- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 France, Australia, Netherlands, Australia, Argentina, Argentina, ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | TRANZFOREC| TRANZFORAnna L. Jacobsen; Mark Westoby; Jarmila Pittermann; Amy E. Zanne; Amy E. Zanne; Frederic Lens; Hafiz Maherali; R. Brandon Pratt; Patrick J. Mitchell; Radika Bhaskar; Ian J. Wright; Sean M. Gleason; Andrea Nardini; John S. Sperry; Uwe G. Hacke; Taylor S. Feild; Maurizio Mencuccini; Sylvain Delzon; Steven Jansen; Brendan Choat; Sandra Janet Bucci; Stefan Mayr; Timothy J. Brodribb; Jordi Martínez-Vilalta; Hervé Cochard; Hervé Cochard;Shifts in rainfall patterns and increasing temperatures associated with climate change are likely to cause widespread forest decline in regions where droughts are predicted to increase in duration and severity. One primary cause of productivity loss and plant mortality during drought is hydraulic failure. Drought stress creates trapped gas emboli in the water transport system, which reduces the ability of plants to supply water to leaves for photosynthetic gas exchange and can ultimately result in desiccation and mortality. At present we lack a clear picture of how thresholds to hydraulic failure vary across a broad range of species and environments, despite many individual experiments. Here we draw together published and unpublished data on the vulnerability of the transport system to drought-induced embolism for a large number of woody species, with a view to examining the likely consequences of climate change for forest biomes. We show that 70% of 226 forest species from 81 sites worldwide operate with narrow (<1 megapascal) hydraulic safety margins against injurious levels of drought stress and therefore potentially face long-term reductions in productivity and survival if temperature and aridity increase as predicted for many regions across the globe. Safety margins are largely independent of mean annual precipitation, showing that there is global convergence in the vulnerability of forests to drought, with all forest biomes equally vulnerable to hydraulic failure regardless of their current rainfall environment. These findings provide insight into why drought-induced forest decline is occurring not only in arid regions but also in wet forests not normally considered at drought risk.
Nature arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1038/natu...Other literature typeData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Naturalis Institutional RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 2K citations 2,078 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert Nature arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1038/natu...Other literature typeData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Naturalis Institutional RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Portugal, Australia, United Kingdom, Italy, United Kingdom, Australia, Germany, France, United Kingdom, FrancePublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: E..., NSF | COLLABORATIVE RESEARCH: E..., ARC | Testing climatic, physiol... +3 projectsNSF| Collaborative Research: Ecoclimate Teleconnections between Amazonia and Temperate North America: Cross-Region Feedbacks among Tree Mortality, Land Use Change, and the Atmosphere ,NSF| COLLABORATIVE RESEARCH: EAGER-NEON: Prototyping Assessment of Ecoclimate Teleconnections Affecting NEON Domains ,ARC| Testing climatic, physiological and hydrological assumptions underpinning water yield from montane forests ,ARC| Shifting rainfall from spring to autumn: tree growth and water use under climate change ,ARC| Woodland response to elevated CO2 in free air carbon dioxide enrichment: does phosphorus limit the sink for Carbon? ,NSF| Transformative Behavior of Energy, Water and Carbon in the Critical Zone II: Interactions between Long- and Short-term Processes that Control Delivery of Critical Zone ServicesAuthors: Jordi Martínez-Vilalta; Timothy J. Brodribb; Simon M. Landhäusser; Melanie J. B. Zeppel; +62 AuthorsJordi Martínez-Vilalta; Timothy J. Brodribb; Simon M. Landhäusser; Melanie J. B. Zeppel; Melanie J. B. Zeppel; William T. Pockman; Thomas Kolb; Henrik Hartmann; Andy Hector; Travis E. Huxman; Alison K. Macalady; Darin J. Law; L. Turin Dickman; Matthew J. Germino; Danielle A. Way; Danielle A. Way; Leander D. L. Anderegg; Robert E. Pangle; John S. Sperry; David T. Tissue; Nate G. McDowell; J. D. Muss; Brent E. Ewers; Honglang Duan; Patrick J. Hudson; Patrick J. Mitchell; Frida I. Piper; Elizabeth A. Pinkard; Lucía Galiano; Trenton E. Franz; Uwe G. Hacke; Joe Quirk; Greg A. Barron-Gafford; Keith Reinhardt; Adam D. Collins; Arthur Gessler; David M. Love; Jeffrey M. Kane; Sanna Sevanto; Harald Bugmann; Maurizio Mencuccini; David D. Breshears; Henry D. Adams; Núria Garcia-Forner; David A. Galvez; James D. Lewis; David J. Beerling; Michael O'Brien; Chonggang Xu; Michael W. Jenkins; Jennifer A. Plaut; Anna Sala; Craig D. Allen; Monica L. Gaylord; Monica L. Gaylord; Enrico A. Yepez; Michel Vennetier; Jean-Marc Limousin; Anthony P. O'Grady; Richard Cobb; Francesco Ripullone; William R. L. Anderegg; Rodrigo Vargas; Rodrigo Hakamada; Michael G. Ryan; Michael G. Ryan;Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.
Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2017Full-Text: http://hdl.handle.net/11563/128322Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2023Institut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0248-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 835 citations 835 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2017Full-Text: http://hdl.handle.net/11563/128322Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2023Institut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0248-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Publisher:Wiley Funded by:NSERCNSERCZihaohan Sang; Jaime Sebastian‐Azcona; Andreas Hamann; Annette Menzel; Uwe Hacke;AbstractA cost‐effective climate change adaptation strategy for the forestry sector is to move seed sources to more northern and higher elevation planting sites as part of ongoing reforestation programs. This is meant to match locally adapted populations with anticipated environments, but adaptive traits do not always show population differences suitable to mitigate climate change impacts. For white spruce, drought tolerance is a critical adaptive trait to prevent mortality and productivity losses. Here, we use a 40‐year‐old provenance experiment that has been exposed to severe drought periods in 1999 and 2002 to retrospectively investigate drought response and the adaptive capacity of white spruce populations across their boreal range. Relying on dendrochronological analysis under experimentally controlled environments, we evaluate population differences in resistance, resilience, and recovery to these extreme events. Results showed evidence for population differentiation in resistance and recovery parameters, but provenances conformed to approximately the same growth rates under drought conditions and had similar resilience metrics. The lack of populations with better growth rates under drought conditions is contrary to expectations for a wide‐ranging species with distinct regional climates. Populations from the wettest environments in the northeastern boreal were surprisingly drought‐tolerant, suggesting that these populations would readily resist water deficits projected for the 2080s, and supporting the view that northeastern Canada will provide a refugium for boreal species under climate change. The findings also suggest that white spruce is sensitive to growth reductions under climate change in the western boreal. The study highlights that population differentiation in adaptive capacity is species‐ and trait‐specific, and we provide a counterexample for drought tolerance traits, where assisted migration prescriptions may be ineffective to mitigate climate change impacts. For resource managers and policy makers, we provide maps where planning for widespread declines of boreal white spruce forests may be unavoidable.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/eva.12845&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/eva.12845&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United StatesPublisher:Wiley Joseph A. Berry; Lenka Plavcová; Uwe G. Hacke; Leander D. L. Anderegg; William R. L. Anderegg; William R. L. Anderegg; Christopher B. Field;doi: 10.1111/gcb.12100
pmid: 23504895
AbstractForest mortality constitutes a major uncertainty in projections of climate impacts on terrestrial ecosystems and carbon‐cycle feedbacks. Recent drought‐induced, widespread forest die‐offs highlight that climate change could accelerate forest mortality with its diverse and potentially severe consequences for the global carbon cycle, ecosystem services, and biodiversity. How trees die during drought over multiple years remains largely unknown and precludes mechanistic modeling and prediction of forest die‐off with climate change. Here, we examine the physiological basis of a recent multiyear widespread die‐off of trembling aspen (Populus tremuloides) across much of western North America. Using observations from both native trees while they are dying and a rainfall exclusion experiment on mature trees, we measure hydraulic performance over multiple seasons and years and assess pathways of accumulated hydraulic damage. We test whether accumulated hydraulic damage can predict the probability of tree survival over 2 years. We find that hydraulic damage persisted and increased in dying trees over multiple years and exhibited few signs of repair. This accumulated hydraulic deterioration is largely mediated by increased vulnerability to cavitation, a process known as cavitation fatigue. Furthermore, this hydraulic damage predicts the probability of interyear stem mortality. Contrary to the expectation that surviving trees have weathered severe drought, the hydraulic deterioration demonstrated here reveals that surviving regions of these forests are actually more vulnerable to future droughts due to accumulated xylem damage. As the most widespread tree species in North America, increasing vulnerability to drought in these forests has important ramifications for ecosystem stability, biodiversity, and ecosystem carbon balance. Our results provide a foundation for incorporating accumulated drought impacts into climate–vegetation models. Finally, our findings highlight the critical role of drought stress accumulation and repair of stress‐induced damage for avoiding plant mortality, presenting a dynamic and contingent framework for drought impacts on forest ecosystems.
Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2013License: PDMData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 321 citations 321 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2013License: PDMData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 France, Australia, Netherlands, Australia, Argentina, Argentina, ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | TRANZFOREC| TRANZFORAnna L. Jacobsen; Mark Westoby; Jarmila Pittermann; Amy E. Zanne; Amy E. Zanne; Frederic Lens; Hafiz Maherali; R. Brandon Pratt; Patrick J. Mitchell; Radika Bhaskar; Ian J. Wright; Sean M. Gleason; Andrea Nardini; John S. Sperry; Uwe G. Hacke; Taylor S. Feild; Maurizio Mencuccini; Sylvain Delzon; Steven Jansen; Brendan Choat; Sandra Janet Bucci; Stefan Mayr; Timothy J. Brodribb; Jordi Martínez-Vilalta; Hervé Cochard; Hervé Cochard;Shifts in rainfall patterns and increasing temperatures associated with climate change are likely to cause widespread forest decline in regions where droughts are predicted to increase in duration and severity. One primary cause of productivity loss and plant mortality during drought is hydraulic failure. Drought stress creates trapped gas emboli in the water transport system, which reduces the ability of plants to supply water to leaves for photosynthetic gas exchange and can ultimately result in desiccation and mortality. At present we lack a clear picture of how thresholds to hydraulic failure vary across a broad range of species and environments, despite many individual experiments. Here we draw together published and unpublished data on the vulnerability of the transport system to drought-induced embolism for a large number of woody species, with a view to examining the likely consequences of climate change for forest biomes. We show that 70% of 226 forest species from 81 sites worldwide operate with narrow (<1 megapascal) hydraulic safety margins against injurious levels of drought stress and therefore potentially face long-term reductions in productivity and survival if temperature and aridity increase as predicted for many regions across the globe. Safety margins are largely independent of mean annual precipitation, showing that there is global convergence in the vulnerability of forests to drought, with all forest biomes equally vulnerable to hydraulic failure regardless of their current rainfall environment. These findings provide insight into why drought-induced forest decline is occurring not only in arid regions but also in wet forests not normally considered at drought risk.
Nature arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1038/natu...Other literature typeData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Naturalis Institutional RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 2K citations 2,078 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert Nature arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1038/natu...Other literature typeData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Naturalis Institutional RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Portugal, Australia, United Kingdom, Italy, United Kingdom, Australia, Germany, France, United Kingdom, FrancePublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: E..., NSF | COLLABORATIVE RESEARCH: E..., ARC | Testing climatic, physiol... +3 projectsNSF| Collaborative Research: Ecoclimate Teleconnections between Amazonia and Temperate North America: Cross-Region Feedbacks among Tree Mortality, Land Use Change, and the Atmosphere ,NSF| COLLABORATIVE RESEARCH: EAGER-NEON: Prototyping Assessment of Ecoclimate Teleconnections Affecting NEON Domains ,ARC| Testing climatic, physiological and hydrological assumptions underpinning water yield from montane forests ,ARC| Shifting rainfall from spring to autumn: tree growth and water use under climate change ,ARC| Woodland response to elevated CO2 in free air carbon dioxide enrichment: does phosphorus limit the sink for Carbon? ,NSF| Transformative Behavior of Energy, Water and Carbon in the Critical Zone II: Interactions between Long- and Short-term Processes that Control Delivery of Critical Zone ServicesAuthors: Jordi Martínez-Vilalta; Timothy J. Brodribb; Simon M. Landhäusser; Melanie J. B. Zeppel; +62 AuthorsJordi Martínez-Vilalta; Timothy J. Brodribb; Simon M. Landhäusser; Melanie J. B. Zeppel; Melanie J. B. Zeppel; William T. Pockman; Thomas Kolb; Henrik Hartmann; Andy Hector; Travis E. Huxman; Alison K. Macalady; Darin J. Law; L. Turin Dickman; Matthew J. Germino; Danielle A. Way; Danielle A. Way; Leander D. L. Anderegg; Robert E. Pangle; John S. Sperry; David T. Tissue; Nate G. McDowell; J. D. Muss; Brent E. Ewers; Honglang Duan; Patrick J. Hudson; Patrick J. Mitchell; Frida I. Piper; Elizabeth A. Pinkard; Lucía Galiano; Trenton E. Franz; Uwe G. Hacke; Joe Quirk; Greg A. Barron-Gafford; Keith Reinhardt; Adam D. Collins; Arthur Gessler; David M. Love; Jeffrey M. Kane; Sanna Sevanto; Harald Bugmann; Maurizio Mencuccini; David D. Breshears; Henry D. Adams; Núria Garcia-Forner; David A. Galvez; James D. Lewis; David J. Beerling; Michael O'Brien; Chonggang Xu; Michael W. Jenkins; Jennifer A. Plaut; Anna Sala; Craig D. Allen; Monica L. Gaylord; Monica L. Gaylord; Enrico A. Yepez; Michel Vennetier; Jean-Marc Limousin; Anthony P. O'Grady; Richard Cobb; Francesco Ripullone; William R. L. Anderegg; Rodrigo Vargas; Rodrigo Hakamada; Michael G. Ryan; Michael G. Ryan;Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.
Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2017Full-Text: http://hdl.handle.net/11563/128322Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2023Institut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0248-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 835 citations 835 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2017Full-Text: http://hdl.handle.net/11563/128322Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2023Institut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0248-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Publisher:Wiley Funded by:NSERCNSERCZihaohan Sang; Jaime Sebastian‐Azcona; Andreas Hamann; Annette Menzel; Uwe Hacke;AbstractA cost‐effective climate change adaptation strategy for the forestry sector is to move seed sources to more northern and higher elevation planting sites as part of ongoing reforestation programs. This is meant to match locally adapted populations with anticipated environments, but adaptive traits do not always show population differences suitable to mitigate climate change impacts. For white spruce, drought tolerance is a critical adaptive trait to prevent mortality and productivity losses. Here, we use a 40‐year‐old provenance experiment that has been exposed to severe drought periods in 1999 and 2002 to retrospectively investigate drought response and the adaptive capacity of white spruce populations across their boreal range. Relying on dendrochronological analysis under experimentally controlled environments, we evaluate population differences in resistance, resilience, and recovery to these extreme events. Results showed evidence for population differentiation in resistance and recovery parameters, but provenances conformed to approximately the same growth rates under drought conditions and had similar resilience metrics. The lack of populations with better growth rates under drought conditions is contrary to expectations for a wide‐ranging species with distinct regional climates. Populations from the wettest environments in the northeastern boreal were surprisingly drought‐tolerant, suggesting that these populations would readily resist water deficits projected for the 2080s, and supporting the view that northeastern Canada will provide a refugium for boreal species under climate change. The findings also suggest that white spruce is sensitive to growth reductions under climate change in the western boreal. The study highlights that population differentiation in adaptive capacity is species‐ and trait‐specific, and we provide a counterexample for drought tolerance traits, where assisted migration prescriptions may be ineffective to mitigate climate change impacts. For resource managers and policy makers, we provide maps where planning for widespread declines of boreal white spruce forests may be unavoidable.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/eva.12845&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/eva.12845&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United StatesPublisher:Wiley Joseph A. Berry; Lenka Plavcová; Uwe G. Hacke; Leander D. L. Anderegg; William R. L. Anderegg; William R. L. Anderegg; Christopher B. Field;doi: 10.1111/gcb.12100
pmid: 23504895
AbstractForest mortality constitutes a major uncertainty in projections of climate impacts on terrestrial ecosystems and carbon‐cycle feedbacks. Recent drought‐induced, widespread forest die‐offs highlight that climate change could accelerate forest mortality with its diverse and potentially severe consequences for the global carbon cycle, ecosystem services, and biodiversity. How trees die during drought over multiple years remains largely unknown and precludes mechanistic modeling and prediction of forest die‐off with climate change. Here, we examine the physiological basis of a recent multiyear widespread die‐off of trembling aspen (Populus tremuloides) across much of western North America. Using observations from both native trees while they are dying and a rainfall exclusion experiment on mature trees, we measure hydraulic performance over multiple seasons and years and assess pathways of accumulated hydraulic damage. We test whether accumulated hydraulic damage can predict the probability of tree survival over 2 years. We find that hydraulic damage persisted and increased in dying trees over multiple years and exhibited few signs of repair. This accumulated hydraulic deterioration is largely mediated by increased vulnerability to cavitation, a process known as cavitation fatigue. Furthermore, this hydraulic damage predicts the probability of interyear stem mortality. Contrary to the expectation that surviving trees have weathered severe drought, the hydraulic deterioration demonstrated here reveals that surviving regions of these forests are actually more vulnerable to future droughts due to accumulated xylem damage. As the most widespread tree species in North America, increasing vulnerability to drought in these forests has important ramifications for ecosystem stability, biodiversity, and ecosystem carbon balance. Our results provide a foundation for incorporating accumulated drought impacts into climate–vegetation models. Finally, our findings highlight the critical role of drought stress accumulation and repair of stress‐induced damage for avoiding plant mortality, presenting a dynamic and contingent framework for drought impacts on forest ecosystems.
Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2013License: PDMData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 321 citations 321 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Utah State Universit... arrow_drop_down Utah State University: DigitalCommons@USUArticle . 2013License: PDMData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu