- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 United StatesPublisher:Elsevier BV A. Sen Gupta; D.G. Tarboton; P. Hummel; M.E. Brown; S. Habib;This paper presents a data model for organizing the inputs and outputs of an energy balance snowmelt model (the Utah Energy Balance Model, UEB) that provides a foundation for its integration into the EPA BASINS modeling framework and enables its coupling with other hydrologic models in this system. Having UEB as a BASINS component has facilitated its coupling with the Geospatial Streamflow Forecast Model (GeoSFM) to compute the melting of glaciers and subsequent streamflow in the Himalayas. The data model uses a combination of structured text and network Common Data Form (netCDF) files to represent parameters, geographical, time series, and gridded space-time data. We describe the design and structure of this data model, integration methodology of UEB and GeoSFM and illustrate the effectiveness of the resulting coupled models for the computation of surface water input and streamflow for a glaciated watershed in Nepal Himalayas. We developed a data model to structure the input and output of an energy balance snow and glacier melt model.A rainfall-runoff model was coupled with a snow and glacier melt model in EPA BASINS to enhance streamflow information.The model was applied to simulate streamflow using snow and glacier melt information in a high altitude Himalayan watershed.
Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2015License: PDMData sources: Bielefeld Academic Search Engine (BASE)DigitalCommons@USUOther literature type . 2015License: CC BY NC NDData sources: DigitalCommons@USUEnvironmental Modelling & SoftwareArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsoft.2015.02.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2015License: PDMData sources: Bielefeld Academic Search Engine (BASE)DigitalCommons@USUOther literature type . 2015License: CC BY NC NDData sources: DigitalCommons@USUEnvironmental Modelling & SoftwareArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsoft.2015.02.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 United StatesPublisher:Elsevier BV Brown, M E; Racoviteanu, A E; Tarboton, D G; Gupta, A Sen; Nigro, J; Policelli, F; Habib, S; Tokay, M; Shrestha, M S; Bajracharya, S; Hummel, P; Gray, M; Duda, P; Zaitchik, B; Mahat, V; Artan, G; Tokar, S;Quantification of the contribution of the hydrologic components (snow, ice and rain) to river discharge in the Hindu Kush Himalayan (HKH) region is important for decision-making in water sensitive sectors, and for water resources management and flood risk reduction. In this area, access to and monitoring of the glaciers and their melt outflow is challenging due to difficult access, thus modeling based on remote sensing offers the potential for providing information to improve water resources management and decision making. This paper describes an integrated modeling system developed using downscaled NASA satellite based and earth system data products coupled with in-situ hydrologic data to assess the contribution of snow and glaciers to the flows of the rivers in the HKH region. Snow and glacier melt was estimated using the Utah Energy Balance (UEB) model, further enhanced to accommodate glacier ice melt over clean and debris-covered tongues, then meltwater was input into the USGS Geospatial Stream Flow Model (Geo- SFM). The two model components were integrated into Better Assessment Science Integrating point and Nonpoint Sources modeling framework (BASINS) as a user-friendly open source system and was made available to countries in high Asia. Here we present a case study from the Langtang Khola watershed in the monsoon-influenced Nepal Himalaya, used to validate our energy balance approach and to test the applicability of our modeling system. The snow and glacier melt model predicts that for the eight years used for model evaluation (October 2003-September 2010), the total surface water input over the basin was 9.43 m, originating as 62% from glacier melt, 30% from snowmelt and 8% from rainfall. Measured streamflow for those years were 5.02 m, reflecting a runoff coefficient of 0.53. GeoSFM simulated streamflow was 5.31 m indicating reasonable correspondence between measured and model confirming the capability of the integrated system to provide a quantification of water availability.
Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2014License: PDMData sources: Bielefeld Academic Search Engine (BASE)DigitalCommons@USUOther literature type . 2014License: CC BY NC NDData sources: DigitalCommons@USUadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2014.09.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 58 citations 58 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2014License: PDMData sources: Bielefeld Academic Search Engine (BASE)DigitalCommons@USUOther literature type . 2014License: CC BY NC NDData sources: DigitalCommons@USUadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2014.09.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 United StatesPublisher:Elsevier BV A. Sen Gupta; D.G. Tarboton; P. Hummel; M.E. Brown; S. Habib;This paper presents a data model for organizing the inputs and outputs of an energy balance snowmelt model (the Utah Energy Balance Model, UEB) that provides a foundation for its integration into the EPA BASINS modeling framework and enables its coupling with other hydrologic models in this system. Having UEB as a BASINS component has facilitated its coupling with the Geospatial Streamflow Forecast Model (GeoSFM) to compute the melting of glaciers and subsequent streamflow in the Himalayas. The data model uses a combination of structured text and network Common Data Form (netCDF) files to represent parameters, geographical, time series, and gridded space-time data. We describe the design and structure of this data model, integration methodology of UEB and GeoSFM and illustrate the effectiveness of the resulting coupled models for the computation of surface water input and streamflow for a glaciated watershed in Nepal Himalayas. We developed a data model to structure the input and output of an energy balance snow and glacier melt model.A rainfall-runoff model was coupled with a snow and glacier melt model in EPA BASINS to enhance streamflow information.The model was applied to simulate streamflow using snow and glacier melt information in a high altitude Himalayan watershed.
Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2015License: PDMData sources: Bielefeld Academic Search Engine (BASE)DigitalCommons@USUOther literature type . 2015License: CC BY NC NDData sources: DigitalCommons@USUEnvironmental Modelling & SoftwareArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsoft.2015.02.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2015License: PDMData sources: Bielefeld Academic Search Engine (BASE)DigitalCommons@USUOther literature type . 2015License: CC BY NC NDData sources: DigitalCommons@USUEnvironmental Modelling & SoftwareArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsoft.2015.02.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 United StatesPublisher:Elsevier BV Brown, M E; Racoviteanu, A E; Tarboton, D G; Gupta, A Sen; Nigro, J; Policelli, F; Habib, S; Tokay, M; Shrestha, M S; Bajracharya, S; Hummel, P; Gray, M; Duda, P; Zaitchik, B; Mahat, V; Artan, G; Tokar, S;Quantification of the contribution of the hydrologic components (snow, ice and rain) to river discharge in the Hindu Kush Himalayan (HKH) region is important for decision-making in water sensitive sectors, and for water resources management and flood risk reduction. In this area, access to and monitoring of the glaciers and their melt outflow is challenging due to difficult access, thus modeling based on remote sensing offers the potential for providing information to improve water resources management and decision making. This paper describes an integrated modeling system developed using downscaled NASA satellite based and earth system data products coupled with in-situ hydrologic data to assess the contribution of snow and glaciers to the flows of the rivers in the HKH region. Snow and glacier melt was estimated using the Utah Energy Balance (UEB) model, further enhanced to accommodate glacier ice melt over clean and debris-covered tongues, then meltwater was input into the USGS Geospatial Stream Flow Model (Geo- SFM). The two model components were integrated into Better Assessment Science Integrating point and Nonpoint Sources modeling framework (BASINS) as a user-friendly open source system and was made available to countries in high Asia. Here we present a case study from the Langtang Khola watershed in the monsoon-influenced Nepal Himalaya, used to validate our energy balance approach and to test the applicability of our modeling system. The snow and glacier melt model predicts that for the eight years used for model evaluation (October 2003-September 2010), the total surface water input over the basin was 9.43 m, originating as 62% from glacier melt, 30% from snowmelt and 8% from rainfall. Measured streamflow for those years were 5.02 m, reflecting a runoff coefficient of 0.53. GeoSFM simulated streamflow was 5.31 m indicating reasonable correspondence between measured and model confirming the capability of the integrated system to provide a quantification of water availability.
Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2014License: PDMData sources: Bielefeld Academic Search Engine (BASE)DigitalCommons@USUOther literature type . 2014License: CC BY NC NDData sources: DigitalCommons@USUadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2014.09.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 58 citations 58 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2014License: PDMData sources: Bielefeld Academic Search Engine (BASE)DigitalCommons@USUOther literature type . 2014License: CC BY NC NDData sources: DigitalCommons@USUadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhydrol.2014.09.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu