI Res... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.12.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu81 citations 81 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.12.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 ItalyPublisher:Elsevier BV Authors: GRIFFINI, GIANMARCO ENRICO; BRAMBILLA, LUIGI; LEVI, MARINELLA; DEL ZOPPO, MIRELLA ELVIRA ANGELA; +1 AuthorsGRIFFINI, GIANMARCO ENRICO; BRAMBILLA, LUIGI; LEVI, MARINELLA; DEL ZOPPO, MIRELLA ELVIRA ANGELA; TURRI, STEFANO;handle: 11311/739373
Abstract A study on the photo-degradation mechanism of a perylene-based thin-film organic luminescent solar concentrator (OLSC) is presented in this work. By exposing the OLSC thin film in air to continuous illumination in strong free-radical generating conditions, potential degradation pathways in the dye molecule could be proposed. Significant modifications to the molecular structure of the organic dye were observed upon light-exposure by means of photoluminescence, UV–vis and FTIR spectroscopy. In addition, online GC–MS analysis of volatile degradation products allowed to identify a potential degradation mechanism for the dye molecule in the OLSC thin film, initiating with the disruption of the lateral phenyl substituents attached to the perylene core of the organic dye. In addition, a correlation was found between chemical modifications occurring to the organic dye molecule and operational stability of OLSC devices, clarifying the effect of dye photo-degradation on device performance. These findings provide a deeper understanding of the photo-degradation mechanism of perylene-based OLSC devices and allow for the development of efficient stabilization strategies to lengthen OLSC lifetime.
RE.PUBLIC@POLIMI Res... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.12.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu81 citations 81 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.12.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:MDPI AG Authors: A. Romani; V. Rognoli; M. Levi;doi: 10.3390/su13137269
handle: 11311/1178857
The transition toward circular economy models has been progressively promoted in the last few years. Different disciplines and strategies may significantly support this change. Although the specific contribution derived from design, material science, and additive manufacturing is well-established, their interdisciplinary relationship in circular economy contexts is relatively unexplored. This paper aims to review the main case studies related to new circular economy models for waste valorization through extrusion-based additive manufacturing, circular materials, and new design strategies. The general patterns were investigated through a comprehensive analysis of 74 case studies from academic research and design practice in the last six-year period (2015–2021), focusing on the application fields, the 3D printing technologies, and the materials. Further considerations and future trends were then included by looking at the relevant funded projects and case studies of 2021. A broader number of applications, circular materials, and technologies were explored by the academic context, concerning the practice-based scenario linked to more consolidated fields. Thanks to the development of new strategies and experiential tools, academic research and practice can be linked to foster new opportunities to implement circular economy models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13137269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13137269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:MDPI AG Authors: A. Romani; V. Rognoli; M. Levi;doi: 10.3390/su13137269
handle: 11311/1178857
The transition toward circular economy models has been progressively promoted in the last few years. Different disciplines and strategies may significantly support this change. Although the specific contribution derived from design, material science, and additive manufacturing is well-established, their interdisciplinary relationship in circular economy contexts is relatively unexplored. This paper aims to review the main case studies related to new circular economy models for waste valorization through extrusion-based additive manufacturing, circular materials, and new design strategies. The general patterns were investigated through a comprehensive analysis of 74 case studies from academic research and design practice in the last six-year period (2015–2021), focusing on the application fields, the 3D printing technologies, and the materials. Further considerations and future trends were then included by looking at the relevant funded projects and case studies of 2021. A broader number of applications, circular materials, and technologies were explored by the academic context, concerning the practice-based scenario linked to more consolidated fields. Thanks to the development of new strategies and experiential tools, academic research and practice can be linked to foster new opportunities to implement circular economy models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13137269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13137269&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Iannaccone, Giovanni; Välimäki, Marja; Jansson, Elina; Sunnari, Antti; Corso, Gianni; Bernardi, Andrea; Levi, Marinella; Turri, Stefano; Hast, Jukka; Griffini; Gianmarco;handle: 11311/970593
The solution-based deposition of the metal back electrode in inverted polymer solar cells (PSCs) using roll-to-roll (R2R) compatible processing technologies is considered one of the crucial issues towards the upscaling of PSC technology, as it may allow the full exploitation of the high through-put and prospective low-costs envisaged by the R2R fabrication approach. In this work, a water-based solution-processable silver ink formulation with low annealing temperature was developed to be used as precursor for the fabrication of the metallic back-electrode in flexible inverted PSC devices fabricated by means of R2R-compatible printing techniques. In order to investigate the effect of the deposition of such reactive silver ink on the underlying PSC layers, different back-electrode architectures were investigated and thoroughly characterized. In addition, the influence of the thickness of the hole-transporting poly(ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) buffer layer on the functional performance of the PSC devices was also investigated and an optimized combination of back-electrode architecture and PEDOT:PSS thickness was found, that also allowed to obtain semi-transparent PSC devices. The results of this study demonstrate the possibility to employ R2R-compatible processing techniques for the deposition of the metallic back-electrode in flexible inverted PSCs from a solution-processable water-based reactive silver ink formulation characterized by low-annealing temperature, and provide useful insights into the key role played by the hole-transporting buffer layer in the realization of fully functional flexible PSC devices.
RE.PUBLIC@POLIMI Res... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.06.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 19 citations 19 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.06.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Iannaccone, Giovanni; Välimäki, Marja; Jansson, Elina; Sunnari, Antti; Corso, Gianni; Bernardi, Andrea; Levi, Marinella; Turri, Stefano; Hast, Jukka; Griffini; Gianmarco;handle: 11311/970593
The solution-based deposition of the metal back electrode in inverted polymer solar cells (PSCs) using roll-to-roll (R2R) compatible processing technologies is considered one of the crucial issues towards the upscaling of PSC technology, as it may allow the full exploitation of the high through-put and prospective low-costs envisaged by the R2R fabrication approach. In this work, a water-based solution-processable silver ink formulation with low annealing temperature was developed to be used as precursor for the fabrication of the metallic back-electrode in flexible inverted PSC devices fabricated by means of R2R-compatible printing techniques. In order to investigate the effect of the deposition of such reactive silver ink on the underlying PSC layers, different back-electrode architectures were investigated and thoroughly characterized. In addition, the influence of the thickness of the hole-transporting poly(ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) buffer layer on the functional performance of the PSC devices was also investigated and an optimized combination of back-electrode architecture and PEDOT:PSS thickness was found, that also allowed to obtain semi-transparent PSC devices. The results of this study demonstrate the possibility to employ R2R-compatible processing techniques for the deposition of the metallic back-electrode in flexible inverted PSCs from a solution-processable water-based reactive silver ink formulation characterized by low-annealing temperature, and provide useful insights into the key role played by the hole-transporting buffer layer in the realization of fully functional flexible PSC devices.
RE.PUBLIC@POLIMI Res... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.06.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 19 citations 19 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.06.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2016 ItalyPublisher:The Electrochemical Society Bernasconi R.; Credi C.; Natale G.; Tironi M.; Cuneo F.; Levi M.; Magagnin L.;handle: 11311/1180253
In the present paper the electroless metallization of 3D printed parts using stereolithography is investigated. Two different photocurable resins of large commercial diffusion and a self-formulated one are used as starting materials for printing. A first metal layer of NiP or Cu, obtained by an optimized pretreatment and plating process, is subsequently applied on the parts. It is also demonstrated the possibility of obtaining multilayers through the successive electrodeposition of different metals on the electroless treated parts. The resulting layers are characterized by SEM and profilometry.
RE.PUBLIC@POLIMI Res... arrow_drop_down ECS TransactionsArticle . 2016 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/07221.0009ecst&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down ECS TransactionsArticle . 2016 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/07221.0009ecst&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2016 ItalyPublisher:The Electrochemical Society Bernasconi R.; Credi C.; Natale G.; Tironi M.; Cuneo F.; Levi M.; Magagnin L.;handle: 11311/1180253
In the present paper the electroless metallization of 3D printed parts using stereolithography is investigated. Two different photocurable resins of large commercial diffusion and a self-formulated one are used as starting materials for printing. A first metal layer of NiP or Cu, obtained by an optimized pretreatment and plating process, is subsequently applied on the parts. It is also demonstrated the possibility of obtaining multilayers through the successive electrodeposition of different metals on the electroless treated parts. The resulting layers are characterized by SEM and profilometry.
RE.PUBLIC@POLIMI Res... arrow_drop_down ECS TransactionsArticle . 2016 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/07221.0009ecst&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down ECS TransactionsArticle . 2016 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/07221.0009ecst&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Authors: GRIFFINI, GIANMARCO ENRICO; LEVI, MARINELLA; TURRI, STEFANO;handle: 11311/970600
Abstract A study on the effect of different device parameters on the photophysical and photovoltaic behavior of thin-film luminescent solar concentrators (LSCs) is presented in this work. The concentration of the luminescent species, the thickness of the LSC film, the geometric gain of the LSC device and the composition and thickness of the white back reflector are systematically varied and their influence on LSC thin film properties and device performance is examined. It is shown that dye concentration and LSC film thickness have a major effect on the optical response of the LSC devices. The efficiency is found to decrease with increasing geometric gain, although saturation is observed for high geometric gains suggesting that LSC devices perform best for very large LSC areas. The surface roughness of the back reflector is found to play a key role in improving the efficiency of the LSC film because it induces a reduction of specular reflectivity and an increase of isotropic light scattering. The results of this study allow a greater understanding of the relationships between key LSC device parameters and the photophysical and photovoltaic behavior of planar thin-film LSC systems and provide useful guidelines for optimal design of thin-film LSC devices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.01.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 59 citations 59 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.01.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Authors: GRIFFINI, GIANMARCO ENRICO; LEVI, MARINELLA; TURRI, STEFANO;handle: 11311/970600
Abstract A study on the effect of different device parameters on the photophysical and photovoltaic behavior of thin-film luminescent solar concentrators (LSCs) is presented in this work. The concentration of the luminescent species, the thickness of the LSC film, the geometric gain of the LSC device and the composition and thickness of the white back reflector are systematically varied and their influence on LSC thin film properties and device performance is examined. It is shown that dye concentration and LSC film thickness have a major effect on the optical response of the LSC devices. The efficiency is found to decrease with increasing geometric gain, although saturation is observed for high geometric gains suggesting that LSC devices perform best for very large LSC areas. The surface roughness of the back reflector is found to play a key role in improving the efficiency of the LSC film because it induces a reduction of specular reflectivity and an increase of isotropic light scattering. The results of this study allow a greater understanding of the relationships between key LSC device parameters and the photophysical and photovoltaic behavior of planar thin-film LSC systems and provide useful guidelines for optimal design of thin-film LSC devices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.01.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 59 citations 59 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.01.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 ItalyPublisher:Elsevier BV Authors: GRIFFINI, GIANMARCO ENRICO; LEVI, MARINELLA; TURRI, STEFANO;handle: 11311/910357
Abstract Polymer-based thin-film luminescent solar concentrators (LSCs) currently rely on poly(methyl-methacrylate) (PMMA) as host matrix material. However, PMMA-based LSCs still suffer from degradation due to the limited photostability of the polymer. In this work, a new crosslinked fluoropolymer-based system is presented as a potential alternative host matrix material for the fabrication of durable polymer-based LSC devices. The new host matrix system is obtained by crosslinking a functional chloro-trifluoro-ethylene-vinyl-ether copolymer with an aliphatic isocyanurate crosslinker. It is shown that efficiency values comparable to those obtained with optimized PMMA-based thin film LSC devices can be reached with the new crosslinked fluoropolymer-based LSC system. In addition, superior long-term operational stability compared to PMMA-based devices can be obtained with the new fluoropolymer-based host matrix, as evidenced by long-term continuous light exposure tests (over 500 h) on operating LSC devices. The results of this work demonstrate that crosslinked fluorinated polymers represent a class of promising host matrix materials to achieve environmentally stable LSC devices.
RE.PUBLIC@POLIMI Res... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2013.05.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2013.05.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 ItalyPublisher:Elsevier BV Authors: GRIFFINI, GIANMARCO ENRICO; LEVI, MARINELLA; TURRI, STEFANO;handle: 11311/910357
Abstract Polymer-based thin-film luminescent solar concentrators (LSCs) currently rely on poly(methyl-methacrylate) (PMMA) as host matrix material. However, PMMA-based LSCs still suffer from degradation due to the limited photostability of the polymer. In this work, a new crosslinked fluoropolymer-based system is presented as a potential alternative host matrix material for the fabrication of durable polymer-based LSC devices. The new host matrix system is obtained by crosslinking a functional chloro-trifluoro-ethylene-vinyl-ether copolymer with an aliphatic isocyanurate crosslinker. It is shown that efficiency values comparable to those obtained with optimized PMMA-based thin film LSC devices can be reached with the new crosslinked fluoropolymer-based LSC system. In addition, superior long-term operational stability compared to PMMA-based devices can be obtained with the new fluoropolymer-based host matrix, as evidenced by long-term continuous light exposure tests (over 500 h) on operating LSC devices. The results of this work demonstrate that crosslinked fluorinated polymers represent a class of promising host matrix materials to achieve environmentally stable LSC devices.
RE.PUBLIC@POLIMI Res... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2013.05.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2013.05.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 ItalyPublisher:Elsevier BV Authors: GRIFFINI, GIANMARCO ENRICO; BRAMBILLA, LUIGI; LEVI, MARINELLA; DEL ZOPPO, MIRELLA ELVIRA ANGELA; +1 AuthorsGRIFFINI, GIANMARCO ENRICO; BRAMBILLA, LUIGI; LEVI, MARINELLA; DEL ZOPPO, MIRELLA ELVIRA ANGELA; TURRI, STEFANO;handle: 11311/739373
Abstract A study on the photo-degradation mechanism of a perylene-based thin-film organic luminescent solar concentrator (OLSC) is presented in this work. By exposing the OLSC thin film in air to continuous illumination in strong free-radical generating conditions, potential degradation pathways in the dye molecule could be proposed. Significant modifications to the molecular structure of the organic dye were observed upon light-exposure by means of photoluminescence, UV–vis and FTIR spectroscopy. In addition, online GC–MS analysis of volatile degradation products allowed to identify a potential degradation mechanism for the dye molecule in the OLSC thin film, initiating with the disruption of the lateral phenyl substituents attached to the perylene core of the organic dye. In addition, a correlation was found between chemical modifications occurring to the organic dye molecule and operational stability of OLSC devices, clarifying the effect of dye photo-degradation on device performance. These findings provide a deeper understanding of the photo-degradation mechanism of perylene-based OLSC devices and allow for the development of efficient stabilization strategies to lengthen OLSC lifetime.
RE.PUBLIC@POLIMI Res... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.12.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu81 citations 81 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.12.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 ItalyPublisher:Elsevier BV Authors: GRIFFINI, GIANMARCO ENRICO; BRAMBILLA, LUIGI; LEVI, MARINELLA; DEL ZOPPO, MIRELLA ELVIRA ANGELA; +1 AuthorsGRIFFINI, GIANMARCO ENRICO; BRAMBILLA, LUIGI; LEVI, MARINELLA; DEL ZOPPO, MIRELLA ELVIRA ANGELA; TURRI, STEFANO;handle: 11311/739373
Abstract A study on the photo-degradation mechanism of a perylene-based thin-film organic luminescent solar concentrator (OLSC) is presented in this work. By exposing the OLSC thin film in air to continuous illumination in strong free-radical generating conditions, potential degradation pathways in the dye molecule could be proposed. Significant modifications to the molecular structure of the organic dye were observed upon light-exposure by means of photoluminescence, UV–vis and FTIR spectroscopy. In addition, online GC–MS analysis of volatile degradation products allowed to identify a potential degradation mechanism for the dye molecule in the OLSC thin film, initiating with the disruption of the lateral phenyl substituents attached to the perylene core of the organic dye. In addition, a correlation was found between chemical modifications occurring to the organic dye molecule and operational stability of OLSC devices, clarifying the effect of dye photo-degradation on device performance. These findings provide a deeper understanding of the photo-degradation mechanism of perylene-based OLSC devices and allow for the development of efficient stabilization strategies to lengthen OLSC lifetime.
RE.PUBLIC@POLIMI Res... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.12.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu81 citations 81 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.12.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu