- home
- Advanced Search
- Energy Research
- 2016-2025
- Energy Research
- 2016-2025
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:UKRI | Smart and high-efficient ...UKRI| Smart and high-efficient technologies for fruits and vegetable production in greenhouse and plant factoryMd Mijanur Rahman; Mohammad Shakeri; Sieh Kiong Tiong; Fatema Khatun; Nowshad Amin; Jagadeesh Pasupuleti; Mohammad Kamrul Hasan;doi: 10.3390/su13042393
This paper presents a comprehensive review of machine learning (ML) based approaches, especially artificial neural networks (ANNs) in time series data prediction problems. According to literature, around 80% of the world’s total energy demand is supplied either through fuel-based sources such as oil, gas, and coal or through nuclear-based sources. Literature also shows that a shortage of fossil fuels is inevitable and the world will face this problem sooner or later. Moreover, the remote and rural areas that suffer from not being able to reach traditional grid power electricity need alternative sources of energy. A “hybrid-renewable-energy system” (HRES) involving different renewable resources can be used to supply sustainable power in these areas. The uncertain nature of renewable energy resources and the intelligent ability of the neural network approach to process complex time series inputs have inspired the use of ANN methods in renewable energy forecasting. Thus, this study aims to study the different data driven models of ANN approaches that can provide accurate predictions of renewable energy, like solar, wind, or hydro-power generation. Various refinement architectures of neural networks, such as “multi-layer perception” (MLP), “recurrent-neural network” (RNN), and “convolutional-neural network” (CNN), as well as “long-short-term memory” (LSTM) models, have been offered in the applications of renewable energy forecasting. These models are able to perform short-term time-series prediction in renewable energy sources and to use prior information that influences its value in future prediction.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13042393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 97 citations 97 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13042393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:UKRI | Smart and high-efficient ...UKRI| Smart and high-efficient technologies for fruits and vegetable production in greenhouse and plant factoryMd Mijanur Rahman; Mohammad Shakeri; Sieh Kiong Tiong; Fatema Khatun; Nowshad Amin; Jagadeesh Pasupuleti; Mohammad Kamrul Hasan;doi: 10.3390/su13042393
This paper presents a comprehensive review of machine learning (ML) based approaches, especially artificial neural networks (ANNs) in time series data prediction problems. According to literature, around 80% of the world’s total energy demand is supplied either through fuel-based sources such as oil, gas, and coal or through nuclear-based sources. Literature also shows that a shortage of fossil fuels is inevitable and the world will face this problem sooner or later. Moreover, the remote and rural areas that suffer from not being able to reach traditional grid power electricity need alternative sources of energy. A “hybrid-renewable-energy system” (HRES) involving different renewable resources can be used to supply sustainable power in these areas. The uncertain nature of renewable energy resources and the intelligent ability of the neural network approach to process complex time series inputs have inspired the use of ANN methods in renewable energy forecasting. Thus, this study aims to study the different data driven models of ANN approaches that can provide accurate predictions of renewable energy, like solar, wind, or hydro-power generation. Various refinement architectures of neural networks, such as “multi-layer perception” (MLP), “recurrent-neural network” (RNN), and “convolutional-neural network” (CNN), as well as “long-short-term memory” (LSTM) models, have been offered in the applications of renewable energy forecasting. These models are able to perform short-term time-series prediction in renewable energy sources and to use prior information that influences its value in future prediction.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13042393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 97 citations 97 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13042393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu