Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
7 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Medrano Gómez, Álvaro Manuel; López, Esther; García-Linares, Pablo; Villa Morales, Juan; +7 Authors

    Germanium is a low cost alternative to the highly expensive III-V semiconductors commonly used on thermophotovoltaic (TPV) devices. Despite efficiencies up to 16.5 % have been theorized in previous works, no experimental efficiencies have been reported so far for germanium-based devices. In this work, we present the first TPV germanium efficiency measured in a high view factor calorimetry set up. Efficiencies and power densities up to 11.2 % and 1.43 W/cm2 have been obtained using a graphite emitter heated at 1544 ºC.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Presentation . 2024
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Presentation . 2024
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Presentation . 2024
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Presentation . 2024
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mansur Mohammed Ali Gamel; Pin Jern Ker; Wan Emilin Suliza Wan Abdul Rashid; Hui Jing Lee; +2 Authors

    La investigación sobre el efecto de las intensidades de potencia de iluminación para un sistema termofotovoltaico (TPV) es crucial para mejorar el rendimiento de la célula TPV. Hasta la fecha, los estudios sobre el efecto de las intensidades de iluminación se limitaban a la aplicación de células solares fotovoltaicas. Mientras tanto, el trabajo informado sobre el impacto de las intensidades de iluminación infrarroja en las células TPV se realiza a temperaturas e intensidades limitadas. Los efectos de las intensidades de TPV en todos los parámetros de rendimiento no se estudian exhaustivamente ni se aclaran por completo. Por lo tanto, este documento investiga el rendimiento de las células de germanio (Ge) con banda prohibida indirecta y de arseniuro de galio e indio (InGaAs) con banda prohibida directa bajo diversas irradiancias espectrales de TPV. Se utilizó el software de simulación Silvaco TCAD para investigar el efecto de las temperaturas del cuerpo negro que oscilan entre 800 y 2000 K con diferentes intensidades de iluminación en el rendimiento de las celdas TPV. Se encontró que se logran mayores eficiencias de conversión para ambas celdas TPV bajo intensidades de iluminación más altas debido al aumento en el voltaje de circuito abierto y el factor de llenado. A medida que la intensidad del haz aumenta para temperaturas >1600 K, el factor de llenado aumenta lentamente para la celda Ge, pero disminuye para la celda InGaAs debido al aumento en las pérdidas de I 2 R s asociadas con la alta corriente. El hallazgo demuestra que el voltaje de circuito abierto de la celda TPV de banda prohibida indirecta aumenta significativamente con mayores intensidades de iluminación. Las variaciones en el rendimiento de las células se explican explícitamente en función de factores como la estructura de diseño del TPV y las propiedades físicas del semiconductor a diferentes intensidades de iluminación. También se analizó el rendimiento de ambas células TPV a las pérdidas ópticas mínimas. Las eficiencias promedio de las células de Ge e InGaAs TPV aumentaron a 26.05% y 27.92%, respectivamente, cuando las pérdidas ópticas se minimizaron con un recubrimiento antirreflectante y una capa absorbente más gruesa. Los resultados de este trabajo demuestran que mediante la consideración detallada del efecto de las irradiancias espectrales, se puede desarrollar un sistema TPV de alto rendimiento. L'étude de l'effet des intensités de puissance d'éclairage pour un système thermophotovoltaïque (TPV) est cruciale pour améliorer les performances de la cellule TPV. À ce jour, les études sur l'effet des intensités d'éclairage se sont limitées à l'application des cellules solaires photovoltaïques. Pendant ce temps, les travaux rapportés sur l'impact des intensités d'éclairage infrarouge sur les cellules TPV sont effectués à des températures et des intensités limitées. Les effets des intensités de TPV sur tous les paramètres de performance ne sont pas étudiés de manière exhaustive et entièrement élucidés. Par conséquent, cet article étudie la performance des cellules d'arséniure de germanium (Ge) et d'indium gallium (InGaAs) à bande interdite indirecte sous diverses irradiances spectrales TPV. Le logiciel de simulation Silvaco TCAD a été utilisé pour étudier l'effet des températures du corps noir allant de 800 à 2000 K avec différentes intensités d'éclairage sur les performances des cellules TPV. Il a été constaté que des rendements de conversion plus élevés sont obtenus pour les deux cellules TPV sous des intensités d'éclairage plus élevées en raison de l'augmentation de la tension en circuit ouvert et du facteur de remplissage. Lorsque l'intensité du faisceau augmente pour des températures >1600 K, le facteur de remplissage augmente lentement pour la cellule Ge, mais diminue pour la cellule InGaAs en raison de l'augmentation des pertes I 2 R s associées au courant élevé. La découverte démontre que la tension en circuit ouvert de la cellule TPV à bande interdite indirecte est significativement augmentée avec des intensités d'éclairage plus élevées. Les variations dans les performances des cellules sont explicitement expliquées en fonction de facteurs tels que la structure de conception TPV et les propriétés physiques du semi-conducteur à des intensités d'éclairage variables. Les performances des deux cellules TPV ont également été analysées aux pertes optiques minimales. Les efficacités moyennes des cellules TPV Ge et InGaAs ont été augmentées à 26,05% et 27,92%, respectivement, lorsque les pertes optiques ont été minimisées avec un revêtement antireflet et une couche absorbante plus épaisse. Les résultats de ce travail démontrent que par une prise en compte détaillée de l'effet des irradiances spectrales, un système TPV performant peut être développé. The investigation on the effect of illumination power intensities for a thermophotovoltaic (TPV) system is crucial to enhance the TPV cell performance. To date, the studies on the effect of illumination intensities were limited to solar photovoltaic cells application. Meanwhile, the reported work on the impact of infrared illumination intensities on TPV cells are done at limited temperatures and intensities. The effects of TPV intensities on all performance parameters are not comprehensively studied and fully elucidated. Therefore, this paper investigates the performance of indirect-bandgap Germanium (Ge) and direct-bandgap Indium Gallium Arsenide (InGaAs) cells under various TPV spectral irradiances. Silvaco TCAD simulation software was used to investigate the effect of blackbody temperatures ranging from 800 to 2000 K with different illumination intensities on the TPV cell performances. It was found that higher conversion efficiencies are achieved for both TPV cells under higher illumination intensities due to the increase in open-circuit voltage and fill factor. As the beam intensity increases for temperatures >1600 K, fill factor slowly increases for the Ge cell, but decreases for the InGaAs cell due to the increase in the I 2 R s losses associated with the high current. The finding demonstrates that the open-circuit voltage of indirect-bandgap TPV cell is significantly increased with higher illumination intensities. The variations in cells performance are explicitly explained based on factors such as TPV design structure and the physical properties of semiconductor at varying illumination intensities. The performance of both TPV cells were also analyzed at the minimum optical losses. Average efficiencies of Ge and InGaAs TPV cells were increased to 26.05% and 27.92%, respectively, when the optical losses were minimized with anti-reflection coating and thicker absorber layer. The results of this work demonstrate that by detailed consideration of the effect of spectral irradiances, a high-performance TPV system can be developed. يعد التحقيق في تأثير شدة طاقة الإضاءة لنظام الخلايا الكهروضوئية الحرارية (TPV) أمرًا بالغ الأهمية لتعزيز أداء خلايا الخلايا الكهروضوئية الحرارية. حتى الآن، اقتصرت الدراسات حول تأثير شدة الإضاءة على تطبيق الخلايا الشمسية الكهروضوئية. وفي الوقت نفسه، يتم العمل المبلغ عنه بشأن تأثير شدة الإضاءة بالأشعة تحت الحمراء على خلايا TPV في درجات حرارة وشدة محدودة. لم يتم دراسة آثار شدة TPV على جميع معايير الأداء بشكل شامل وتوضيحها بالكامل. لذلك، تبحث هذه الورقة في أداء خلايا الجرمانيوم غير المباشر (Ge) وخلايا زرنيخيد الإنديوم الغاليوم (InGaAs) ذات النطاق الترددي المباشر تحت إشعاعات طيفية مختلفة TPV. تم استخدام برنامج محاكاة Silvaco TCAD للتحقيق في تأثير درجات حرارة الجسم الأسود التي تتراوح من 800 إلى 2000 كلفن مع شدة إضاءة مختلفة على أداء خلايا TPV. وجد أنه يتم تحقيق كفاءات تحويل أعلى لكل من خلايا TPV تحت شدة إضاءة أعلى بسبب الزيادة في جهد الدائرة المفتوحة وعامل التعبئة. مع زيادة شدة الحزمة لدرجات الحرارة >1600 كلفن، يزداد عامل التعبئة ببطء للخلية Ge، ولكنه ينخفض لخلية InGaAs بسبب الزيادة في خسائر I 2 R المرتبطة بالتيار العالي. توضح النتيجة أن جهد الدائرة المفتوحة لخلية TPV ذات النطاق الترددي غير المباشر يزداد بشكل كبير مع شدة إضاءة أعلى. يتم شرح الاختلافات في أداء الخلايا بشكل صريح بناءً على عوامل مثل بنية تصميم TPV والخصائص الفيزيائية لأشباه الموصلات عند شدة إضاءة متفاوتة. كما تم تحليل أداء كل من خلايا TPV عند الحد الأدنى من الخسائر البصرية. تم زيادة متوسط كفاءة خلايا Ge و InGaAs TPV إلى 26.05 ٪ و 27.92 ٪ على التوالي، عندما تم تقليل الخسائر البصرية بطبقة مضادة للانعكاس وطبقة امتصاص أكثر سمكًا. تُظهر نتائج هذا العمل أنه من خلال النظر التفصيلي في تأثير الإشعاعات الطيفية، يمكن تطوير نظام TPV عالي الأداء.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    IEEE Access
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    IEEE Access
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    IEEE Access
    Article . 2021
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.60692/5v...
    Other literature type . 2021
    Data sources: Datacite
    https://dx.doi.org/10.60692/mf...
    Other literature type . 2021
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    14
    citations14
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      IEEE Access
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      IEEE Access
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      IEEE Access
      Article . 2021
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.60692/5v...
      Other literature type . 2021
      Data sources: Datacite
      https://dx.doi.org/10.60692/mf...
      Other literature type . 2021
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Medrano Gómez, Álvaro Manuel; López, Esther; García-Linares, Pablo; Villa Morales, Juan; +7 Authors

    Germanium is a low cost alternative to the highly expensive III-V semiconductors commonly used on thermophotovoltaic (TPV) devices. Despite efficiencies up to 16.5 % have been theorized in previous works, no experimental efficiencies have been reported so far for germanium-based devices. In this work, we present the first TPV germanium efficiency measured in a high view factor calorimetry set up. Efficiencies and power densities up to 11.2 % and 1.43 W/cm2 have been obtained using a graphite emitter heated at 1544 ºC.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.5...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.5281/zenodo...
    Article . 2024
    License: CC BY
    Data sources: Sygma
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.5...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.5281/zenodo...
      Article . 2024
      License: CC BY
      Data sources: Sygma
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mansur Mohammed Ali Gamel; Hui Jing Lee; Wan Emilin Suliza Wan Abdul Rashid; Pin Jern Ker; +3 Authors

    Generally, waste heat is redundantly released into the surrounding by anthropogenic activities without strategized planning. Consequently, urban heat islands and global warming chronically increases over time. Thermophotovoltaic (TPV) systems can be potentially deployed to harvest waste heat and recuperate energy to tackle this global issue with supplementary generation of electrical energy. This paper presents a critical review on two dominant types of semiconductor materials, namely gallium antimonide (GaSb) and indium gallium arsenide (InGaAs), as the potential candidates for TPV cells. The advantages and drawbacks of non-epitaxy and epitaxy growth methods are well-discussed based on different semiconductor materials. In addition, this paper critically examines and summarizes the electrical cell performance of TPV cells made of GaSb, InGaAs and other narrow bandgap semiconductor materials. The cell conversion efficiency improvement in terms of structural design and architectural optimization are also comprehensively analyzed and discussed. Lastly, the practical applications, current issues and challenges of TPV cells are critically reviewed and concluded with recommendations for future research. The highlighted insights of this review will contribute to the increase in effort towards development of future TPV systems with improved cell conversion efficiency.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Materialsarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Materials
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Materials
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    PubMed Central
    Other literature type . 2021
    License: CC BY
    Data sources: PubMed Central
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Materials
    Article . 2021
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    61
    citations61
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Materialsarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Materials
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Materials
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      PubMed Central
      Other literature type . 2021
      License: CC BY
      Data sources: PubMed Central
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Materials
      Article . 2021
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Wan Emilin Suliza Wan Abdul Rashid; Pin Jern Ker; M. Z. Jamaludin; Mansur Mohammed Ali Gamel; +2 Authors

    L'épuisement rapide des combustibles fossiles en raison de la demande croissante d'énergie a suscité une préoccupation mondiale pour améliorer l'efficacité de la conversion de l'énergie. Pourtant, la conversion énergétique des centrales électriques à combustibles fossiles conventionnelles reste relativement faible (moins de 40 %) et une énorme quantité d'énergie est gaspillée sous forme de chaleur, ce qui entraîne des problèmes de réchauffement climatique. Le recyclage et la récupération, même d'une petite partie des pertes d'énergie, pourraient avoir un impact énorme sur les économies d'énergie et minimiser la dépendance aux combustibles fossiles. Le système thermophotovoltaïque semble être un candidat potentiel pour capturer, récupérer et convertir l'énergie thermique résiduelle en électricité utile. Cet article présente un aperçu du développement récent de la technologie thermophotovoltaïque pour les applications de récupération de chaleur résiduelle. Chaque composant du système thermophotovoltaïque, y compris le générateur thermophotovoltaïque/la source de chaleur, l'émetteur thermique, le filtre spectral et les cellules thermophotovoltaïques, est essentiel et peut être conçu pour atteindre une meilleure efficacité de conversion de chaleur en électricité. Récemment, les chercheurs ont montré un grand intérêt pour les systèmes thermophotovoltaïques en champ proche où une intensité de puissance plus élevée peut être capturée par la cellule thermophotovoltaïque, améliorant ainsi les performances globales du système. En outre, les emplacements potentiels pour le piégeage de l'énergie dans les centrales thermiques sont étudiés sur la base de la mesure de la température sur site. En Malaisie, on estime qu'environ 3 831 GWh d'énergie thermique résiduelle pourraient être économisés dans les centrales thermiques opérationnelles. Cette revue contribuera aux connaissances pour le développement futur de systèmes thermophotovoltaïques dans les applications de récupération de chaleur résiduelle tout en résumant les emplacements potentiels pour le piégeage de l'énergie dans les centrales thermiques. El rápido agotamiento de los combustibles fósiles debido a la creciente demanda de energía ha dado lugar a una preocupación mundial por mejorar la eficiencia de conversión de energía. Sin embargo, la conversión de energía de las plantas de generación de energía de combustibles fósiles convencionales sigue siendo relativamente baja (menos del 40%) y se desperdicia una gran cantidad de energía en forma de calor, lo que genera problemas de calentamiento global. Reciclar y recuperar incluso una pequeña parte de las pérdidas de energía podría tener un gran impacto en el ahorro de energía y minimizar la dependencia de los combustibles fósiles. El sistema termofotovoltaico parece ser un candidato potencial para capturar, recuperar y convertir la energía térmica residual en electricidad útil. Este documento presenta una visión general del reciente desarrollo de la tecnología termofotovoltaica para aplicaciones de recuperación de calor residual. Cada componente del sistema termofotovoltaico, incluido el generador termofotovoltaico/fuente de calor, el emisor térmico, el filtro espectral y las células termofotovoltaicas, es vital y se puede diseñar para lograr una mejor eficiencia de conversión de calor a electricidad. Recientemente, los investigadores han mostrado un gran interés en los sistemas termofotovoltaicos de campo cercano donde la célula termofotovoltaica puede capturar una mayor intensidad de potencia, mejorando así el rendimiento general del sistema. Además, se investigan las posibles ubicaciones para la captación de energía en las centrales térmicas en función de la medición de la temperatura in situ. En Malasia, se estima que se podrían ahorrar alrededor de 3.831 GWh de energía térmica residual en las centrales térmicas operativas. Esta revisión contribuirá al conocimiento para el desarrollo futuro de sistemas termofotovoltaicos en aplicaciones de recuperación de calor residual, al tiempo que resume las ubicaciones potenciales para la recuperación de energía en las centrales térmicas. Rapid depletion of fossil fuels due to the growing demand for energy has resulted in a worldwide concern to improve energy conversion efficiency. Yet, the energy conversion of conventional fossil fuel power generation plants remains relatively low (less than 40%) and a huge amount of energy is wasted in the form of heat, leading to global warming issues. Recycling and recuperating even a small portion of energy losses could provide a huge impact on energy saving and minimize the reliance on fossil fuels. Thermophotovoltaic system appears to be a potential candidate to capture, recover, and convert waste heat energy into useful electricity. This paper presents an overview of the recent development of thermophotovoltaic technology for waste heat recovery applications. Each component in the thermophotovoltaic system including thermophotovoltaic generator/heat source, thermal emitter, spectral filter and thermophotovoltaic cells is vital and can be engineered to achieve a better heat-to-electricity conversion efficiency. Recently, researchers have shown great interest in near-field thermophotovoltaic systems where higher power intensity can be captured by the thermophotovoltaic cell, thus improving the overall system performance. Furthermore, the potential locations for energy scavenging in thermal power plants is investigated based on the on-site temperature measurement. In Malaysia, it is estimated that around 3,831 GWh of waste heat energy could be saved in operational thermal power plants. This review will contribute to the knowledge for future development thermophotovoltaic systems in waste heat recovery applications while summarizing the potential locations for energy scavenging in thermal power plants. أدى الاستنزاف السريع للوقود الأحفوري بسبب الطلب المتزايد على الطاقة إلى اهتمام عالمي بتحسين كفاءة تحويل الطاقة. ومع ذلك، لا يزال تحويل الطاقة لمحطات توليد الطاقة التقليدية للوقود الأحفوري منخفضًا نسبيًا (أقل من 40 ٪) ويتم إهدار كمية هائلة من الطاقة في شكل حرارة، مما يؤدي إلى قضايا الاحترار العالمي. يمكن أن توفر إعادة تدوير واستعادة حتى جزء صغير من خسائر الطاقة تأثيرًا كبيرًا على توفير الطاقة وتقليل الاعتماد على الوقود الأحفوري. يبدو أن النظام الكهروضوئي الحراري مرشح محتمل لالتقاط واستعادة وتحويل الطاقة الحرارية المهدرة إلى كهرباء مفيدة. تقدم هذه الورقة لمحة عامة عن التطور الأخير للتكنولوجيا الكهروضوئية الحرارية لتطبيقات استرداد الحرارة المهدرة. يعد كل مكون في النظام الكهروضوئي الحراري بما في ذلك المولد الكهروضوئي الحراري/مصدر الحرارة والباعث الحراري والمرشح الطيفي والخلايا الكهروضوئية الحرارية أمرًا حيويًا ويمكن هندسته لتحقيق كفاءة تحويل أفضل من الحرارة إلى الكهرباء. في الآونة الأخيرة، أظهر الباحثون اهتمامًا كبيرًا بالأنظمة الكهروضوئية الحرارية القريبة من المجال حيث يمكن التقاط كثافة طاقة أعلى بواسطة الخلية الكهروضوئية الحرارية، وبالتالي تحسين أداء النظام بشكل عام. علاوة على ذلك، يتم التحقيق في المواقع المحتملة لكسح الطاقة في محطات الطاقة الحرارية بناءً على قياس درجة الحرارة في الموقع. في ماليزيا، تشير التقديرات إلى أنه يمكن توفير حوالي 3831 جيجاوات ساعة من الطاقة الحرارية المهدرة في محطات الطاقة الحرارية العاملة. ستساهم هذه المراجعة في المعرفة للتطوير المستقبلي للأنظمة الكهروضوئية الحرارية في تطبيقات استرداد الحرارة المهدرة مع تلخيص المواقع المحتملة لكسح الطاقة في محطات الطاقة الحرارية.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    IEEE Access
    Article . 2020 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    IEEE Access
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    IEEE Access
    Article . 2020
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.60692/a3...
    Other literature type . 2020
    Data sources: Datacite
    https://dx.doi.org/10.60692/y0...
    Other literature type . 2020
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    18
    citations18
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      IEEE Access
      Article . 2020 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      IEEE Access
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      IEEE Access
      Article . 2020
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.60692/a3...
      Other literature type . 2020
      Data sources: Datacite
      https://dx.doi.org/10.60692/y0...
      Other literature type . 2020
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nazaruddin Abdul Rahman; Wan Emilin Suliza wan Abd Rashid; Mansur Mohammed Ali Gamel; Wan Emlin Suliza; +3 Authors

    Gallium Antimonide (GaSb) Thermophotovoltaic (TPV) cell is a well-known device for waste-heat harvesting technology. To date, the conversion efficiency of the GaSb TPV cell remains low due to the presence of electrical and spectral losses. In this study, a GaSb TPV cell model is developed using the Silvaco TCAD simulation software. Validation on the simulation model was performed under atmospheric (AM) 1.5 standard test condition (STC) and TPV illumination conditions. Through the validation processes, a set of GaSb physical parameters that are reliable to be used for GaSb TPV cell simulation was established. Under AM1.5 testing condition, the electrical characteristic and performance of GaSb TPV of the reference cell were obtained from an experimental characterization on commercialized devices. A deviation in fill factor and cell efficiency was found between the cell sample and simulation model under AM1.5 illumination. This is due to the presence of resistance losses in the device. Nevertheless, a percentage error of below 3% was achieved under 1200 ° C TPV spectrum. Besides, it was found that a spectral filter that cuts at 2 μm increases the cell efficiency from 11.51% to 19.10% with a power output of 1.33 W/cm2. The finding in this study demonstrates the importance of minimizing the electrical losses and the determination of an optimal filtered spectrum wavelength for developing highperformance GaSb TPV cell.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1109/icp465...
    Conference object . 2020 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1109/icp465...
      Conference object . 2020 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Medrano Gómez, Álvaro Manuel; López, Esther; Garcia-Linares, Pablo; Villa Morales, Juan; +7 Authors

    Germanium is a low-cost alternative to the highly expensive III-V semiconductors commonly used on thermophotovoltaic (TPV) devices. Despite efficiencies up to 16.5 % having been theorized in previous works, no experimental efficiencies have been reported so far for germanium-based devices. In this work, we present the first experimental germanium TPV cell efficiency measured under high view factor and high temperature irradiance conditions. Efficiencies and electric power densities up to 11.2 % and 1.43 W/cm2 have been obtained using a graphite emitter heated at 1440ºC.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Conference object . 2025
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Conference object . 2025
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Conference object . 2025
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Conference object . 2025
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
7 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Medrano Gómez, Álvaro Manuel; López, Esther; García-Linares, Pablo; Villa Morales, Juan; +7 Authors

    Germanium is a low cost alternative to the highly expensive III-V semiconductors commonly used on thermophotovoltaic (TPV) devices. Despite efficiencies up to 16.5 % have been theorized in previous works, no experimental efficiencies have been reported so far for germanium-based devices. In this work, we present the first TPV germanium efficiency measured in a high view factor calorimetry set up. Efficiencies and power densities up to 11.2 % and 1.43 W/cm2 have been obtained using a graphite emitter heated at 1544 ºC.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Presentation . 2024
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Presentation . 2024
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Presentation . 2024
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Presentation . 2024
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mansur Mohammed Ali Gamel; Pin Jern Ker; Wan Emilin Suliza Wan Abdul Rashid; Hui Jing Lee; +2 Authors

    La investigación sobre el efecto de las intensidades de potencia de iluminación para un sistema termofotovoltaico (TPV) es crucial para mejorar el rendimiento de la célula TPV. Hasta la fecha, los estudios sobre el efecto de las intensidades de iluminación se limitaban a la aplicación de células solares fotovoltaicas. Mientras tanto, el trabajo informado sobre el impacto de las intensidades de iluminación infrarroja en las células TPV se realiza a temperaturas e intensidades limitadas. Los efectos de las intensidades de TPV en todos los parámetros de rendimiento no se estudian exhaustivamente ni se aclaran por completo. Por lo tanto, este documento investiga el rendimiento de las células de germanio (Ge) con banda prohibida indirecta y de arseniuro de galio e indio (InGaAs) con banda prohibida directa bajo diversas irradiancias espectrales de TPV. Se utilizó el software de simulación Silvaco TCAD para investigar el efecto de las temperaturas del cuerpo negro que oscilan entre 800 y 2000 K con diferentes intensidades de iluminación en el rendimiento de las celdas TPV. Se encontró que se logran mayores eficiencias de conversión para ambas celdas TPV bajo intensidades de iluminación más altas debido al aumento en el voltaje de circuito abierto y el factor de llenado. A medida que la intensidad del haz aumenta para temperaturas >1600 K, el factor de llenado aumenta lentamente para la celda Ge, pero disminuye para la celda InGaAs debido al aumento en las pérdidas de I 2 R s asociadas con la alta corriente. El hallazgo demuestra que el voltaje de circuito abierto de la celda TPV de banda prohibida indirecta aumenta significativamente con mayores intensidades de iluminación. Las variaciones en el rendimiento de las células se explican explícitamente en función de factores como la estructura de diseño del TPV y las propiedades físicas del semiconductor a diferentes intensidades de iluminación. También se analizó el rendimiento de ambas células TPV a las pérdidas ópticas mínimas. Las eficiencias promedio de las células de Ge e InGaAs TPV aumentaron a 26.05% y 27.92%, respectivamente, cuando las pérdidas ópticas se minimizaron con un recubrimiento antirreflectante y una capa absorbente más gruesa. Los resultados de este trabajo demuestran que mediante la consideración detallada del efecto de las irradiancias espectrales, se puede desarrollar un sistema TPV de alto rendimiento. L'étude de l'effet des intensités de puissance d'éclairage pour un système thermophotovoltaïque (TPV) est cruciale pour améliorer les performances de la cellule TPV. À ce jour, les études sur l'effet des intensités d'éclairage se sont limitées à l'application des cellules solaires photovoltaïques. Pendant ce temps, les travaux rapportés sur l'impact des intensités d'éclairage infrarouge sur les cellules TPV sont effectués à des températures et des intensités limitées. Les effets des intensités de TPV sur tous les paramètres de performance ne sont pas étudiés de manière exhaustive et entièrement élucidés. Par conséquent, cet article étudie la performance des cellules d'arséniure de germanium (Ge) et d'indium gallium (InGaAs) à bande interdite indirecte sous diverses irradiances spectrales TPV. Le logiciel de simulation Silvaco TCAD a été utilisé pour étudier l'effet des températures du corps noir allant de 800 à 2000 K avec différentes intensités d'éclairage sur les performances des cellules TPV. Il a été constaté que des rendements de conversion plus élevés sont obtenus pour les deux cellules TPV sous des intensités d'éclairage plus élevées en raison de l'augmentation de la tension en circuit ouvert et du facteur de remplissage. Lorsque l'intensité du faisceau augmente pour des températures >1600 K, le facteur de remplissage augmente lentement pour la cellule Ge, mais diminue pour la cellule InGaAs en raison de l'augmentation des pertes I 2 R s associées au courant élevé. La découverte démontre que la tension en circuit ouvert de la cellule TPV à bande interdite indirecte est significativement augmentée avec des intensités d'éclairage plus élevées. Les variations dans les performances des cellules sont explicitement expliquées en fonction de facteurs tels que la structure de conception TPV et les propriétés physiques du semi-conducteur à des intensités d'éclairage variables. Les performances des deux cellules TPV ont également été analysées aux pertes optiques minimales. Les efficacités moyennes des cellules TPV Ge et InGaAs ont été augmentées à 26,05% et 27,92%, respectivement, lorsque les pertes optiques ont été minimisées avec un revêtement antireflet et une couche absorbante plus épaisse. Les résultats de ce travail démontrent que par une prise en compte détaillée de l'effet des irradiances spectrales, un système TPV performant peut être développé. The investigation on the effect of illumination power intensities for a thermophotovoltaic (TPV) system is crucial to enhance the TPV cell performance. To date, the studies on the effect of illumination intensities were limited to solar photovoltaic cells application. Meanwhile, the reported work on the impact of infrared illumination intensities on TPV cells are done at limited temperatures and intensities. The effects of TPV intensities on all performance parameters are not comprehensively studied and fully elucidated. Therefore, this paper investigates the performance of indirect-bandgap Germanium (Ge) and direct-bandgap Indium Gallium Arsenide (InGaAs) cells under various TPV spectral irradiances. Silvaco TCAD simulation software was used to investigate the effect of blackbody temperatures ranging from 800 to 2000 K with different illumination intensities on the TPV cell performances. It was found that higher conversion efficiencies are achieved for both TPV cells under higher illumination intensities due to the increase in open-circuit voltage and fill factor. As the beam intensity increases for temperatures >1600 K, fill factor slowly increases for the Ge cell, but decreases for the InGaAs cell due to the increase in the I 2 R s losses associated with the high current. The finding demonstrates that the open-circuit voltage of indirect-bandgap TPV cell is significantly increased with higher illumination intensities. The variations in cells performance are explicitly explained based on factors such as TPV design structure and the physical properties of semiconductor at varying illumination intensities. The performance of both TPV cells were also analyzed at the minimum optical losses. Average efficiencies of Ge and InGaAs TPV cells were increased to 26.05% and 27.92%, respectively, when the optical losses were minimized with anti-reflection coating and thicker absorber layer. The results of this work demonstrate that by detailed consideration of the effect of spectral irradiances, a high-performance TPV system can be developed. يعد التحقيق في تأثير شدة طاقة الإضاءة لنظام الخلايا الكهروضوئية الحرارية (TPV) أمرًا بالغ الأهمية لتعزيز أداء خلايا الخلايا الكهروضوئية الحرارية. حتى الآن، اقتصرت الدراسات حول تأثير شدة الإضاءة على تطبيق الخلايا الشمسية الكهروضوئية. وفي الوقت نفسه، يتم العمل المبلغ عنه بشأن تأثير شدة الإضاءة بالأشعة تحت الحمراء على خلايا TPV في درجات حرارة وشدة محدودة. لم يتم دراسة آثار شدة TPV على جميع معايير الأداء بشكل شامل وتوضيحها بالكامل. لذلك، تبحث هذه الورقة في أداء خلايا الجرمانيوم غير المباشر (Ge) وخلايا زرنيخيد الإنديوم الغاليوم (InGaAs) ذات النطاق الترددي المباشر تحت إشعاعات طيفية مختلفة TPV. تم استخدام برنامج محاكاة Silvaco TCAD للتحقيق في تأثير درجات حرارة الجسم الأسود التي تتراوح من 800 إلى 2000 كلفن مع شدة إضاءة مختلفة على أداء خلايا TPV. وجد أنه يتم تحقيق كفاءات تحويل أعلى لكل من خلايا TPV تحت شدة إضاءة أعلى بسبب الزيادة في جهد الدائرة المفتوحة وعامل التعبئة. مع زيادة شدة الحزمة لدرجات الحرارة >1600 كلفن، يزداد عامل التعبئة ببطء للخلية Ge، ولكنه ينخفض لخلية InGaAs بسبب الزيادة في خسائر I 2 R المرتبطة بالتيار العالي. توضح النتيجة أن جهد الدائرة المفتوحة لخلية TPV ذات النطاق الترددي غير المباشر يزداد بشكل كبير مع شدة إضاءة أعلى. يتم شرح الاختلافات في أداء الخلايا بشكل صريح بناءً على عوامل مثل بنية تصميم TPV والخصائص الفيزيائية لأشباه الموصلات عند شدة إضاءة متفاوتة. كما تم تحليل أداء كل من خلايا TPV عند الحد الأدنى من الخسائر البصرية. تم زيادة متوسط كفاءة خلايا Ge و InGaAs TPV إلى 26.05 ٪ و 27.92 ٪ على التوالي، عندما تم تقليل الخسائر البصرية بطبقة مضادة للانعكاس وطبقة امتصاص أكثر سمكًا. تُظهر نتائج هذا العمل أنه من خلال النظر التفصيلي في تأثير الإشعاعات الطيفية، يمكن تطوير نظام TPV عالي الأداء.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    IEEE Access
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    IEEE Access
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    IEEE Access
    Article . 2021
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.60692/5v...
    Other literature type . 2021
    Data sources: Datacite
    https://dx.doi.org/10.60692/mf...
    Other literature type . 2021
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    14
    citations14
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      IEEE Access
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      IEEE Access
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      IEEE Access
      Article . 2021
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.60692/5v...
      Other literature type . 2021
      Data sources: Datacite
      https://dx.doi.org/10.60692/mf...
      Other literature type . 2021
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Medrano Gómez, Álvaro Manuel; López, Esther; García-Linares, Pablo; Villa Morales, Juan; +7 Authors

    Germanium is a low cost alternative to the highly expensive III-V semiconductors commonly used on thermophotovoltaic (TPV) devices. Despite efficiencies up to 16.5 % have been theorized in previous works, no experimental efficiencies have been reported so far for germanium-based devices. In this work, we present the first TPV germanium efficiency measured in a high view factor calorimetry set up. Efficiencies and power densities up to 11.2 % and 1.43 W/cm2 have been obtained using a graphite emitter heated at 1544 ºC.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.5...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.5281/zenodo...
    Article . 2024
    License: CC BY
    Data sources: Sygma
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.5...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.5281/zenodo...
      Article . 2024
      License: CC BY
      Data sources: Sygma
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mansur Mohammed Ali Gamel; Hui Jing Lee; Wan Emilin Suliza Wan Abdul Rashid; Pin Jern Ker; +3 Authors

    Generally, waste heat is redundantly released into the surrounding by anthropogenic activities without strategized planning. Consequently, urban heat islands and global warming chronically increases over time. Thermophotovoltaic (TPV) systems can be potentially deployed to harvest waste heat and recuperate energy to tackle this global issue with supplementary generation of electrical energy. This paper presents a critical review on two dominant types of semiconductor materials, namely gallium antimonide (GaSb) and indium gallium arsenide (InGaAs), as the potential candidates for TPV cells. The advantages and drawbacks of non-epitaxy and epitaxy growth methods are well-discussed based on different semiconductor materials. In addition, this paper critically examines and summarizes the electrical cell performance of TPV cells made of GaSb, InGaAs and other narrow bandgap semiconductor materials. The cell conversion efficiency improvement in terms of structural design and architectural optimization are also comprehensively analyzed and discussed. Lastly, the practical applications, current issues and challenges of TPV cells are critically reviewed and concluded with recommendations for future research. The highlighted insights of this review will contribute to the increase in effort towards development of future TPV systems with improved cell conversion efficiency.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Materialsarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Materials
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Materials
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    PubMed Central
    Other literature type . 2021
    License: CC BY
    Data sources: PubMed Central
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Materials
    Article . 2021
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    61
    citations61
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Materialsarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Materials
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Materials
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      PubMed Central
      Other literature type . 2021
      License: CC BY
      Data sources: PubMed Central
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Materials
      Article . 2021
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Wan Emilin Suliza Wan Abdul Rashid; Pin Jern Ker; M. Z. Jamaludin; Mansur Mohammed Ali Gamel; +2 Authors

    L'épuisement rapide des combustibles fossiles en raison de la demande croissante d'énergie a suscité une préoccupation mondiale pour améliorer l'efficacité de la conversion de l'énergie. Pourtant, la conversion énergétique des centrales électriques à combustibles fossiles conventionnelles reste relativement faible (moins de 40 %) et une énorme quantité d'énergie est gaspillée sous forme de chaleur, ce qui entraîne des problèmes de réchauffement climatique. Le recyclage et la récupération, même d'une petite partie des pertes d'énergie, pourraient avoir un impact énorme sur les économies d'énergie et minimiser la dépendance aux combustibles fossiles. Le système thermophotovoltaïque semble être un candidat potentiel pour capturer, récupérer et convertir l'énergie thermique résiduelle en électricité utile. Cet article présente un aperçu du développement récent de la technologie thermophotovoltaïque pour les applications de récupération de chaleur résiduelle. Chaque composant du système thermophotovoltaïque, y compris le générateur thermophotovoltaïque/la source de chaleur, l'émetteur thermique, le filtre spectral et les cellules thermophotovoltaïques, est essentiel et peut être conçu pour atteindre une meilleure efficacité de conversion de chaleur en électricité. Récemment, les chercheurs ont montré un grand intérêt pour les systèmes thermophotovoltaïques en champ proche où une intensité de puissance plus élevée peut être capturée par la cellule thermophotovoltaïque, améliorant ainsi les performances globales du système. En outre, les emplacements potentiels pour le piégeage de l'énergie dans les centrales thermiques sont étudiés sur la base de la mesure de la température sur site. En Malaisie, on estime qu'environ 3 831 GWh d'énergie thermique résiduelle pourraient être économisés dans les centrales thermiques opérationnelles. Cette revue contribuera aux connaissances pour le développement futur de systèmes thermophotovoltaïques dans les applications de récupération de chaleur résiduelle tout en résumant les emplacements potentiels pour le piégeage de l'énergie dans les centrales thermiques. El rápido agotamiento de los combustibles fósiles debido a la creciente demanda de energía ha dado lugar a una preocupación mundial por mejorar la eficiencia de conversión de energía. Sin embargo, la conversión de energía de las plantas de generación de energía de combustibles fósiles convencionales sigue siendo relativamente baja (menos del 40%) y se desperdicia una gran cantidad de energía en forma de calor, lo que genera problemas de calentamiento global. Reciclar y recuperar incluso una pequeña parte de las pérdidas de energía podría tener un gran impacto en el ahorro de energía y minimizar la dependencia de los combustibles fósiles. El sistema termofotovoltaico parece ser un candidato potencial para capturar, recuperar y convertir la energía térmica residual en electricidad útil. Este documento presenta una visión general del reciente desarrollo de la tecnología termofotovoltaica para aplicaciones de recuperación de calor residual. Cada componente del sistema termofotovoltaico, incluido el generador termofotovoltaico/fuente de calor, el emisor térmico, el filtro espectral y las células termofotovoltaicas, es vital y se puede diseñar para lograr una mejor eficiencia de conversión de calor a electricidad. Recientemente, los investigadores han mostrado un gran interés en los sistemas termofotovoltaicos de campo cercano donde la célula termofotovoltaica puede capturar una mayor intensidad de potencia, mejorando así el rendimiento general del sistema. Además, se investigan las posibles ubicaciones para la captación de energía en las centrales térmicas en función de la medición de la temperatura in situ. En Malasia, se estima que se podrían ahorrar alrededor de 3.831 GWh de energía térmica residual en las centrales térmicas operativas. Esta revisión contribuirá al conocimiento para el desarrollo futuro de sistemas termofotovoltaicos en aplicaciones de recuperación de calor residual, al tiempo que resume las ubicaciones potenciales para la recuperación de energía en las centrales térmicas. Rapid depletion of fossil fuels due to the growing demand for energy has resulted in a worldwide concern to improve energy conversion efficiency. Yet, the energy conversion of conventional fossil fuel power generation plants remains relatively low (less than 40%) and a huge amount of energy is wasted in the form of heat, leading to global warming issues. Recycling and recuperating even a small portion of energy losses could provide a huge impact on energy saving and minimize the reliance on fossil fuels. Thermophotovoltaic system appears to be a potential candidate to capture, recover, and convert waste heat energy into useful electricity. This paper presents an overview of the recent development of thermophotovoltaic technology for waste heat recovery applications. Each component in the thermophotovoltaic system including thermophotovoltaic generator/heat source, thermal emitter, spectral filter and thermophotovoltaic cells is vital and can be engineered to achieve a better heat-to-electricity conversion efficiency. Recently, researchers have shown great interest in near-field thermophotovoltaic systems where higher power intensity can be captured by the thermophotovoltaic cell, thus improving the overall system performance. Furthermore, the potential locations for energy scavenging in thermal power plants is investigated based on the on-site temperature measurement. In Malaysia, it is estimated that around 3,831 GWh of waste heat energy could be saved in operational thermal power plants. This review will contribute to the knowledge for future development thermophotovoltaic systems in waste heat recovery applications while summarizing the potential locations for energy scavenging in thermal power plants. أدى الاستنزاف السريع للوقود الأحفوري بسبب الطلب المتزايد على الطاقة إلى اهتمام عالمي بتحسين كفاءة تحويل الطاقة. ومع ذلك، لا يزال تحويل الطاقة لمحطات توليد الطاقة التقليدية للوقود الأحفوري منخفضًا نسبيًا (أقل من 40 ٪) ويتم إهدار كمية هائلة من الطاقة في شكل حرارة، مما يؤدي إلى قضايا الاحترار العالمي. يمكن أن توفر إعادة تدوير واستعادة حتى جزء صغير من خسائر الطاقة تأثيرًا كبيرًا على توفير الطاقة وتقليل الاعتماد على الوقود الأحفوري. يبدو أن النظام الكهروضوئي الحراري مرشح محتمل لالتقاط واستعادة وتحويل الطاقة الحرارية المهدرة إلى كهرباء مفيدة. تقدم هذه الورقة لمحة عامة عن التطور الأخير للتكنولوجيا الكهروضوئية الحرارية لتطبيقات استرداد الحرارة المهدرة. يعد كل مكون في النظام الكهروضوئي الحراري بما في ذلك المولد الكهروضوئي الحراري/مصدر الحرارة والباعث الحراري والمرشح الطيفي والخلايا الكهروضوئية الحرارية أمرًا حيويًا ويمكن هندسته لتحقيق كفاءة تحويل أفضل من الحرارة إلى الكهرباء. في الآونة الأخيرة، أظهر الباحثون اهتمامًا كبيرًا بالأنظمة الكهروضوئية الحرارية القريبة من المجال حيث يمكن التقاط كثافة طاقة أعلى بواسطة الخلية الكهروضوئية الحرارية، وبالتالي تحسين أداء النظام بشكل عام. علاوة على ذلك، يتم التحقيق في المواقع المحتملة لكسح الطاقة في محطات الطاقة الحرارية بناءً على قياس درجة الحرارة في الموقع. في ماليزيا، تشير التقديرات إلى أنه يمكن توفير حوالي 3831 جيجاوات ساعة من الطاقة الحرارية المهدرة في محطات الطاقة الحرارية العاملة. ستساهم هذه المراجعة في المعرفة للتطوير المستقبلي للأنظمة الكهروضوئية الحرارية في تطبيقات استرداد الحرارة المهدرة مع تلخيص المواقع المحتملة لكسح الطاقة في محطات الطاقة الحرارية.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    IEEE Access
    Article . 2020 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    IEEE Access
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    IEEE Access
    Article . 2020
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.60692/a3...
    Other literature type . 2020
    Data sources: Datacite
    https://dx.doi.org/10.60692/y0...
    Other literature type . 2020
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    18
    citations18
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      IEEE Access
      Article . 2020 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      IEEE Access
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      IEEE Access
      Article . 2020
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.60692/a3...
      Other literature type . 2020
      Data sources: Datacite
      https://dx.doi.org/10.60692/y0...
      Other literature type . 2020
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nazaruddin Abdul Rahman; Wan Emilin Suliza wan Abd Rashid; Mansur Mohammed Ali Gamel; Wan Emlin Suliza; +3 Authors

    Gallium Antimonide (GaSb) Thermophotovoltaic (TPV) cell is a well-known device for waste-heat harvesting technology. To date, the conversion efficiency of the GaSb TPV cell remains low due to the presence of electrical and spectral losses. In this study, a GaSb TPV cell model is developed using the Silvaco TCAD simulation software. Validation on the simulation model was performed under atmospheric (AM) 1.5 standard test condition (STC) and TPV illumination conditions. Through the validation processes, a set of GaSb physical parameters that are reliable to be used for GaSb TPV cell simulation was established. Under AM1.5 testing condition, the electrical characteristic and performance of GaSb TPV of the reference cell were obtained from an experimental characterization on commercialized devices. A deviation in fill factor and cell efficiency was found between the cell sample and simulation model under AM1.5 illumination. This is due to the presence of resistance losses in the device. Nevertheless, a percentage error of below 3% was achieved under 1200 ° C TPV spectrum. Besides, it was found that a spectral filter that cuts at 2 μm increases the cell efficiency from 11.51% to 19.10% with a power output of 1.33 W/cm2. The finding in this study demonstrates the importance of minimizing the electrical losses and the determination of an optimal filtered spectrum wavelength for developing highperformance GaSb TPV cell.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1109/icp465...
    Conference object . 2020 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1109/icp465...
      Conference object . 2020 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Medrano Gómez, Álvaro Manuel; López, Esther; Garcia-Linares, Pablo; Villa Morales, Juan; +7 Authors

    Germanium is a low-cost alternative to the highly expensive III-V semiconductors commonly used on thermophotovoltaic (TPV) devices. Despite efficiencies up to 16.5 % having been theorized in previous works, no experimental efficiencies have been reported so far for germanium-based devices. In this work, we present the first experimental germanium TPV cell efficiency measured under high view factor and high temperature irradiance conditions. Efficiencies and electric power densities up to 11.2 % and 1.43 W/cm2 have been obtained using a graphite emitter heated at 1440ºC.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Conference object . 2025
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Conference object . 2025
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Conference object . 2025
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Conference object . 2025
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph