- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 GermanyPublisher:MDPI AG Jonas Müller; Nico Besser; Philipp Hermsen; Stefan Pischinger; Jürgen Knauf; Pooya Bagherzade; Johannes Fryjan; Andreas Balazs; Simon Gottorf;Development challenges in the automotive industry are constantly increasing due to the high number of vehicle variants, the growing complexity of powertrains, and future legal requirements. In order to reduce development times while maintaining a high level of product quality and financial feasibility, the application of new model-based methods for virtual powertrain calibration is a particularly suitable approach. In this context, TME and FEV combine advanced thermal management models with electronic control unit (ECU) models for model-in-the-loop applications. This paper presents a development process for ECU and on-board diagnostics (OBD) functions of thermal management systems in hybrid electric vehicles. Thanks to the highly accurate 1D/3D-models, optimal control strategies for electrically actuated components can be developed in early development phases. Virtual sensors for local temperatures are developed for the ECU software to enable a cost-effective use of dedicated control functions. Furthermore, an application for OBD cooling system leakage detection is shown. Finally, the transferability of the methodology to a battery cooling system is demonstrated.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/7/3238/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2023Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/7/3238/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2023Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 GermanyPublisher:MDPI AG Jonas Müller; Nico Besser; Philipp Hermsen; Stefan Pischinger; Jürgen Knauf; Pooya Bagherzade; Johannes Fryjan; Andreas Balazs; Simon Gottorf;Development challenges in the automotive industry are constantly increasing due to the high number of vehicle variants, the growing complexity of powertrains, and future legal requirements. In order to reduce development times while maintaining a high level of product quality and financial feasibility, the application of new model-based methods for virtual powertrain calibration is a particularly suitable approach. In this context, TME and FEV combine advanced thermal management models with electronic control unit (ECU) models for model-in-the-loop applications. This paper presents a development process for ECU and on-board diagnostics (OBD) functions of thermal management systems in hybrid electric vehicles. Thanks to the highly accurate 1D/3D-models, optimal control strategies for electrically actuated components can be developed in early development phases. Virtual sensors for local temperatures are developed for the ECU software to enable a cost-effective use of dedicated control functions. Furthermore, an application for OBD cooling system leakage detection is shown. Finally, the transferability of the methodology to a battery cooling system is demonstrated.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/7/3238/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2023Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/7/3238/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2023Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu