- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Oxford University Press (OUP) Authors: Christoph Dockter; Mats Hansson;doi: 10.1093/jxb/eru521
pmid: 25614659
The Green Revolution combined advancements in breeding and agricultural practice, and provided food security to millions of people. Daily food supply is still a major issue in many parts of the world and is further challenged by future climate change. Fortunately, life science research is currently making huge progress, and the development of future crop plants will be explored. Today, plant breeding typically follows one gene per trait. However, new scientific achievements have revealed that many of these traits depend on different genes and complex interactions of proteins reacting to various external stimuli. These findings open up new possibilities for breeding where variations in several genes can be combined to enhance productivity and quality. In this review we present an overview of genes determining plant architecture in barley, with a special focus on culm length. Many genes are currently known only through their mutant phenotypes, but emerging genomic sequence information will accelerate their identification. More than 1000 different short-culm barley mutants have been isolated and classified in different phenotypic groups according to culm length and additional pleiotropic characters. Some mutants have been connected to deficiencies in biosynthesis and reception of brassinosteroids and gibberellic acids. Still other mutants are unlikely to be connected to these hormones. The genes and corresponding mutations are of potential interest for development of stiff-straw crop plants tolerant to lodging, which occurs in extreme weather conditions with strong winds and heavy precipitation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/eru521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 70 citations 70 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/eru521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 17 Mar 2022 Norway, United Kingdom, France, Sweden, Norway, United KingdomPublisher:Springer Science and Business Media LLC Funded by:WT | Whole genome sequence bas..., EC | ArCH4ives, EC | PEGASUS +4 projectsWT| Whole genome sequence based analysis of genetic variation and genome evolution ,EC| ArCH4ives ,EC| PEGASUS ,RCN| Norwegian barcode of life network (NorBOL) ,UKRI| Plausible policy pathways to Paris ,RCN| Methane cycling archives from warming Arctic lakes: Retrieving the genomic blueprints of Holocene microbes ,EC| IceAGenTHannah L. Owens; Anna Cherezova; Anna Cherezova; Kurt H. Kjær; Alexandra Rouillard; Marie Kristine Føreid Merkel; Inger Greve Alsos; Richard Durbin; John Inge Svendsen; John Inge Svendsen; Kristian K. Kjeldsen; Thorfinn Sand Korneliussen; Thorfinn Sand Korneliussen; Ludovic Orlando; Jeffrey T. Rasic; Y. L. Wang; Y. L. Wang; Ana Prohaska; Anders A. Bjørk; Jialu Cao; Julie Esdale; Carsten Rahbek; Alexei Tikhonov; Adriana Alberti; Anthony Ruter; Mary E. Edwards; Mary E. Edwards; Youri Lammers; Patrick Wincker; Birgitte Skadhauge; Neil R. Edwards; Per Möller; Nicolaj K. Larsen; James Haile; Jan Mangerud; Jan Mangerud; Christoph Dockter; David W. Beilman; David J. Meltzer; David J. Meltzer; Lasse Vinner; Galina Gusarova; Daniel Money; Grigory Fedorov; Grigory Fedorov; Eske Willerslev; Hugh McColl; Fernando Racimo; Mikkel Winther Pedersen; Eric Coissac; Yingchun Xing; Antonio Fernandez-Guerra; David Bravo Nogues; Philip B. Holden; Yubin Zhang; Duane G. Froese; Bianca De Sanctis;AbstractDuring the last glacial–interglacial cycle, Arctic biotas experienced substantial climatic changes, yet the nature, extent and rate of their responses are not fully understood1–8. Here we report a large-scale environmental DNA metagenomic study of ancient plant and mammal communities, analysing 535 permafrost and lake sediment samples from across the Arctic spanning the past 50,000 years. Furthermore, we present 1,541 contemporary plant genome assemblies that were generated as reference sequences. Our study provides several insights into the long-term dynamics of the Arctic biota at the circumpolar and regional scales. Our key findings include: (1) a relatively homogeneous steppe–tundra flora dominated the Arctic during the Last Glacial Maximum, followed by regional divergence of vegetation during the Holocene epoch; (2) certain grazing animals consistently co-occurred in space and time; (3) humans appear to have been a minor factor in driving animal distributions; (4) higher effective precipitation, as well as an increase in the proportion of wetland plants, show negative effects on animal diversity; (5) the persistence of the steppe–tundra vegetation in northern Siberia enabled the late survival of several now-extinct megafauna species, including the woolly mammoth until 3.9 ± 0.2 thousand years ago (ka) and the woolly rhinoceros until 9.8 ± 0.2 ka; and (6) phylogenetic analysis of mammoth environmental DNA reveals a previously unsampled mitochondrial lineage. Our findings highlight the power of ancient environmental metagenomics analyses to advance understanding of population histories and long-term ecological dynamics.
e-Prints Soton arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2829931Data sources: Bielefeld Academic Search Engine (BASE)Université d'Évry-Val-d'Essonne: HALArticle . 2021Full-Text: https://hal.science/hal-03431961Data sources: Bielefeld Academic Search Engine (BASE)Publikationer från Umeå universitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveBergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversité Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-021-04016-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 110 citations 110 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2829931Data sources: Bielefeld Academic Search Engine (BASE)Université d'Évry-Val-d'Essonne: HALArticle . 2021Full-Text: https://hal.science/hal-03431961Data sources: Bielefeld Academic Search Engine (BASE)Publikationer från Umeå universitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveBergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversité Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-021-04016-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Oxford University Press (OUP) Authors: Christoph Dockter; Mats Hansson;doi: 10.1093/jxb/eru521
pmid: 25614659
The Green Revolution combined advancements in breeding and agricultural practice, and provided food security to millions of people. Daily food supply is still a major issue in many parts of the world and is further challenged by future climate change. Fortunately, life science research is currently making huge progress, and the development of future crop plants will be explored. Today, plant breeding typically follows one gene per trait. However, new scientific achievements have revealed that many of these traits depend on different genes and complex interactions of proteins reacting to various external stimuli. These findings open up new possibilities for breeding where variations in several genes can be combined to enhance productivity and quality. In this review we present an overview of genes determining plant architecture in barley, with a special focus on culm length. Many genes are currently known only through their mutant phenotypes, but emerging genomic sequence information will accelerate their identification. More than 1000 different short-culm barley mutants have been isolated and classified in different phenotypic groups according to culm length and additional pleiotropic characters. Some mutants have been connected to deficiencies in biosynthesis and reception of brassinosteroids and gibberellic acids. Still other mutants are unlikely to be connected to these hormones. The genes and corresponding mutations are of potential interest for development of stiff-straw crop plants tolerant to lodging, which occurs in extreme weather conditions with strong winds and heavy precipitation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/eru521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 70 citations 70 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/eru521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 17 Mar 2022 Norway, United Kingdom, France, Sweden, Norway, United KingdomPublisher:Springer Science and Business Media LLC Funded by:WT | Whole genome sequence bas..., EC | ArCH4ives, EC | PEGASUS +4 projectsWT| Whole genome sequence based analysis of genetic variation and genome evolution ,EC| ArCH4ives ,EC| PEGASUS ,RCN| Norwegian barcode of life network (NorBOL) ,UKRI| Plausible policy pathways to Paris ,RCN| Methane cycling archives from warming Arctic lakes: Retrieving the genomic blueprints of Holocene microbes ,EC| IceAGenTHannah L. Owens; Anna Cherezova; Anna Cherezova; Kurt H. Kjær; Alexandra Rouillard; Marie Kristine Føreid Merkel; Inger Greve Alsos; Richard Durbin; John Inge Svendsen; John Inge Svendsen; Kristian K. Kjeldsen; Thorfinn Sand Korneliussen; Thorfinn Sand Korneliussen; Ludovic Orlando; Jeffrey T. Rasic; Y. L. Wang; Y. L. Wang; Ana Prohaska; Anders A. Bjørk; Jialu Cao; Julie Esdale; Carsten Rahbek; Alexei Tikhonov; Adriana Alberti; Anthony Ruter; Mary E. Edwards; Mary E. Edwards; Youri Lammers; Patrick Wincker; Birgitte Skadhauge; Neil R. Edwards; Per Möller; Nicolaj K. Larsen; James Haile; Jan Mangerud; Jan Mangerud; Christoph Dockter; David W. Beilman; David J. Meltzer; David J. Meltzer; Lasse Vinner; Galina Gusarova; Daniel Money; Grigory Fedorov; Grigory Fedorov; Eske Willerslev; Hugh McColl; Fernando Racimo; Mikkel Winther Pedersen; Eric Coissac; Yingchun Xing; Antonio Fernandez-Guerra; David Bravo Nogues; Philip B. Holden; Yubin Zhang; Duane G. Froese; Bianca De Sanctis;AbstractDuring the last glacial–interglacial cycle, Arctic biotas experienced substantial climatic changes, yet the nature, extent and rate of their responses are not fully understood1–8. Here we report a large-scale environmental DNA metagenomic study of ancient plant and mammal communities, analysing 535 permafrost and lake sediment samples from across the Arctic spanning the past 50,000 years. Furthermore, we present 1,541 contemporary plant genome assemblies that were generated as reference sequences. Our study provides several insights into the long-term dynamics of the Arctic biota at the circumpolar and regional scales. Our key findings include: (1) a relatively homogeneous steppe–tundra flora dominated the Arctic during the Last Glacial Maximum, followed by regional divergence of vegetation during the Holocene epoch; (2) certain grazing animals consistently co-occurred in space and time; (3) humans appear to have been a minor factor in driving animal distributions; (4) higher effective precipitation, as well as an increase in the proportion of wetland plants, show negative effects on animal diversity; (5) the persistence of the steppe–tundra vegetation in northern Siberia enabled the late survival of several now-extinct megafauna species, including the woolly mammoth until 3.9 ± 0.2 thousand years ago (ka) and the woolly rhinoceros until 9.8 ± 0.2 ka; and (6) phylogenetic analysis of mammoth environmental DNA reveals a previously unsampled mitochondrial lineage. Our findings highlight the power of ancient environmental metagenomics analyses to advance understanding of population histories and long-term ecological dynamics.
e-Prints Soton arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2829931Data sources: Bielefeld Academic Search Engine (BASE)Université d'Évry-Val-d'Essonne: HALArticle . 2021Full-Text: https://hal.science/hal-03431961Data sources: Bielefeld Academic Search Engine (BASE)Publikationer från Umeå universitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveBergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversité Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-021-04016-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 110 citations 110 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2829931Data sources: Bielefeld Academic Search Engine (BASE)Université d'Évry-Val-d'Essonne: HALArticle . 2021Full-Text: https://hal.science/hal-03431961Data sources: Bielefeld Academic Search Engine (BASE)Publikationer från Umeå universitetArticle . 2021 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveBergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversité Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-021-04016-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu