- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Margaret Osikhofe Kadiri; Bettina Nicole Bockelmann-Evans; William Bonino Rauen; Roger Alexander Falconer; +1 AuthorsMargaret Osikhofe Kadiri; Bettina Nicole Bockelmann-Evans; William Bonino Rauen; Roger Alexander Falconer; Reza Ahmadian;The continued increase in the demand for energy, growing recognition of climate change impacts, high oil and gas prices and the rapid depletion of fossil fuel reserves have led to an increased interest in the mass generation of electricity from renewable sources. Traditionally, this has been pursed through riverine hydropower plants, with onshore wind systems growing steadily in popularity and importance over the years. Other renewable energy resources, which were previously not economically attractive or technically feasible for large scale exploitation, are now being considered to form a significant part of the energy mix. Amongst these, marine and in particular, tidal energy resource has become a serious candidate for undergoing mass exploitation in the near future, particularly in places with a tidal range of 4 m or more. Tidal renewable energy systems are designed to extract the kinetic or potential energy flow and convert it into electricity. This can be achieved by placing tidal stream turbines in the path of high speed tidal currents or through tidal range schemes, where low head turbines are encapsulated in impoundment structures, much like in low head riverine hydropower schemes. It is thought that these systems, when implemented at scales required to generate substantial amounts of electricity, have the potential to significantly alter the tidal flow characteristics, which could have knock-on impacts on the hydro-environment. This review gathers together knowledge from different research areas to facilitate an evaluation of the potential hydro-environmental impacts of tidal renewable energy systems, with a particular focus on water quality. It highlights the relevance of hydroenvironmental modelling in assessing potential impacts of proposed schemes and identifies areas where further research is needed. A case study is presented of recent modelling studies undertaken for the Severn Estuary.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2011.07.160&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu126 citations 126 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2011.07.160&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Margaret Osikhofe Kadiri; Bettina Nicole Bockelmann-Evans; William Bonino Rauen; Roger Alexander Falconer; +1 AuthorsMargaret Osikhofe Kadiri; Bettina Nicole Bockelmann-Evans; William Bonino Rauen; Roger Alexander Falconer; Reza Ahmadian;The continued increase in the demand for energy, growing recognition of climate change impacts, high oil and gas prices and the rapid depletion of fossil fuel reserves have led to an increased interest in the mass generation of electricity from renewable sources. Traditionally, this has been pursed through riverine hydropower plants, with onshore wind systems growing steadily in popularity and importance over the years. Other renewable energy resources, which were previously not economically attractive or technically feasible for large scale exploitation, are now being considered to form a significant part of the energy mix. Amongst these, marine and in particular, tidal energy resource has become a serious candidate for undergoing mass exploitation in the near future, particularly in places with a tidal range of 4 m or more. Tidal renewable energy systems are designed to extract the kinetic or potential energy flow and convert it into electricity. This can be achieved by placing tidal stream turbines in the path of high speed tidal currents or through tidal range schemes, where low head turbines are encapsulated in impoundment structures, much like in low head riverine hydropower schemes. It is thought that these systems, when implemented at scales required to generate substantial amounts of electricity, have the potential to significantly alter the tidal flow characteristics, which could have knock-on impacts on the hydro-environment. This review gathers together knowledge from different research areas to facilitate an evaluation of the potential hydro-environmental impacts of tidal renewable energy systems, with a particular focus on water quality. It highlights the relevance of hydroenvironmental modelling in assessing potential impacts of proposed schemes and identifies areas where further research is needed. A case study is presented of recent modelling studies undertaken for the Severn Estuary.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2011.07.160&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu126 citations 126 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2011.07.160&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Reza Ahmadian; Owen R. Jones; Jingjing Xue; Roger Alexander Falconer;One of the key aspects of Tidal Range Schemes globally is identifying the most appropriate site and the optimised design and operation of the scheme, to maximise societal needs and the benefits from electricity generation. Variations in the design parameters of Tidal Range Schemes for electricity generation could therefore lead to a very large number of design and operation scenarios. In this study, a novel Genetic Algorithm model was developed to deliver the complete design of the most optimised Tidal Range Schemes for electricity generation, including the number of turbines, sluicing areas and the maximum amount of electricity that could be generated, through identifying the most optimised operation scheme for a particular site. The Genetic Algorithm model has been used to design a new Tidal Range Scheme proposed for development in the Bristol Channel, UK, with a potential to generate about 7.16 TWh/yr. The design of the scheme was also investigated using a traditional grid search approach for a range of scenarios, together with the model being used to investigate the performance of the complete design of the scheme, evaluated through a comparison of the most optimised design in terms of electricity generation. This comparison has shown that the Genetic Algorithm model was capable of achieving largely the same outcomes and reducing the computational time by approximately 95% to that based on using traditional Grid Search methods.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Reza Ahmadian; Owen R. Jones; Jingjing Xue; Roger Alexander Falconer;One of the key aspects of Tidal Range Schemes globally is identifying the most appropriate site and the optimised design and operation of the scheme, to maximise societal needs and the benefits from electricity generation. Variations in the design parameters of Tidal Range Schemes for electricity generation could therefore lead to a very large number of design and operation scenarios. In this study, a novel Genetic Algorithm model was developed to deliver the complete design of the most optimised Tidal Range Schemes for electricity generation, including the number of turbines, sluicing areas and the maximum amount of electricity that could be generated, through identifying the most optimised operation scheme for a particular site. The Genetic Algorithm model has been used to design a new Tidal Range Scheme proposed for development in the Bristol Channel, UK, with a potential to generate about 7.16 TWh/yr. The design of the scheme was also investigated using a traditional grid search approach for a range of scenarios, together with the model being used to investigate the performance of the complete design of the scheme, evaluated through a comparison of the most optimised design in terms of electricity generation. This comparison has shown that the Genetic Algorithm model was capable of achieving largely the same outcomes and reducing the computational time by approximately 95% to that based on using traditional Grid Search methods.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Bin Guo; Reza Ahmadian; Roger A. Falconer;An accurate assessment of the hydro-environmental impacts of tidal range energy schemes, where the performance of the scheme has an impact on the marine environment and ecology, is crucial in optimising the design and development of such schemes. A proposal for a new coastally-attached impoundment, namely West Somerset Lagoon, has been investigated in this research and the numerical model TELEMAC-2D has been refined to model theimpacts of this scheme on the Bristol Channel and Severn Estuary. Domain decomposition was applied and full momentum conservation between the subdomains was included in the model by implementing momentum source terms at the turbine locations. The results have confirmed the importance of including full momentum conservation in modelling the effects of turbo-machinery in tidal lagoons. It was found that the operation of the scheme decreased the high water level slightly in the Bristol Channel and Severn Estuary, while there was a decrease in the low intertidal areas. The maximum velocity and bed shear stress were predicted to increase in the inner Bristol Channel, while they decreased noticeably across most of the interior of the lagoon, away from the turbine wakes. Furthermore, the operation of the lagoon significantly improved the water renewal in the region.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2021License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.08.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2021License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.08.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Bin Guo; Reza Ahmadian; Roger A. Falconer;An accurate assessment of the hydro-environmental impacts of tidal range energy schemes, where the performance of the scheme has an impact on the marine environment and ecology, is crucial in optimising the design and development of such schemes. A proposal for a new coastally-attached impoundment, namely West Somerset Lagoon, has been investigated in this research and the numerical model TELEMAC-2D has been refined to model theimpacts of this scheme on the Bristol Channel and Severn Estuary. Domain decomposition was applied and full momentum conservation between the subdomains was included in the model by implementing momentum source terms at the turbine locations. The results have confirmed the importance of including full momentum conservation in modelling the effects of turbo-machinery in tidal lagoons. It was found that the operation of the scheme decreased the high water level slightly in the Bristol Channel and Severn Estuary, while there was a decrease in the low intertidal areas. The maximum velocity and bed shear stress were predicted to increase in the inner Bristol Channel, while they decreased noticeably across most of the interior of the lagoon, away from the turbine wakes. Furthermore, the operation of the lagoon significantly improved the water renewal in the region.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2021License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.08.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2021License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.08.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Guangming Tan; Junqiang Xia; BinLiang Lin; BinLiang Lin; Roger Alexander Falconer;In recent years, there have been growing international challenges relating to climate change and global warming, with a conflict developing between the need to create a low-carbon economy and rapid depleting reserves of fossil fuels. In addition to these challenges there continues to be the added complexity of a significant global increase in energy demand. Marine renewable energy from tidal barrages is carbon-free and has the potential to make a significant contribution to energy supplies now and in the future. Therefore, it is appropriate to evaluate the total energy that can be extracted from such barrages. In this study two different methods are proposed to estimate the total annual energy output from a barrage, including a theoretical estimation based on the principle associated with tidal hydrodynamics, and a numerical estimation based on the solutions obtained from a 2D hydrodynamic model. The proposed Severn Barrage in the UK was taken as a case study, and these two methods were applied to estimate the potential annual energy output from the barrage. The predicted results obtained using the two methods indicate that the magnitude of the annual energy output would range from 13 to 16 TWh, which is similar to the value of 15.6 TWh reported by the Department of Energy and Climate Change, in the UK. Further investigations show that the total annual energy output would increase by about 15% if a higher discharge coefficient were to be adopted for the sluice gates, or if the turbine performance were to be improved. However, the estimated annual energy output could exceed the value of 16 TWh if future technological advances in both sluice gate construction and turbine performance are included.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.12.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.12.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Guangming Tan; Junqiang Xia; BinLiang Lin; BinLiang Lin; Roger Alexander Falconer;In recent years, there have been growing international challenges relating to climate change and global warming, with a conflict developing between the need to create a low-carbon economy and rapid depleting reserves of fossil fuels. In addition to these challenges there continues to be the added complexity of a significant global increase in energy demand. Marine renewable energy from tidal barrages is carbon-free and has the potential to make a significant contribution to energy supplies now and in the future. Therefore, it is appropriate to evaluate the total energy that can be extracted from such barrages. In this study two different methods are proposed to estimate the total annual energy output from a barrage, including a theoretical estimation based on the principle associated with tidal hydrodynamics, and a numerical estimation based on the solutions obtained from a 2D hydrodynamic model. The proposed Severn Barrage in the UK was taken as a case study, and these two methods were applied to estimate the potential annual energy output from the barrage. The predicted results obtained using the two methods indicate that the magnitude of the annual energy output would range from 13 to 16 TWh, which is similar to the value of 15.6 TWh reported by the Department of Energy and Climate Change, in the UK. Further investigations show that the total annual energy output would increase by about 15% if a higher discharge coefficient were to be adopted for the sluice gates, or if the turbine performance were to be improved. However, the estimated annual energy output could exceed the value of 16 TWh if future technological advances in both sluice gate construction and turbine performance are included.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.12.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.12.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Roger Alexander Falconer; Reza Ahmadian; Bettina Nicole Bockelmann-Evans;Interest in the marine renewable energy devices, and particularly tidal stream turbines, has increased significantly over the past decade and several devices such as vertical and horizontal axis turbines and reciprocating hydrofoils are now being designed around the world to harness tidal stream energy. While tidal stream turbines are being developed at a high rate and getting closer to commercialisation, it is important to acquire the right tools to assist planners and environmentalists, not only in finding a right location for the turbines, but also in identifying their potential impacts on the surrounding marine and coastal environment. In this study, a widely used open source depth integrated 2D hydro-environmental model, namely DIVAST, was modified to simulate the hydro-environmental impacts of the turbines in the coastal environment. The model predictions showed very good agreement with previously published 1D model results. Then, for demonstration purposes, the model was applied to an arbitrary array of tidal stream turbines in the Severn Estuary and Bristol Channel which has the third highest tidal range in the world. The model has shown promising potential in investigating the impacts of the array on water levels, tidal currents and sediment and faecal bacteria levels as well as the generated tidal power, which facilitates investigating the relative far-field impacts of the arrays under various climate change scenarios or different formations of the array.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.07.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu126 citations 126 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.07.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Roger Alexander Falconer; Reza Ahmadian; Bettina Nicole Bockelmann-Evans;Interest in the marine renewable energy devices, and particularly tidal stream turbines, has increased significantly over the past decade and several devices such as vertical and horizontal axis turbines and reciprocating hydrofoils are now being designed around the world to harness tidal stream energy. While tidal stream turbines are being developed at a high rate and getting closer to commercialisation, it is important to acquire the right tools to assist planners and environmentalists, not only in finding a right location for the turbines, but also in identifying their potential impacts on the surrounding marine and coastal environment. In this study, a widely used open source depth integrated 2D hydro-environmental model, namely DIVAST, was modified to simulate the hydro-environmental impacts of the turbines in the coastal environment. The model predictions showed very good agreement with previously published 1D model results. Then, for demonstration purposes, the model was applied to an arbitrary array of tidal stream turbines in the Severn Estuary and Bristol Channel which has the third highest tidal range in the world. The model has shown promising potential in investigating the impacts of the array on water levels, tidal currents and sediment and faecal bacteria levels as well as the generated tidal power, which facilitates investigating the relative far-field impacts of the arrays under various climate change scenarios or different formations of the array.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.07.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu126 citations 126 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.07.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: BinLiang Lin; Roger Alexander Falconer; Junqiang Xia; Junqiang Xia;Abstract The Severn Estuary has a spring tidal range approaching 14 m, which is among the highest tides in the world. Various proposals have been made regarding the construction of a tidal barrage across the estuary to enable tidal energy to be generated. The aim of the current study is to investigate the impact of constructing a tidal barrage on the hydrodynamic processes in the Severn Estuary using a numerical model. A two-dimensional hydrodynamic model based on an unstructured triangular mesh has been used in this study. The model employs a TVD finite volume method to solve the 2D shallow water equations, with the numerical scheme being second-order accurate in both time and space. The model has been calibrated by comparing model predictions with observed tidal levels and currents at different sites, for typical spring and neap tides, and it has also been verified using tidal level time series at four tide gauging stations measured in 2003. In order to predict the hydrodynamic processes with a barrage, the model domain was divided into two subdomains: one each side of the barrage. Details were given of the method used for representing the various hydraulic structures, including the sluices and turbines, along the proposed Cardiff-Weston barrage. The impact of constructing the barrage on the water levels and velocities was then investigated using this model. Model-predicted hydrodynamic parameters, without and with the barrage, were analysed in detail. Model predictions indicated that with the barrage the mean power output could reach 2.0 GW with up to 25 GWh units of electricity being generated over a typical mean spring tidal cycle. At some cross-sections, the maximum discharges were predicted to decrease by 30–50%, as compared with the corresponding discharges predicted without the barrage. The model also predicted that with the barrage, the maximum water levels upstream of the barrage would decrease by 0.5–1.5 m, and with the peak tidal currents also being reduced considerably. For different operating modes, complex velocity fields were predicted to occur in the vicinity of the barrage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2009.12.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu76 citations 76 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2009.12.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: BinLiang Lin; Roger Alexander Falconer; Junqiang Xia; Junqiang Xia;Abstract The Severn Estuary has a spring tidal range approaching 14 m, which is among the highest tides in the world. Various proposals have been made regarding the construction of a tidal barrage across the estuary to enable tidal energy to be generated. The aim of the current study is to investigate the impact of constructing a tidal barrage on the hydrodynamic processes in the Severn Estuary using a numerical model. A two-dimensional hydrodynamic model based on an unstructured triangular mesh has been used in this study. The model employs a TVD finite volume method to solve the 2D shallow water equations, with the numerical scheme being second-order accurate in both time and space. The model has been calibrated by comparing model predictions with observed tidal levels and currents at different sites, for typical spring and neap tides, and it has also been verified using tidal level time series at four tide gauging stations measured in 2003. In order to predict the hydrodynamic processes with a barrage, the model domain was divided into two subdomains: one each side of the barrage. Details were given of the method used for representing the various hydraulic structures, including the sluices and turbines, along the proposed Cardiff-Weston barrage. The impact of constructing the barrage on the water levels and velocities was then investigated using this model. Model-predicted hydrodynamic parameters, without and with the barrage, were analysed in detail. Model predictions indicated that with the barrage the mean power output could reach 2.0 GW with up to 25 GWh units of electricity being generated over a typical mean spring tidal cycle. At some cross-sections, the maximum discharges were predicted to decrease by 30–50%, as compared with the corresponding discharges predicted without the barrage. The model also predicted that with the barrage, the maximum water levels upstream of the barrage would decrease by 0.5–1.5 m, and with the peak tidal currents also being reduced considerably. For different operating modes, complex velocity fields were predicted to occur in the vicinity of the barrage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2009.12.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu76 citations 76 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2009.12.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2016 United KingdomPublisher:Elsevier BV Authors: Roger Alexander Falconer; Samuel Bray; Reza Ahmadian;AbstractIn this study, enhancements to the numerical representation of sluice gates and turbines were made to the hydro-environmental model Environmental Fluid Dynamics Code (EFDC), and applied to the Severn Tidal Power Group Cardiff–Weston Barrage.The extended domain of the EFDC Continental Shelf Model (CSM) allows far-field hydrodynamic impact assessment of the Severn Barrage, pre- and post-enhancement, to demonstrate the importance of accurate hydraulic structure representation. The enhancements were found to significantly affect peak water levels in the Bristol Channel, reducing levels by nearly 1m in some areas, and even affect predictions as far-field as the West Coast of Scotland, albeit to a far lesser extent.The model was tested for sensitivity to changes in the discharge coefficient, Cd, used in calculating discharge through sluice gates and turbines. It was found that the performance of the Severn Barrage is not sensitive to changes to the Cd value, and is mitigated through the continual, rather than instantaneous, discharge across the structure.The EFDC CSM can now be said to be more accurately predicting the impacts of tidal range proposals, and the investigation of sensitivity to Cd improves the confidence in the modelling results, despite the uncertainty in this coefficient.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cageo.2016.01.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cageo.2016.01.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2016 United KingdomPublisher:Elsevier BV Authors: Roger Alexander Falconer; Samuel Bray; Reza Ahmadian;AbstractIn this study, enhancements to the numerical representation of sluice gates and turbines were made to the hydro-environmental model Environmental Fluid Dynamics Code (EFDC), and applied to the Severn Tidal Power Group Cardiff–Weston Barrage.The extended domain of the EFDC Continental Shelf Model (CSM) allows far-field hydrodynamic impact assessment of the Severn Barrage, pre- and post-enhancement, to demonstrate the importance of accurate hydraulic structure representation. The enhancements were found to significantly affect peak water levels in the Bristol Channel, reducing levels by nearly 1m in some areas, and even affect predictions as far-field as the West Coast of Scotland, albeit to a far lesser extent.The model was tested for sensitivity to changes in the discharge coefficient, Cd, used in calculating discharge through sluice gates and turbines. It was found that the performance of the Severn Barrage is not sensitive to changes to the Cd value, and is mitigated through the continual, rather than instantaneous, discharge across the structure.The EFDC CSM can now be said to be more accurately predicting the impacts of tidal range proposals, and the investigation of sensitivity to Cd improves the confidence in the modelling results, despite the uncertainty in this coefficient.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cageo.2016.01.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cageo.2016.01.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2000Publisher:Elsevier BV Authors: S.D. Probert; J Yin; Roger Alexander Falconer; Y Chen;Abstract Water movements in five harbour-models were assessed using (i) a Sontek-ADV to measure the velocity distributions and (ii) fluorometers to determine the local solute-concentrations under both tidal and steady flows. The width of the harbour entrance and the water-depth's amplitude influence significantly the flushing process for the narrow-entrance harbours. To achieve a high rate of flushing, as required in harbours in order to reduce the pollution concentration therein and the need for dredging, it is recommended that as wide as is feasible entry into the harbour is used: if a separate entry and exit are to be introduced, they should be well separated. Less expenditures of commercially-purchased energy will then be required for achieving these aims.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0306-2619(00)00030-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0306-2619(00)00030-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2000Publisher:Elsevier BV Authors: S.D. Probert; J Yin; Roger Alexander Falconer; Y Chen;Abstract Water movements in five harbour-models were assessed using (i) a Sontek-ADV to measure the velocity distributions and (ii) fluorometers to determine the local solute-concentrations under both tidal and steady flows. The width of the harbour entrance and the water-depth's amplitude influence significantly the flushing process for the narrow-entrance harbours. To achieve a high rate of flushing, as required in harbours in order to reduce the pollution concentration therein and the need for dredging, it is recommended that as wide as is feasible entry into the harbour is used: if a separate entry and exit are to be introduced, they should be well separated. Less expenditures of commercially-purchased energy will then be required for achieving these aims.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0306-2619(00)00030-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0306-2619(00)00030-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Simon P. Neill; Athanasios Angeloudis; Peter E. Robins; Ian Walkington; Sophie L. Ward; Ian Masters; Matt J. Lewis; Marco Piano; Alexandros Avdis; Matthew D. Piggott; George Aggidis; Paul Evans; Thomas A.A. Adcock; Audrius Židonis; Reza Ahmadian; Roger Falconer;handle: 10044/1/73251
Tidal energy is one of the most predictable forms of renewable energy. Although there has been much commercial and R&D progress in tidal stream energy, tidal range is a more mature technology, with tidal range power plants having a history that extends back over 50 years. With the 2017 publication of the “Hendry Review” that examined the feasibility of tidal lagoon power plants in the UK, it is timely to review tidal range power plants. Here, we explain the main principles of tidal range power plants, and review two main research areas: the present and future tidal range resource, and the optimization of tidal range power plants. We also discuss how variability in the electricity generated from tidal range power plants could be partially offset by the development of multiple power plants (e.g. lagoons) that are complementary in phase, and by the provision of energy storage. Finally, we discuss the implications of the Hendry Review, and what this means for the future of tidal range power plants in the UK and internationally.
CORE arrow_drop_down Imperial College London: SpiralArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/73251Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryOxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 170 citations 170 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Imperial College London: SpiralArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/73251Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryOxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Simon P. Neill; Athanasios Angeloudis; Peter E. Robins; Ian Walkington; Sophie L. Ward; Ian Masters; Matt J. Lewis; Marco Piano; Alexandros Avdis; Matthew D. Piggott; George Aggidis; Paul Evans; Thomas A.A. Adcock; Audrius Židonis; Reza Ahmadian; Roger Falconer;handle: 10044/1/73251
Tidal energy is one of the most predictable forms of renewable energy. Although there has been much commercial and R&D progress in tidal stream energy, tidal range is a more mature technology, with tidal range power plants having a history that extends back over 50 years. With the 2017 publication of the “Hendry Review” that examined the feasibility of tidal lagoon power plants in the UK, it is timely to review tidal range power plants. Here, we explain the main principles of tidal range power plants, and review two main research areas: the present and future tidal range resource, and the optimization of tidal range power plants. We also discuss how variability in the electricity generated from tidal range power plants could be partially offset by the development of multiple power plants (e.g. lagoons) that are complementary in phase, and by the provision of energy storage. Finally, we discuss the implications of the Hendry Review, and what this means for the future of tidal range power plants in the UK and internationally.
CORE arrow_drop_down Imperial College London: SpiralArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/73251Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryOxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 170 citations 170 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Imperial College London: SpiralArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/73251Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryOxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Junqiang Xia; Junqiang Xia; BinLiang Lin; Roger Alexander Falconer;The Severn Estuary has a spring tidal range approaching 14 m and is regarded as having one of the highest tidal ranges in the world. Various proposals have been made regarding the construction of a tidal barrage across the estuary to enable tidal energy to be extracted. The barrage scheme originally proposed by the Severn Tidal Power Group (STPG) would be the largest project for tidal power generation in the world if built as proposed. Therefore, it is important to study the impact of different operating modes for this barrage on the tidal power output and flood inundation extent in the estuary. In this paper, an existing two-dimensional hydrodynamic model based on an unstructured triangular mesh has been integrated with a new algorithm developed for the estimation of tidal power output, which can account for three barrage operating modes, including ebb generation, flood generation, and two-way generation. The refined model was then used to investigate the impact of different barrage operating modes on the tidal power output and the associated extent of flood inundation along the Severn Estuary. Predicted results indicate that the mode of flood generation would produce the least electrical energy and cause a larger reduction in the maximum water levels upstream of the barrage. Two-way generation would provide an improvement to these conditions, and produce an equivalent amount of electricity to that from ebb generation, with a low installed capacity and a small loss of intertidal zones. Therefore, the mode of ebb generation or two-way generation would appear to be a preferred option for power generation, because both would offer benefits of acceptable electrical energy and reduced flood risk.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.11.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu82 citations 82 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.11.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Junqiang Xia; Junqiang Xia; BinLiang Lin; Roger Alexander Falconer;The Severn Estuary has a spring tidal range approaching 14 m and is regarded as having one of the highest tidal ranges in the world. Various proposals have been made regarding the construction of a tidal barrage across the estuary to enable tidal energy to be extracted. The barrage scheme originally proposed by the Severn Tidal Power Group (STPG) would be the largest project for tidal power generation in the world if built as proposed. Therefore, it is important to study the impact of different operating modes for this barrage on the tidal power output and flood inundation extent in the estuary. In this paper, an existing two-dimensional hydrodynamic model based on an unstructured triangular mesh has been integrated with a new algorithm developed for the estimation of tidal power output, which can account for three barrage operating modes, including ebb generation, flood generation, and two-way generation. The refined model was then used to investigate the impact of different barrage operating modes on the tidal power output and the associated extent of flood inundation along the Severn Estuary. Predicted results indicate that the mode of flood generation would produce the least electrical energy and cause a larger reduction in the maximum water levels upstream of the barrage. Two-way generation would provide an improvement to these conditions, and produce an equivalent amount of electricity to that from ebb generation, with a low installed capacity and a small loss of intertidal zones. Therefore, the mode of ebb generation or two-way generation would appear to be a preferred option for power generation, because both would offer benefits of acceptable electrical energy and reduced flood risk.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.11.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu82 citations 82 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.11.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Margaret Osikhofe Kadiri; Bettina Nicole Bockelmann-Evans; William Bonino Rauen; Roger Alexander Falconer; +1 AuthorsMargaret Osikhofe Kadiri; Bettina Nicole Bockelmann-Evans; William Bonino Rauen; Roger Alexander Falconer; Reza Ahmadian;The continued increase in the demand for energy, growing recognition of climate change impacts, high oil and gas prices and the rapid depletion of fossil fuel reserves have led to an increased interest in the mass generation of electricity from renewable sources. Traditionally, this has been pursed through riverine hydropower plants, with onshore wind systems growing steadily in popularity and importance over the years. Other renewable energy resources, which were previously not economically attractive or technically feasible for large scale exploitation, are now being considered to form a significant part of the energy mix. Amongst these, marine and in particular, tidal energy resource has become a serious candidate for undergoing mass exploitation in the near future, particularly in places with a tidal range of 4 m or more. Tidal renewable energy systems are designed to extract the kinetic or potential energy flow and convert it into electricity. This can be achieved by placing tidal stream turbines in the path of high speed tidal currents or through tidal range schemes, where low head turbines are encapsulated in impoundment structures, much like in low head riverine hydropower schemes. It is thought that these systems, when implemented at scales required to generate substantial amounts of electricity, have the potential to significantly alter the tidal flow characteristics, which could have knock-on impacts on the hydro-environment. This review gathers together knowledge from different research areas to facilitate an evaluation of the potential hydro-environmental impacts of tidal renewable energy systems, with a particular focus on water quality. It highlights the relevance of hydroenvironmental modelling in assessing potential impacts of proposed schemes and identifies areas where further research is needed. A case study is presented of recent modelling studies undertaken for the Severn Estuary.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2011.07.160&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu126 citations 126 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2011.07.160&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Margaret Osikhofe Kadiri; Bettina Nicole Bockelmann-Evans; William Bonino Rauen; Roger Alexander Falconer; +1 AuthorsMargaret Osikhofe Kadiri; Bettina Nicole Bockelmann-Evans; William Bonino Rauen; Roger Alexander Falconer; Reza Ahmadian;The continued increase in the demand for energy, growing recognition of climate change impacts, high oil and gas prices and the rapid depletion of fossil fuel reserves have led to an increased interest in the mass generation of electricity from renewable sources. Traditionally, this has been pursed through riverine hydropower plants, with onshore wind systems growing steadily in popularity and importance over the years. Other renewable energy resources, which were previously not economically attractive or technically feasible for large scale exploitation, are now being considered to form a significant part of the energy mix. Amongst these, marine and in particular, tidal energy resource has become a serious candidate for undergoing mass exploitation in the near future, particularly in places with a tidal range of 4 m or more. Tidal renewable energy systems are designed to extract the kinetic or potential energy flow and convert it into electricity. This can be achieved by placing tidal stream turbines in the path of high speed tidal currents or through tidal range schemes, where low head turbines are encapsulated in impoundment structures, much like in low head riverine hydropower schemes. It is thought that these systems, when implemented at scales required to generate substantial amounts of electricity, have the potential to significantly alter the tidal flow characteristics, which could have knock-on impacts on the hydro-environment. This review gathers together knowledge from different research areas to facilitate an evaluation of the potential hydro-environmental impacts of tidal renewable energy systems, with a particular focus on water quality. It highlights the relevance of hydroenvironmental modelling in assessing potential impacts of proposed schemes and identifies areas where further research is needed. A case study is presented of recent modelling studies undertaken for the Severn Estuary.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2011.07.160&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu126 citations 126 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2011.07.160&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Reza Ahmadian; Owen R. Jones; Jingjing Xue; Roger Alexander Falconer;One of the key aspects of Tidal Range Schemes globally is identifying the most appropriate site and the optimised design and operation of the scheme, to maximise societal needs and the benefits from electricity generation. Variations in the design parameters of Tidal Range Schemes for electricity generation could therefore lead to a very large number of design and operation scenarios. In this study, a novel Genetic Algorithm model was developed to deliver the complete design of the most optimised Tidal Range Schemes for electricity generation, including the number of turbines, sluicing areas and the maximum amount of electricity that could be generated, through identifying the most optimised operation scheme for a particular site. The Genetic Algorithm model has been used to design a new Tidal Range Scheme proposed for development in the Bristol Channel, UK, with a potential to generate about 7.16 TWh/yr. The design of the scheme was also investigated using a traditional grid search approach for a range of scenarios, together with the model being used to investigate the performance of the complete design of the scheme, evaluated through a comparison of the most optimised design in terms of electricity generation. This comparison has shown that the Genetic Algorithm model was capable of achieving largely the same outcomes and reducing the computational time by approximately 95% to that based on using traditional Grid Search methods.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Reza Ahmadian; Owen R. Jones; Jingjing Xue; Roger Alexander Falconer;One of the key aspects of Tidal Range Schemes globally is identifying the most appropriate site and the optimised design and operation of the scheme, to maximise societal needs and the benefits from electricity generation. Variations in the design parameters of Tidal Range Schemes for electricity generation could therefore lead to a very large number of design and operation scenarios. In this study, a novel Genetic Algorithm model was developed to deliver the complete design of the most optimised Tidal Range Schemes for electricity generation, including the number of turbines, sluicing areas and the maximum amount of electricity that could be generated, through identifying the most optimised operation scheme for a particular site. The Genetic Algorithm model has been used to design a new Tidal Range Scheme proposed for development in the Bristol Channel, UK, with a potential to generate about 7.16 TWh/yr. The design of the scheme was also investigated using a traditional grid search approach for a range of scenarios, together with the model being used to investigate the performance of the complete design of the scheme, evaluated through a comparison of the most optimised design in terms of electricity generation. This comparison has shown that the Genetic Algorithm model was capable of achieving largely the same outcomes and reducing the computational time by approximately 95% to that based on using traditional Grid Search methods.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Bin Guo; Reza Ahmadian; Roger A. Falconer;An accurate assessment of the hydro-environmental impacts of tidal range energy schemes, where the performance of the scheme has an impact on the marine environment and ecology, is crucial in optimising the design and development of such schemes. A proposal for a new coastally-attached impoundment, namely West Somerset Lagoon, has been investigated in this research and the numerical model TELEMAC-2D has been refined to model theimpacts of this scheme on the Bristol Channel and Severn Estuary. Domain decomposition was applied and full momentum conservation between the subdomains was included in the model by implementing momentum source terms at the turbine locations. The results have confirmed the importance of including full momentum conservation in modelling the effects of turbo-machinery in tidal lagoons. It was found that the operation of the scheme decreased the high water level slightly in the Bristol Channel and Severn Estuary, while there was a decrease in the low intertidal areas. The maximum velocity and bed shear stress were predicted to increase in the inner Bristol Channel, while they decreased noticeably across most of the interior of the lagoon, away from the turbine wakes. Furthermore, the operation of the lagoon significantly improved the water renewal in the region.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2021License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.08.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2021License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.08.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Bin Guo; Reza Ahmadian; Roger A. Falconer;An accurate assessment of the hydro-environmental impacts of tidal range energy schemes, where the performance of the scheme has an impact on the marine environment and ecology, is crucial in optimising the design and development of such schemes. A proposal for a new coastally-attached impoundment, namely West Somerset Lagoon, has been investigated in this research and the numerical model TELEMAC-2D has been refined to model theimpacts of this scheme on the Bristol Channel and Severn Estuary. Domain decomposition was applied and full momentum conservation between the subdomains was included in the model by implementing momentum source terms at the turbine locations. The results have confirmed the importance of including full momentum conservation in modelling the effects of turbo-machinery in tidal lagoons. It was found that the operation of the scheme decreased the high water level slightly in the Bristol Channel and Severn Estuary, while there was a decrease in the low intertidal areas. The maximum velocity and bed shear stress were predicted to increase in the inner Bristol Channel, while they decreased noticeably across most of the interior of the lagoon, away from the turbine wakes. Furthermore, the operation of the lagoon significantly improved the water renewal in the region.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2021License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.08.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2021License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.08.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Guangming Tan; Junqiang Xia; BinLiang Lin; BinLiang Lin; Roger Alexander Falconer;In recent years, there have been growing international challenges relating to climate change and global warming, with a conflict developing between the need to create a low-carbon economy and rapid depleting reserves of fossil fuels. In addition to these challenges there continues to be the added complexity of a significant global increase in energy demand. Marine renewable energy from tidal barrages is carbon-free and has the potential to make a significant contribution to energy supplies now and in the future. Therefore, it is appropriate to evaluate the total energy that can be extracted from such barrages. In this study two different methods are proposed to estimate the total annual energy output from a barrage, including a theoretical estimation based on the principle associated with tidal hydrodynamics, and a numerical estimation based on the solutions obtained from a 2D hydrodynamic model. The proposed Severn Barrage in the UK was taken as a case study, and these two methods were applied to estimate the potential annual energy output from the barrage. The predicted results obtained using the two methods indicate that the magnitude of the annual energy output would range from 13 to 16 TWh, which is similar to the value of 15.6 TWh reported by the Department of Energy and Climate Change, in the UK. Further investigations show that the total annual energy output would increase by about 15% if a higher discharge coefficient were to be adopted for the sluice gates, or if the turbine performance were to be improved. However, the estimated annual energy output could exceed the value of 16 TWh if future technological advances in both sluice gate construction and turbine performance are included.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.12.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.12.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Guangming Tan; Junqiang Xia; BinLiang Lin; BinLiang Lin; Roger Alexander Falconer;In recent years, there have been growing international challenges relating to climate change and global warming, with a conflict developing between the need to create a low-carbon economy and rapid depleting reserves of fossil fuels. In addition to these challenges there continues to be the added complexity of a significant global increase in energy demand. Marine renewable energy from tidal barrages is carbon-free and has the potential to make a significant contribution to energy supplies now and in the future. Therefore, it is appropriate to evaluate the total energy that can be extracted from such barrages. In this study two different methods are proposed to estimate the total annual energy output from a barrage, including a theoretical estimation based on the principle associated with tidal hydrodynamics, and a numerical estimation based on the solutions obtained from a 2D hydrodynamic model. The proposed Severn Barrage in the UK was taken as a case study, and these two methods were applied to estimate the potential annual energy output from the barrage. The predicted results obtained using the two methods indicate that the magnitude of the annual energy output would range from 13 to 16 TWh, which is similar to the value of 15.6 TWh reported by the Department of Energy and Climate Change, in the UK. Further investigations show that the total annual energy output would increase by about 15% if a higher discharge coefficient were to be adopted for the sluice gates, or if the turbine performance were to be improved. However, the estimated annual energy output could exceed the value of 16 TWh if future technological advances in both sluice gate construction and turbine performance are included.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.12.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.12.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Roger Alexander Falconer; Reza Ahmadian; Bettina Nicole Bockelmann-Evans;Interest in the marine renewable energy devices, and particularly tidal stream turbines, has increased significantly over the past decade and several devices such as vertical and horizontal axis turbines and reciprocating hydrofoils are now being designed around the world to harness tidal stream energy. While tidal stream turbines are being developed at a high rate and getting closer to commercialisation, it is important to acquire the right tools to assist planners and environmentalists, not only in finding a right location for the turbines, but also in identifying their potential impacts on the surrounding marine and coastal environment. In this study, a widely used open source depth integrated 2D hydro-environmental model, namely DIVAST, was modified to simulate the hydro-environmental impacts of the turbines in the coastal environment. The model predictions showed very good agreement with previously published 1D model results. Then, for demonstration purposes, the model was applied to an arbitrary array of tidal stream turbines in the Severn Estuary and Bristol Channel which has the third highest tidal range in the world. The model has shown promising potential in investigating the impacts of the array on water levels, tidal currents and sediment and faecal bacteria levels as well as the generated tidal power, which facilitates investigating the relative far-field impacts of the arrays under various climate change scenarios or different formations of the array.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.07.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu126 citations 126 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.07.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Roger Alexander Falconer; Reza Ahmadian; Bettina Nicole Bockelmann-Evans;Interest in the marine renewable energy devices, and particularly tidal stream turbines, has increased significantly over the past decade and several devices such as vertical and horizontal axis turbines and reciprocating hydrofoils are now being designed around the world to harness tidal stream energy. While tidal stream turbines are being developed at a high rate and getting closer to commercialisation, it is important to acquire the right tools to assist planners and environmentalists, not only in finding a right location for the turbines, but also in identifying their potential impacts on the surrounding marine and coastal environment. In this study, a widely used open source depth integrated 2D hydro-environmental model, namely DIVAST, was modified to simulate the hydro-environmental impacts of the turbines in the coastal environment. The model predictions showed very good agreement with previously published 1D model results. Then, for demonstration purposes, the model was applied to an arbitrary array of tidal stream turbines in the Severn Estuary and Bristol Channel which has the third highest tidal range in the world. The model has shown promising potential in investigating the impacts of the array on water levels, tidal currents and sediment and faecal bacteria levels as well as the generated tidal power, which facilitates investigating the relative far-field impacts of the arrays under various climate change scenarios or different formations of the array.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.07.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu126 citations 126 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.07.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: BinLiang Lin; Roger Alexander Falconer; Junqiang Xia; Junqiang Xia;Abstract The Severn Estuary has a spring tidal range approaching 14 m, which is among the highest tides in the world. Various proposals have been made regarding the construction of a tidal barrage across the estuary to enable tidal energy to be generated. The aim of the current study is to investigate the impact of constructing a tidal barrage on the hydrodynamic processes in the Severn Estuary using a numerical model. A two-dimensional hydrodynamic model based on an unstructured triangular mesh has been used in this study. The model employs a TVD finite volume method to solve the 2D shallow water equations, with the numerical scheme being second-order accurate in both time and space. The model has been calibrated by comparing model predictions with observed tidal levels and currents at different sites, for typical spring and neap tides, and it has also been verified using tidal level time series at four tide gauging stations measured in 2003. In order to predict the hydrodynamic processes with a barrage, the model domain was divided into two subdomains: one each side of the barrage. Details were given of the method used for representing the various hydraulic structures, including the sluices and turbines, along the proposed Cardiff-Weston barrage. The impact of constructing the barrage on the water levels and velocities was then investigated using this model. Model-predicted hydrodynamic parameters, without and with the barrage, were analysed in detail. Model predictions indicated that with the barrage the mean power output could reach 2.0 GW with up to 25 GWh units of electricity being generated over a typical mean spring tidal cycle. At some cross-sections, the maximum discharges were predicted to decrease by 30–50%, as compared with the corresponding discharges predicted without the barrage. The model also predicted that with the barrage, the maximum water levels upstream of the barrage would decrease by 0.5–1.5 m, and with the peak tidal currents also being reduced considerably. For different operating modes, complex velocity fields were predicted to occur in the vicinity of the barrage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2009.12.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu76 citations 76 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2009.12.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: BinLiang Lin; Roger Alexander Falconer; Junqiang Xia; Junqiang Xia;Abstract The Severn Estuary has a spring tidal range approaching 14 m, which is among the highest tides in the world. Various proposals have been made regarding the construction of a tidal barrage across the estuary to enable tidal energy to be generated. The aim of the current study is to investigate the impact of constructing a tidal barrage on the hydrodynamic processes in the Severn Estuary using a numerical model. A two-dimensional hydrodynamic model based on an unstructured triangular mesh has been used in this study. The model employs a TVD finite volume method to solve the 2D shallow water equations, with the numerical scheme being second-order accurate in both time and space. The model has been calibrated by comparing model predictions with observed tidal levels and currents at different sites, for typical spring and neap tides, and it has also been verified using tidal level time series at four tide gauging stations measured in 2003. In order to predict the hydrodynamic processes with a barrage, the model domain was divided into two subdomains: one each side of the barrage. Details were given of the method used for representing the various hydraulic structures, including the sluices and turbines, along the proposed Cardiff-Weston barrage. The impact of constructing the barrage on the water levels and velocities was then investigated using this model. Model-predicted hydrodynamic parameters, without and with the barrage, were analysed in detail. Model predictions indicated that with the barrage the mean power output could reach 2.0 GW with up to 25 GWh units of electricity being generated over a typical mean spring tidal cycle. At some cross-sections, the maximum discharges were predicted to decrease by 30–50%, as compared with the corresponding discharges predicted without the barrage. The model also predicted that with the barrage, the maximum water levels upstream of the barrage would decrease by 0.5–1.5 m, and with the peak tidal currents also being reduced considerably. For different operating modes, complex velocity fields were predicted to occur in the vicinity of the barrage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2009.12.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu76 citations 76 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2009.12.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2016 United KingdomPublisher:Elsevier BV Authors: Roger Alexander Falconer; Samuel Bray; Reza Ahmadian;AbstractIn this study, enhancements to the numerical representation of sluice gates and turbines were made to the hydro-environmental model Environmental Fluid Dynamics Code (EFDC), and applied to the Severn Tidal Power Group Cardiff–Weston Barrage.The extended domain of the EFDC Continental Shelf Model (CSM) allows far-field hydrodynamic impact assessment of the Severn Barrage, pre- and post-enhancement, to demonstrate the importance of accurate hydraulic structure representation. The enhancements were found to significantly affect peak water levels in the Bristol Channel, reducing levels by nearly 1m in some areas, and even affect predictions as far-field as the West Coast of Scotland, albeit to a far lesser extent.The model was tested for sensitivity to changes in the discharge coefficient, Cd, used in calculating discharge through sluice gates and turbines. It was found that the performance of the Severn Barrage is not sensitive to changes to the Cd value, and is mitigated through the continual, rather than instantaneous, discharge across the structure.The EFDC CSM can now be said to be more accurately predicting the impacts of tidal range proposals, and the investigation of sensitivity to Cd improves the confidence in the modelling results, despite the uncertainty in this coefficient.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cageo.2016.01.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cageo.2016.01.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2016 United KingdomPublisher:Elsevier BV Authors: Roger Alexander Falconer; Samuel Bray; Reza Ahmadian;AbstractIn this study, enhancements to the numerical representation of sluice gates and turbines were made to the hydro-environmental model Environmental Fluid Dynamics Code (EFDC), and applied to the Severn Tidal Power Group Cardiff–Weston Barrage.The extended domain of the EFDC Continental Shelf Model (CSM) allows far-field hydrodynamic impact assessment of the Severn Barrage, pre- and post-enhancement, to demonstrate the importance of accurate hydraulic structure representation. The enhancements were found to significantly affect peak water levels in the Bristol Channel, reducing levels by nearly 1m in some areas, and even affect predictions as far-field as the West Coast of Scotland, albeit to a far lesser extent.The model was tested for sensitivity to changes in the discharge coefficient, Cd, used in calculating discharge through sluice gates and turbines. It was found that the performance of the Severn Barrage is not sensitive to changes to the Cd value, and is mitigated through the continual, rather than instantaneous, discharge across the structure.The EFDC CSM can now be said to be more accurately predicting the impacts of tidal range proposals, and the investigation of sensitivity to Cd improves the confidence in the modelling results, despite the uncertainty in this coefficient.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cageo.2016.01.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cageo.2016.01.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2000Publisher:Elsevier BV Authors: S.D. Probert; J Yin; Roger Alexander Falconer; Y Chen;Abstract Water movements in five harbour-models were assessed using (i) a Sontek-ADV to measure the velocity distributions and (ii) fluorometers to determine the local solute-concentrations under both tidal and steady flows. The width of the harbour entrance and the water-depth's amplitude influence significantly the flushing process for the narrow-entrance harbours. To achieve a high rate of flushing, as required in harbours in order to reduce the pollution concentration therein and the need for dredging, it is recommended that as wide as is feasible entry into the harbour is used: if a separate entry and exit are to be introduced, they should be well separated. Less expenditures of commercially-purchased energy will then be required for achieving these aims.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0306-2619(00)00030-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0306-2619(00)00030-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2000Publisher:Elsevier BV Authors: S.D. Probert; J Yin; Roger Alexander Falconer; Y Chen;Abstract Water movements in five harbour-models were assessed using (i) a Sontek-ADV to measure the velocity distributions and (ii) fluorometers to determine the local solute-concentrations under both tidal and steady flows. The width of the harbour entrance and the water-depth's amplitude influence significantly the flushing process for the narrow-entrance harbours. To achieve a high rate of flushing, as required in harbours in order to reduce the pollution concentration therein and the need for dredging, it is recommended that as wide as is feasible entry into the harbour is used: if a separate entry and exit are to be introduced, they should be well separated. Less expenditures of commercially-purchased energy will then be required for achieving these aims.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0306-2619(00)00030-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0306-2619(00)00030-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Simon P. Neill; Athanasios Angeloudis; Peter E. Robins; Ian Walkington; Sophie L. Ward; Ian Masters; Matt J. Lewis; Marco Piano; Alexandros Avdis; Matthew D. Piggott; George Aggidis; Paul Evans; Thomas A.A. Adcock; Audrius Židonis; Reza Ahmadian; Roger Falconer;handle: 10044/1/73251
Tidal energy is one of the most predictable forms of renewable energy. Although there has been much commercial and R&D progress in tidal stream energy, tidal range is a more mature technology, with tidal range power plants having a history that extends back over 50 years. With the 2017 publication of the “Hendry Review” that examined the feasibility of tidal lagoon power plants in the UK, it is timely to review tidal range power plants. Here, we explain the main principles of tidal range power plants, and review two main research areas: the present and future tidal range resource, and the optimization of tidal range power plants. We also discuss how variability in the electricity generated from tidal range power plants could be partially offset by the development of multiple power plants (e.g. lagoons) that are complementary in phase, and by the provision of energy storage. Finally, we discuss the implications of the Hendry Review, and what this means for the future of tidal range power plants in the UK and internationally.
CORE arrow_drop_down Imperial College London: SpiralArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/73251Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryOxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 170 citations 170 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Imperial College London: SpiralArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/73251Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryOxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Simon P. Neill; Athanasios Angeloudis; Peter E. Robins; Ian Walkington; Sophie L. Ward; Ian Masters; Matt J. Lewis; Marco Piano; Alexandros Avdis; Matthew D. Piggott; George Aggidis; Paul Evans; Thomas A.A. Adcock; Audrius Židonis; Reza Ahmadian; Roger Falconer;handle: 10044/1/73251
Tidal energy is one of the most predictable forms of renewable energy. Although there has been much commercial and R&D progress in tidal stream energy, tidal range is a more mature technology, with tidal range power plants having a history that extends back over 50 years. With the 2017 publication of the “Hendry Review” that examined the feasibility of tidal lagoon power plants in the UK, it is timely to review tidal range power plants. Here, we explain the main principles of tidal range power plants, and review two main research areas: the present and future tidal range resource, and the optimization of tidal range power plants. We also discuss how variability in the electricity generated from tidal range power plants could be partially offset by the development of multiple power plants (e.g. lagoons) that are complementary in phase, and by the provision of energy storage. Finally, we discuss the implications of the Hendry Review, and what this means for the future of tidal range power plants in the UK and internationally.
CORE arrow_drop_down Imperial College London: SpiralArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/73251Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryOxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 170 citations 170 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Imperial College London: SpiralArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/73251Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital RepositoryOxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Junqiang Xia; Junqiang Xia; BinLiang Lin; Roger Alexander Falconer;The Severn Estuary has a spring tidal range approaching 14 m and is regarded as having one of the highest tidal ranges in the world. Various proposals have been made regarding the construction of a tidal barrage across the estuary to enable tidal energy to be extracted. The barrage scheme originally proposed by the Severn Tidal Power Group (STPG) would be the largest project for tidal power generation in the world if built as proposed. Therefore, it is important to study the impact of different operating modes for this barrage on the tidal power output and flood inundation extent in the estuary. In this paper, an existing two-dimensional hydrodynamic model based on an unstructured triangular mesh has been integrated with a new algorithm developed for the estimation of tidal power output, which can account for three barrage operating modes, including ebb generation, flood generation, and two-way generation. The refined model was then used to investigate the impact of different barrage operating modes on the tidal power output and the associated extent of flood inundation along the Severn Estuary. Predicted results indicate that the mode of flood generation would produce the least electrical energy and cause a larger reduction in the maximum water levels upstream of the barrage. Two-way generation would provide an improvement to these conditions, and produce an equivalent amount of electricity to that from ebb generation, with a low installed capacity and a small loss of intertidal zones. Therefore, the mode of ebb generation or two-way generation would appear to be a preferred option for power generation, because both would offer benefits of acceptable electrical energy and reduced flood risk.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.11.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu82 citations 82 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.11.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Junqiang Xia; Junqiang Xia; BinLiang Lin; Roger Alexander Falconer;The Severn Estuary has a spring tidal range approaching 14 m and is regarded as having one of the highest tidal ranges in the world. Various proposals have been made regarding the construction of a tidal barrage across the estuary to enable tidal energy to be extracted. The barrage scheme originally proposed by the Severn Tidal Power Group (STPG) would be the largest project for tidal power generation in the world if built as proposed. Therefore, it is important to study the impact of different operating modes for this barrage on the tidal power output and flood inundation extent in the estuary. In this paper, an existing two-dimensional hydrodynamic model based on an unstructured triangular mesh has been integrated with a new algorithm developed for the estimation of tidal power output, which can account for three barrage operating modes, including ebb generation, flood generation, and two-way generation. The refined model was then used to investigate the impact of different barrage operating modes on the tidal power output and the associated extent of flood inundation along the Severn Estuary. Predicted results indicate that the mode of flood generation would produce the least electrical energy and cause a larger reduction in the maximum water levels upstream of the barrage. Two-way generation would provide an improvement to these conditions, and produce an equivalent amount of electricity to that from ebb generation, with a low installed capacity and a small loss of intertidal zones. Therefore, the mode of ebb generation or two-way generation would appear to be a preferred option for power generation, because both would offer benefits of acceptable electrical energy and reduced flood risk.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.11.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu82 citations 82 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.11.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu