- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Joanna Mikusińska; Monika Kuźnia; Klaudia Czerwińska; Małgorzata Wilk;doi: 10.3390/en16145458
In agricultural biogas plants, besides biogas, the by-product digestate is also produced. Due to its high moisture content and organic origin, it can successfully be applied in the hydrothermal carbonization process to avoid the fate of landfilling. This paper reviews the properties of agricultural digestate and its hydrothermal conversion (HTC) into hydrochar and process water. The type of feedstock and the parameters of the HTC process, such as temperature, pressure and residence time, affects the physical and chemical characteristics of hydrochar. Therefore, its possible application might be as a biofuel, fertilizer, soil improver, adsorber, or catalyst. In this paper, the properties of hydrochar derived from agricultural digestate are widely discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16145458&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16145458&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Lidia Lombardi; Francesca Tuci; Maciej Śliz; Klaudia Czerwińska; Simone Fabrizi; Małgorzata Wilk;The under-sieve fraction (USF), obtained as one of the output streams from the mechanical pretreatment of mixed municipal solid waste, is usually aerobically biologically stabilized before being landfilled. For its characteristics (i.e., moisture and organic content), the USF can be alternatively processed by hydrothermal carbonization (HTC), producing hydrochar to be used for energy production. Based on previous results obtained from laboratory HTC tests of the USF, this work is aimed at evaluating the sustainability of the proposed process from an environmental point of view by applying the Life Cycle Assessment. Various combinations of process parameters (temperature, time, and dry solid-to-water ratios) and two different utilization pathways for hydrochar (the whole amount produced in external lignite power plants or part of it used internally) are compared. The results indicate that environmental performances are mainly connected with process energy consumption: in general, the cases operating at the lowest dilution ratio and the highest temperature provide improved environmental indicators. Co-combusting all the produced hydrochar in external power plants provides better environmental performances than feeding a portion of it to the HTC itself: the avoided effects by displacing lignite are higher than the additional burdens from natural gas use. Then, alternative process water treatments are compared, showing that the burdens added by the process water treatments do not offset the benefits generated by the main HTC process for the major part of the considered environmental indicators. Finally, the proposed process indicates better environmental performances when compared to the conventional method of treating the USF, based on aerobic biostabilization and landfilling.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2023.04.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2023.04.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Polish Academy of Sciences Chancellery Authors: Małgorzata Wilk; Aneta Magdziarz; Monika Zajemska;Modelling of pollutants concentrations from the biomass combustion process This paper presents possibilities for of numerical modelling of biomass combustion in a commercially available boiler. A sample of biomass was tested with respect to its physical and chemical properties. Thermogravimetry studies of biomass were carried out. Computer simulation makes it possible to analyse complex phenomena which are otherwise difficult to observe. The aim of this work was to model biomass combustion to predict the amount of pollutants generated (NOx, CO, SO2) in the exhaust gases coming out from boilers The calculations were made using the CHEMKIN program. Results of calculations were performed taking into account the influence of temperature, pressure and residence time.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2478/v10176-011-0034-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2478/v10176-011-0034-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Marcin Gajek; Małgorzata Wilk; Maciej Śliz;Abstract Beet pulp is an extremely very wet organic waste derived from sugar production. It can be utilized for energy purposes, e.g. biogas production or as very valuable fodder for animals, mainly horses. The high moisture content (80%) in beet pulp makes it an adequate feedstock for the hydrothermal carbonization process. Therefore, this study is focussed on the hydrothermal carbonization of beet pulp. The following parameters were studied: temperatures of 180, 200, and 220 °C through 1, 2, 3, and 4 h of residence time. The optimal conditions of the process were determined (220 °C and 1 h), based on the physical and chemical properties of solid product hydrochar. The ultimate and proximate analyses, high heating value, energy and mass yields, and energy densification ratio were investigated. The obtained hydrochars were of a coal-like solid biofuel, with high heating values much higher than raw feedstock (c.a. 150% higher). The combustion performance and kinetics of hydrochar based on TGA were determined, indicating better combustion. Moreover, the fibre analysis of hydrochar, supported by infrared spectra and scanning microscope analysis confirmed the changes in its structure. Concluding, organic waste, beet pulp, is of great potential as an energy source using the hydrothermal pretreatment process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.05.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.05.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2016Publisher:EDP Sciences Authors: Małgorzata Wilk;The aim of the paper is to present a relatively new technology – hydrothermal carbonization (HTC) of municipal sewage sludge. The HTC process was conducted in a stainless steel, Zipperclave Stirred Reactor, with a volume of 1000 ml, equipped with a MagneDrive Agitator. The control panel provides a programme which regulates the heater temperature and mixer speed. The main parameters of the process were temperature (~200°C), pressure (~1.5 MPa) and residence time (4, 7, 10, and 12 h). In order to understand the process, the physical, chemical, thermal, and structural characteristics of the solid product, hydrochar, was investigated. Therefore, the ultimate and proximate analyses, and HHV for raw material and obtained hydrochar are presented. The majority of carbon, of the initial present carbon, remained within hydrochar. TA analysis was used to detect the initial and final temperature for the combustion of raw material and hydrochar. This technique is very useful for predicting the combustion characteristics of carbonaceous material. When considering the use of hydrochar as a solid fuel, more energy can be derived from hydrochar than from e.g. incineration of waste, and its carbon emission should be less significant. Therefore, HTC can be an environmentally beneficial technique for the combustion process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/20161000103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/20161000103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:FCT | Associate Laboratory of ...FCT| Associate Laboratory of Energy, Transports and AeronauticsAuthors: Mário Costa; Tomás Botelho; Małgorzata Wilk; Aneta Magdziarz;Abstract Grape pomace is a by-product of the wine making industry with great availability and energetic potential. Torrefaction is a pre-treatment that may enhance the biomass quality as a fuel, and consists in exposing the biomass to an inert atmosphere at a temperature between 200 °C and 300 °C. This study evaluates the combustion characteristics of raw and torrefied grape pomace in a thermogravimetric analyzer and in a drop tube furnace. Initially, the raw grape pomace was torrefied in an argon inert atmosphere at 260 °C. Subsequently, the combustion of the raw and torrefied grape pomace was examined in the thermogravimetric analyzer through non-isothermal runs at a heating rate of 10 °C/min from room temperature to 800 °C. Finally, the combustion of both biomass residues was evaluated in the drop tube furnace at 1100 °C. The data reported includes gas temperature, major gas species concentration and particle burnout measured along the axis of the drop tube furnace. The main conclusions of this study are (i) for the devolatilization stage, the thermogravimetric data yielded apparent activation energy values of 84.9 and 85.2 kJ mol−1, and for the char oxidation stage of 137.5 and 109.2 kJ mol−1 for the raw and torrefied grape pomace, respectively; (ii) the NOx concentrations along the drop tube furnace were always higher for the combustion of the torrefied grape pomace than for the combustion of the raw grape pomace because the former residue has a higher nitrogen content; and (iii) the burnout values along the drop tube furnace were always lower for the combustion of the torrefied grape pomace than for the combustion of the raw grape pomace because the former residue has a lower volatile content and a higher fixed carbon content.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2017.09.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu51 citations 51 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2017.09.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Agnieszka Kopia; Aneta Magdziarz; Izabela Kalemba-Rec; Dorota Nowak-Woźny; Małgorzata Wilk; Janusz A. Kozinski; Marcin Gajek;This paper presents chemical properties of sewage sludge ashes required for determining their thermal characteristics. A novel approach, linking selected advanced analytical techniques with FactSage modelling, was developed and applied to obtain new information on deposit formation mechanisms that contribute to fouling and slagging. The mineral matter and fusion temperatures were investigated using a variety of analytical techniques including XRF, ICP-MS, XRD, SEM-EDX and AFT. The slagging and fouling indices were calculated and the sintering properties were predicted. The studied ashes were rich in P2O5, CaO, SiO2 and Fe2O3, but their concentrations slightly differed. Phase analyses suggested the existence of calcium and phosphorus as main phases. Thermal behaviour of ashes was studied focusing on the mass loss, temperature peaks and thermic effects with the increasing of temperature up to 1200 °C under air atmosphere. The changes in concentration of ash compounds contributed to differences in ash fusion temperatures. FactSage thermochemical equilibrium calculations were used to predict the amount of liquid slag and solid phases, giving information about slagging properties of ashes. The general conclusion based on experimental studies is that sewage sludge ashes cause the slagging and fouling hazard while they reveal low corrosive effect.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.07.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu83 citations 83 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.07.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Małgorzata Wilk; Aneta Magdziarz;Abstract The main aim of the paper was presentation of TG, DTG, and DTA results on the combustion of two different biomasses, sewage sludge and coal and their co-combustion when the biomass and sludge are mixed with coal. The products of the combustion were identified by mass spectrometry and the composition of ash of the fuels evaluated. Thermal analysis has been generally used to characterise the thermal decomposition of biomass, coal and, more recently, sewage sludge. Thermogravimetric analysis is the easiest and the most effective technique to observe the combustion profile of a fuel. The advantage of this analysis is its rapid assessment of the fuel value, the temperatures at which combustion starts and ends and other characteristics, such as maximum reactivity temperature, ash amount and total combustion time. The materials were characterised in terms of their proximate and ultimate analysis and calorific value. The performed investigation of studied fuels combustion and gas composition analysis from TG/DTG and MS experiments have confirmed the variety of their combustion behaviour. The most important results focus on the temperature of maximum weight loss rate and the effect of heating rate. The temperature of maximum weight loss rate were dissimilar (DTG profiles) for studied fuels and the effect of heating rate significantly influenced the TG/DTG curves profiles, too. The co-combustion of coal and sewage sludge or biomass results have shown that coal can be burned with biomass and sewage sludge beneficially.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2013.06.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu176 citations 176 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2013.06.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Klaudia Czerwińska; Joanna Mikusińska; Aleksandra Błoniarz; Maciej Śliz; Małgorzata Wilk;doi: 10.3390/en17143380
The optimal process conditions concerning the hydrothermal carbonization of digested sewage sludge are crucial to the economically effective technology needed to produce a solid product, hydrochar, for energy purposes. Accordingly, different residence times, 0.5 h, 1 h and 2 h, were investigated in order to understand the effect of residence time on the process. Furthermore, the physical and chemical properties of hydrochar were investigated and compared to the raw material. For these reasons, analyses describing fuel properties were performed, including ultimate and proximate analyses, HHV, and TGA analysis. The latter method was employed to study the combustion process of solid samples. In addition, the oxide content of different elements within the ash of solid samples was determined using the XRF method to calculate indices related to operational problems during the combustion process. The results confirmed that time did not matter significantly and the physical and chemical properties of hydrochar were very similar to each other. However, the contact angle for 2 h of residence time confirmed that a longer processing time resulted in a more hydrophobic character of hydrochar and enabled more effective dewaterability of hydrothermal slurry. It was also noted that the hydrothermal carbonization process affected the sewage sludge in a positive way. In brief, the results confirmed that the hydrochar was a brittle, moderately hydrophilic, solid carbon-containing product that provided a different combustion performance than the raw sewage sludge.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17143380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17143380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Authors: Aneta Magdziarz; Małgorzata Wilk; Robert Straka;The present research is focused on investigation of torrefied biomass combustion process and kinetic analysis. Two wood biomass samples (B1 and B2) were torrefied in a specially designed set-up under 1.0 h of residence time, 230, 260 and 290 °C temperatures, and argon atmosphere. The studied materials were characterised in terms of their chemical composition and calorific value. The results showed the improvements of biomass properties towards higher carbon content and low moisture content fuel. The behaviour and comparison of raw and torrefied biomass during the combustion process was investigated by thermal analysis (TG, DTG and DTA). The samples were heated at an ambient temperature up to 700 °C at constant rates: 10, 20 and 40 °C min in air flow. The MS technique was also used simultaneously with TG to determine gaseous products from combustion process (namely NO, CH4, CO2, and H2O). The kinetic parameters were calculated for torrefied biomass combustion using three isoconversional methods: Friedman, Kissinger–Akahira–Sunose and Flynn–Wall–Ozawa. The isoconversional methods were used to find dependency of the activation energy of studied processes on the conversion degree. The kinetic data for raw and torrefied biomass indicates that torrefaction process reduces the activation energy of the studied biomass. The average values of activation energy for biomass combustion e.g. TB1 are E a = 111; 105.2 and 110.4 kJ mol−1 calculated by Friedman, KAS and FWO methods, respectively. For all studied biomass samples, the slight differences between the values of activation energies calculated by Friedman, FWO and KAS methods were obtained.
Journal of Thermal A... arrow_drop_down Journal of Thermal Analysis and CalorimetryArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10973-016-5731-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Thermal A... arrow_drop_down Journal of Thermal Analysis and CalorimetryArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10973-016-5731-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Joanna Mikusińska; Monika Kuźnia; Klaudia Czerwińska; Małgorzata Wilk;doi: 10.3390/en16145458
In agricultural biogas plants, besides biogas, the by-product digestate is also produced. Due to its high moisture content and organic origin, it can successfully be applied in the hydrothermal carbonization process to avoid the fate of landfilling. This paper reviews the properties of agricultural digestate and its hydrothermal conversion (HTC) into hydrochar and process water. The type of feedstock and the parameters of the HTC process, such as temperature, pressure and residence time, affects the physical and chemical characteristics of hydrochar. Therefore, its possible application might be as a biofuel, fertilizer, soil improver, adsorber, or catalyst. In this paper, the properties of hydrochar derived from agricultural digestate are widely discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16145458&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16145458&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Lidia Lombardi; Francesca Tuci; Maciej Śliz; Klaudia Czerwińska; Simone Fabrizi; Małgorzata Wilk;The under-sieve fraction (USF), obtained as one of the output streams from the mechanical pretreatment of mixed municipal solid waste, is usually aerobically biologically stabilized before being landfilled. For its characteristics (i.e., moisture and organic content), the USF can be alternatively processed by hydrothermal carbonization (HTC), producing hydrochar to be used for energy production. Based on previous results obtained from laboratory HTC tests of the USF, this work is aimed at evaluating the sustainability of the proposed process from an environmental point of view by applying the Life Cycle Assessment. Various combinations of process parameters (temperature, time, and dry solid-to-water ratios) and two different utilization pathways for hydrochar (the whole amount produced in external lignite power plants or part of it used internally) are compared. The results indicate that environmental performances are mainly connected with process energy consumption: in general, the cases operating at the lowest dilution ratio and the highest temperature provide improved environmental indicators. Co-combusting all the produced hydrochar in external power plants provides better environmental performances than feeding a portion of it to the HTC itself: the avoided effects by displacing lignite are higher than the additional burdens from natural gas use. Then, alternative process water treatments are compared, showing that the burdens added by the process water treatments do not offset the benefits generated by the main HTC process for the major part of the considered environmental indicators. Finally, the proposed process indicates better environmental performances when compared to the conventional method of treating the USF, based on aerobic biostabilization and landfilling.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2023.04.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2023.04.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Polish Academy of Sciences Chancellery Authors: Małgorzata Wilk; Aneta Magdziarz; Monika Zajemska;Modelling of pollutants concentrations from the biomass combustion process This paper presents possibilities for of numerical modelling of biomass combustion in a commercially available boiler. A sample of biomass was tested with respect to its physical and chemical properties. Thermogravimetry studies of biomass were carried out. Computer simulation makes it possible to analyse complex phenomena which are otherwise difficult to observe. The aim of this work was to model biomass combustion to predict the amount of pollutants generated (NOx, CO, SO2) in the exhaust gases coming out from boilers The calculations were made using the CHEMKIN program. Results of calculations were performed taking into account the influence of temperature, pressure and residence time.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2478/v10176-011-0034-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2478/v10176-011-0034-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Marcin Gajek; Małgorzata Wilk; Maciej Śliz;Abstract Beet pulp is an extremely very wet organic waste derived from sugar production. It can be utilized for energy purposes, e.g. biogas production or as very valuable fodder for animals, mainly horses. The high moisture content (80%) in beet pulp makes it an adequate feedstock for the hydrothermal carbonization process. Therefore, this study is focussed on the hydrothermal carbonization of beet pulp. The following parameters were studied: temperatures of 180, 200, and 220 °C through 1, 2, 3, and 4 h of residence time. The optimal conditions of the process were determined (220 °C and 1 h), based on the physical and chemical properties of solid product hydrochar. The ultimate and proximate analyses, high heating value, energy and mass yields, and energy densification ratio were investigated. The obtained hydrochars were of a coal-like solid biofuel, with high heating values much higher than raw feedstock (c.a. 150% higher). The combustion performance and kinetics of hydrochar based on TGA were determined, indicating better combustion. Moreover, the fibre analysis of hydrochar, supported by infrared spectra and scanning microscope analysis confirmed the changes in its structure. Concluding, organic waste, beet pulp, is of great potential as an energy source using the hydrothermal pretreatment process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.05.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.05.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2016Publisher:EDP Sciences Authors: Małgorzata Wilk;The aim of the paper is to present a relatively new technology – hydrothermal carbonization (HTC) of municipal sewage sludge. The HTC process was conducted in a stainless steel, Zipperclave Stirred Reactor, with a volume of 1000 ml, equipped with a MagneDrive Agitator. The control panel provides a programme which regulates the heater temperature and mixer speed. The main parameters of the process were temperature (~200°C), pressure (~1.5 MPa) and residence time (4, 7, 10, and 12 h). In order to understand the process, the physical, chemical, thermal, and structural characteristics of the solid product, hydrochar, was investigated. Therefore, the ultimate and proximate analyses, and HHV for raw material and obtained hydrochar are presented. The majority of carbon, of the initial present carbon, remained within hydrochar. TA analysis was used to detect the initial and final temperature for the combustion of raw material and hydrochar. This technique is very useful for predicting the combustion characteristics of carbonaceous material. When considering the use of hydrochar as a solid fuel, more energy can be derived from hydrochar than from e.g. incineration of waste, and its carbon emission should be less significant. Therefore, HTC can be an environmentally beneficial technique for the combustion process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/20161000103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/20161000103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:FCT | Associate Laboratory of ...FCT| Associate Laboratory of Energy, Transports and AeronauticsAuthors: Mário Costa; Tomás Botelho; Małgorzata Wilk; Aneta Magdziarz;Abstract Grape pomace is a by-product of the wine making industry with great availability and energetic potential. Torrefaction is a pre-treatment that may enhance the biomass quality as a fuel, and consists in exposing the biomass to an inert atmosphere at a temperature between 200 °C and 300 °C. This study evaluates the combustion characteristics of raw and torrefied grape pomace in a thermogravimetric analyzer and in a drop tube furnace. Initially, the raw grape pomace was torrefied in an argon inert atmosphere at 260 °C. Subsequently, the combustion of the raw and torrefied grape pomace was examined in the thermogravimetric analyzer through non-isothermal runs at a heating rate of 10 °C/min from room temperature to 800 °C. Finally, the combustion of both biomass residues was evaluated in the drop tube furnace at 1100 °C. The data reported includes gas temperature, major gas species concentration and particle burnout measured along the axis of the drop tube furnace. The main conclusions of this study are (i) for the devolatilization stage, the thermogravimetric data yielded apparent activation energy values of 84.9 and 85.2 kJ mol−1, and for the char oxidation stage of 137.5 and 109.2 kJ mol−1 for the raw and torrefied grape pomace, respectively; (ii) the NOx concentrations along the drop tube furnace were always higher for the combustion of the torrefied grape pomace than for the combustion of the raw grape pomace because the former residue has a higher nitrogen content; and (iii) the burnout values along the drop tube furnace were always lower for the combustion of the torrefied grape pomace than for the combustion of the raw grape pomace because the former residue has a lower volatile content and a higher fixed carbon content.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2017.09.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu51 citations 51 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2017.09.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Agnieszka Kopia; Aneta Magdziarz; Izabela Kalemba-Rec; Dorota Nowak-Woźny; Małgorzata Wilk; Janusz A. Kozinski; Marcin Gajek;This paper presents chemical properties of sewage sludge ashes required for determining their thermal characteristics. A novel approach, linking selected advanced analytical techniques with FactSage modelling, was developed and applied to obtain new information on deposit formation mechanisms that contribute to fouling and slagging. The mineral matter and fusion temperatures were investigated using a variety of analytical techniques including XRF, ICP-MS, XRD, SEM-EDX and AFT. The slagging and fouling indices were calculated and the sintering properties were predicted. The studied ashes were rich in P2O5, CaO, SiO2 and Fe2O3, but their concentrations slightly differed. Phase analyses suggested the existence of calcium and phosphorus as main phases. Thermal behaviour of ashes was studied focusing on the mass loss, temperature peaks and thermic effects with the increasing of temperature up to 1200 °C under air atmosphere. The changes in concentration of ash compounds contributed to differences in ash fusion temperatures. FactSage thermochemical equilibrium calculations were used to predict the amount of liquid slag and solid phases, giving information about slagging properties of ashes. The general conclusion based on experimental studies is that sewage sludge ashes cause the slagging and fouling hazard while they reveal low corrosive effect.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.07.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu83 citations 83 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.07.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Małgorzata Wilk; Aneta Magdziarz;Abstract The main aim of the paper was presentation of TG, DTG, and DTA results on the combustion of two different biomasses, sewage sludge and coal and their co-combustion when the biomass and sludge are mixed with coal. The products of the combustion were identified by mass spectrometry and the composition of ash of the fuels evaluated. Thermal analysis has been generally used to characterise the thermal decomposition of biomass, coal and, more recently, sewage sludge. Thermogravimetric analysis is the easiest and the most effective technique to observe the combustion profile of a fuel. The advantage of this analysis is its rapid assessment of the fuel value, the temperatures at which combustion starts and ends and other characteristics, such as maximum reactivity temperature, ash amount and total combustion time. The materials were characterised in terms of their proximate and ultimate analysis and calorific value. The performed investigation of studied fuels combustion and gas composition analysis from TG/DTG and MS experiments have confirmed the variety of their combustion behaviour. The most important results focus on the temperature of maximum weight loss rate and the effect of heating rate. The temperature of maximum weight loss rate were dissimilar (DTG profiles) for studied fuels and the effect of heating rate significantly influenced the TG/DTG curves profiles, too. The co-combustion of coal and sewage sludge or biomass results have shown that coal can be burned with biomass and sewage sludge beneficially.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2013.06.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu176 citations 176 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2013.06.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Klaudia Czerwińska; Joanna Mikusińska; Aleksandra Błoniarz; Maciej Śliz; Małgorzata Wilk;doi: 10.3390/en17143380
The optimal process conditions concerning the hydrothermal carbonization of digested sewage sludge are crucial to the economically effective technology needed to produce a solid product, hydrochar, for energy purposes. Accordingly, different residence times, 0.5 h, 1 h and 2 h, were investigated in order to understand the effect of residence time on the process. Furthermore, the physical and chemical properties of hydrochar were investigated and compared to the raw material. For these reasons, analyses describing fuel properties were performed, including ultimate and proximate analyses, HHV, and TGA analysis. The latter method was employed to study the combustion process of solid samples. In addition, the oxide content of different elements within the ash of solid samples was determined using the XRF method to calculate indices related to operational problems during the combustion process. The results confirmed that time did not matter significantly and the physical and chemical properties of hydrochar were very similar to each other. However, the contact angle for 2 h of residence time confirmed that a longer processing time resulted in a more hydrophobic character of hydrochar and enabled more effective dewaterability of hydrothermal slurry. It was also noted that the hydrothermal carbonization process affected the sewage sludge in a positive way. In brief, the results confirmed that the hydrochar was a brittle, moderately hydrophilic, solid carbon-containing product that provided a different combustion performance than the raw sewage sludge.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17143380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17143380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Authors: Aneta Magdziarz; Małgorzata Wilk; Robert Straka;The present research is focused on investigation of torrefied biomass combustion process and kinetic analysis. Two wood biomass samples (B1 and B2) were torrefied in a specially designed set-up under 1.0 h of residence time, 230, 260 and 290 °C temperatures, and argon atmosphere. The studied materials were characterised in terms of their chemical composition and calorific value. The results showed the improvements of biomass properties towards higher carbon content and low moisture content fuel. The behaviour and comparison of raw and torrefied biomass during the combustion process was investigated by thermal analysis (TG, DTG and DTA). The samples were heated at an ambient temperature up to 700 °C at constant rates: 10, 20 and 40 °C min in air flow. The MS technique was also used simultaneously with TG to determine gaseous products from combustion process (namely NO, CH4, CO2, and H2O). The kinetic parameters were calculated for torrefied biomass combustion using three isoconversional methods: Friedman, Kissinger–Akahira–Sunose and Flynn–Wall–Ozawa. The isoconversional methods were used to find dependency of the activation energy of studied processes on the conversion degree. The kinetic data for raw and torrefied biomass indicates that torrefaction process reduces the activation energy of the studied biomass. The average values of activation energy for biomass combustion e.g. TB1 are E a = 111; 105.2 and 110.4 kJ mol−1 calculated by Friedman, KAS and FWO methods, respectively. For all studied biomass samples, the slight differences between the values of activation energies calculated by Friedman, FWO and KAS methods were obtained.
Journal of Thermal A... arrow_drop_down Journal of Thermal Analysis and CalorimetryArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10973-016-5731-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Thermal A... arrow_drop_down Journal of Thermal Analysis and CalorimetryArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10973-016-5731-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu