Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mads Jyde; John F. Steffensen; Janet Genz; Jon Christian Svendsen; +2 Authors

    Carassius carassius responds to hypoxic conditions by conversion of lactate into ethanol, which is excreted over the gills. However, a closely related species, Cyprinus carpio, does not possess the ability to produce ethanol and would be expected to accumulate lactate during hypoxic exposure. While the increase in oxygen consumption in fish required following strenuous exercise or low environmental oxygen availability has been frequently considered, the primary contributing mechanism remains unknown. This study utilized the close relationship but strongly divergent physiology between C. carpio and C. carassius to examine the possible correlation between excess post-hypoxic oxygen consumption (EPHOC) and lactate accumulation. No difference in the EPHOC:O2 deficit ratio was observed between the two species after 2.5h anoxia, with ratios of 2.0±0.6 (C. carpio) and 1.3±0.3 (C. carassius). As predicted, lactate accumulation dynamics did significantly differ between the species in both plasma and white muscle following anoxic exposure. Significant lactate accumulation was seen in both plasma and muscle in C. carpio, but there was no accumulation of lactate in white muscle tissue of C. carassius. These findings indicate that lactate accumulated as a consequence of 2.5h anoxic exposure is not a major determinant of the resulting EPHOC.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Comparative Biochemi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    59
    citations59
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mads Jyde; John F. Steffensen; Janet Genz; Jon Christian Svendsen; +2 Authors

    Carassius carassius responds to hypoxic conditions by conversion of lactate into ethanol, which is excreted over the gills. However, a closely related species, Cyprinus carpio, does not possess the ability to produce ethanol and would be expected to accumulate lactate during hypoxic exposure. While the increase in oxygen consumption in fish required following strenuous exercise or low environmental oxygen availability has been frequently considered, the primary contributing mechanism remains unknown. This study utilized the close relationship but strongly divergent physiology between C. carpio and C. carassius to examine the possible correlation between excess post-hypoxic oxygen consumption (EPHOC) and lactate accumulation. No difference in the EPHOC:O2 deficit ratio was observed between the two species after 2.5h anoxia, with ratios of 2.0±0.6 (C. carpio) and 1.3±0.3 (C. carassius). As predicted, lactate accumulation dynamics did significantly differ between the species in both plasma and white muscle following anoxic exposure. Significant lactate accumulation was seen in both plasma and muscle in C. carpio, but there was no accumulation of lactate in white muscle tissue of C. carassius. These findings indicate that lactate accumulated as a consequence of 2.5h anoxic exposure is not a major determinant of the resulting EPHOC.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Comparative Biochemi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    59
    citations59
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mads Jyde; John F. Steffensen; Janet Genz; Jon Christian Svendsen; +2 Authors

    Carassius carassius responds to hypoxic conditions by conversion of lactate into ethanol, which is excreted over the gills. However, a closely related species, Cyprinus carpio, does not possess the ability to produce ethanol and would be expected to accumulate lactate during hypoxic exposure. While the increase in oxygen consumption in fish required following strenuous exercise or low environmental oxygen availability has been frequently considered, the primary contributing mechanism remains unknown. This study utilized the close relationship but strongly divergent physiology between C. carpio and C. carassius to examine the possible correlation between excess post-hypoxic oxygen consumption (EPHOC) and lactate accumulation. No difference in the EPHOC:O2 deficit ratio was observed between the two species after 2.5h anoxia, with ratios of 2.0±0.6 (C. carpio) and 1.3±0.3 (C. carassius). As predicted, lactate accumulation dynamics did significantly differ between the species in both plasma and white muscle following anoxic exposure. Significant lactate accumulation was seen in both plasma and muscle in C. carpio, but there was no accumulation of lactate in white muscle tissue of C. carassius. These findings indicate that lactate accumulated as a consequence of 2.5h anoxic exposure is not a major determinant of the resulting EPHOC.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Comparative Biochemi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    59
    citations59
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mads Jyde; John F. Steffensen; Janet Genz; Jon Christian Svendsen; +2 Authors

    Carassius carassius responds to hypoxic conditions by conversion of lactate into ethanol, which is excreted over the gills. However, a closely related species, Cyprinus carpio, does not possess the ability to produce ethanol and would be expected to accumulate lactate during hypoxic exposure. While the increase in oxygen consumption in fish required following strenuous exercise or low environmental oxygen availability has been frequently considered, the primary contributing mechanism remains unknown. This study utilized the close relationship but strongly divergent physiology between C. carpio and C. carassius to examine the possible correlation between excess post-hypoxic oxygen consumption (EPHOC) and lactate accumulation. No difference in the EPHOC:O2 deficit ratio was observed between the two species after 2.5h anoxia, with ratios of 2.0±0.6 (C. carpio) and 1.3±0.3 (C. carassius). As predicted, lactate accumulation dynamics did significantly differ between the species in both plasma and white muscle following anoxic exposure. Significant lactate accumulation was seen in both plasma and muscle in C. carpio, but there was no accumulation of lactate in white muscle tissue of C. carassius. These findings indicate that lactate accumulated as a consequence of 2.5h anoxic exposure is not a major determinant of the resulting EPHOC.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Comparative Biochemi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    59
    citations59
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
Powered by OpenAIRE graph