- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Hannu Suopajärvi;Kentaro Umeki;
Elsayed Mousa;Kentaro Umeki
Kentaro Umeki in OpenAIREAli Hedayati;
+10 AuthorsAli Hedayati
Ali Hedayati in OpenAIREHannu Suopajärvi;Kentaro Umeki;
Elsayed Mousa;Kentaro Umeki
Kentaro Umeki in OpenAIREAli Hedayati;
Henrik Romar; Antti Kemppainen; Chuan Wang;Ali Hedayati
Ali Hedayati in OpenAIREAekjuthon Phounglamcheik;
Aekjuthon Phounglamcheik
Aekjuthon Phounglamcheik in OpenAIRESari Tuomikoski;
Nicklas Norberg; Alf Andefors;Sari Tuomikoski
Sari Tuomikoski in OpenAIREMarcus Öhman;
Ulla Lassi; Timo Fabritius;Marcus Öhman
Marcus Öhman in OpenAIREAbstract This paper provides a fundamental and critical review of biomass application as a reducing agent and fuel in integrated steelmaking. The basis for the review is derived from the current process and product quality requirements that also biomass-derived fuels should fulfill. The availability and characteristics of different sources of biomass are discussed and suitable pretreatment technologies for their upgrading are evaluated. The existing literature concerning biomass application in bio-coke making, blast furnace injection, iron ore sintering and production of carbon composite agglomerates is reviewed and research gaps filled by providing insights and recommendations to the unresolved challenges. Several possibilities to integrate the production of biomass-based reducing agents with existing industrial infrastructures to lower the cost and increase the total efficiency are given. A comparison of technical challenges and CO2 emission reduction potential between biomass-based steelmaking and other emerging technologies to produce low-CO2 steel is made.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.01.060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 174 citations 174 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.01.060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Wiley Authors: Jim Andersson;Kentaro Umeki;
Kentaro Umeki
Kentaro Umeki in OpenAIREErik Furusjö;
Erik Furusjö
Erik Furusjö in OpenAIREKawnish Kirtania;
+1 AuthorsKawnish Kirtania
Kawnish Kirtania in OpenAIREJim Andersson;Kentaro Umeki;
Kentaro Umeki
Kentaro Umeki in OpenAIREErik Furusjö;
Erik Furusjö
Erik Furusjö in OpenAIREKawnish Kirtania;
Kawnish Kirtania
Kawnish Kirtania in OpenAIREFredrik Weiland;
Fredrik Weiland
Fredrik Weiland in OpenAIREAbstractThis paper describes the development of a multiscale equivalent reactor network model for pressurized entrained flow biomass gasification to quantify the effect of operational parameters on the gasification process, including carbon conversion, cold gas efficiency, and syngas methane content. The model, implemented in the commercial software Aspen Plus, includes chemical kinetics as well as heat and mass transfer. Characteristic aspects of the model are the multiscale effect caused by the combination of transport phenomena at particle scale during heating, pyrolysis, and char burnout, as well as the effect of macroscopic gas flow, including gas recirculation. A validation using experimental data from a pilot‐scale process shows that the model can provide accurate estimations of carbon conversion, concentrations of main syngas components, and cold gas efficiency over a wide range of oxygen‐to‐biomass ratios and reactor loads. The syngas methane content was most difficult to estimate accurately owing to the unavailability of accurate kinetic parameters for steam methane reforming.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201600760&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201600760&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 JapanPublisher:Elsevier BV Authors: Tanaka, Y.;Mesfun, S.;
Mesfun, S.
Mesfun, S. in OpenAIREUmeki, K.;
Umeki, K.
Umeki, K. in OpenAIREToffolo, A.;
+2 AuthorsToffolo, A.
Toffolo, A. in OpenAIRETanaka, Y.;Mesfun, S.;
Mesfun, S.
Mesfun, S. in OpenAIREUmeki, K.;
Umeki, K.
Umeki, K. in OpenAIREToffolo, A.;
Tamaura, Y.; KUNIO YOSHIKAWA;Toffolo, A.
Toffolo, A. in OpenAIREAbstract This paper describes the investigation of a hybrid power production system from biomass and solar energy. This paper suggests integration through heat exchanger network as a useful approach to obtain the synergy between biomass and solar. Biomass is first gasified in a bubbling fluidized bed (BFB) gasifier, and then syngas is used in a gas turbine. Excess heat exists in this sub-system and concentrated solar thermal process (CSTP) while there is a demand of steam for generating gasifying agent. Steam Rankine cycle exploits the heat created by these thermal streams to generate power while satisfying the steam demands. Thermodynamic performance was analyzed by process modelling with a semi-kinetic model of BFB gasifier and pinch analyses. The composition and temperature of gasifying agent showed some effect on the overall efficiency of the system. Higher overall efficiency of the system was achieved at higher temperature and higher O2 fraction in the O2-steam mixture as gasifying agent. The increase in thermal input from CSTP had positive effect on overall efficiency of the hybrid system until thermal input from CSTP becomes dominant against thermal stream related to the gasifier and the gas turbine.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.05.084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.05.084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 SwedenPublisher:Elsevier BV Funded by:EC | CHEERS, RCN | Research Project GASPROFu...EC| CHEERS ,RCN| Research Project GASPROFundamental insight into biomass gasification using experiments and mathematical modellingAuthors: Thamali R. Jayawickrama; Nils Erland L. Haugen;Kentaro Umeki;
Kentaro Umeki
Kentaro Umeki in OpenAIREChar conversion is a complex phenomenon that involves not only heterogeneous reactions but also external and internal heat and mass transfer. Reactor-scale simulations often use a point-particle approach (PP approach) as sub-models for char conversion because of its low computational cost. Despite a number of simplifications involved in the PP approach, there are very few studies that systematically investigate the inaccuracies of the PP approach. This study aims to compare and identify when and why the PP approach deviates from resolved-particle simulations (RP approach). Simulations have been carried out for CO2 gasification of a char particle under zone II conditions (i.e., pore diffusion control) using both PP and RP approaches. Results showed significant deviations between the two approaches for the effectiveness factor, gas compositions, particle temperature, and particle diameter. The most significant sources of inaccuracies in the PP approach are negligence of the non-uniform temperature inside the particle and the inability to accurately model external heat transfer. Under the conditions with low effectiveness factors, the errors of intra-particle processes were dominant while the errors of external processes became dominant when effectiveness factors were close to unity. Because it assumes uniform internal temperature, the models applying the PP approach always predict higher effectiveness factors than the RP approach, despite its accurate estimation of intra-particle mass diffusion effects. As a consequence, the PP approach failed to predict the particle size changes accurately. Meanwhile, no conventional term for external heat transfer could explain the inaccuracy, indicating the importance of other sources of errors such as 2D/3D asymmetry or penetration of external flows inside the particles. Validerad;2024;Nivå 2;2024-07-05 (joosat);Funder: BMWF (01DD21005); Research council of Norway (267916); Bundesministerium für Wissenschaft und Forschung; Norges Forskningsråd;Full text license: CC BY
Fuel arrow_drop_down Publikationer Luleå Tekniska UniversitetArticle . 2024 . Peer-reviewedData sources: Publikationer Luleå Tekniska UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2024.131743&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Fuel arrow_drop_down Publikationer Luleå Tekniska UniversitetArticle . 2024 . Peer-reviewedData sources: Publikationer Luleå Tekniska UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2024.131743&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors:Per Holmgren;
Per Holmgren
Per Holmgren in OpenAIREDavid R. Wagner;
David R. Wagner
David R. Wagner in OpenAIREAnna Strandberg;
Roger Molinder; +3 AuthorsAnna Strandberg
Anna Strandberg in OpenAIREPer Holmgren;
Per Holmgren
Per Holmgren in OpenAIREDavid R. Wagner;
David R. Wagner
David R. Wagner in OpenAIREAnna Strandberg;
Roger Molinder; Henrik Wiinikka;Anna Strandberg
Anna Strandberg in OpenAIREKentaro Umeki;
Kentaro Umeki
Kentaro Umeki in OpenAIREMarkus Broström;
Markus Broström
Markus Broström in OpenAIREParticle properties such as size, shape and density play significant roles on particle flow and flame propagationin pulverized fuel combustion and gasification. A drop tube furnace allows for exper ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2017.06.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2017.06.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors:Kawnish Kirtania;
Joel Axelsson;Kawnish Kirtania
Kawnish Kirtania in OpenAIRELeonidas Matsakas;
Leonidas Matsakas
Leonidas Matsakas in OpenAIREPaul Christakopoulos;
+2 AuthorsPaul Christakopoulos
Paul Christakopoulos in OpenAIREKawnish Kirtania;
Joel Axelsson;Kawnish Kirtania
Kawnish Kirtania in OpenAIRELeonidas Matsakas;
Leonidas Matsakas
Leonidas Matsakas in OpenAIREPaul Christakopoulos;
Paul Christakopoulos
Paul Christakopoulos in OpenAIREKentaro Umeki;
Kentaro Umeki
Kentaro Umeki in OpenAIREErik Furusjö;
Erik Furusjö
Erik Furusjö in OpenAIREDifferent concentrations (0.1 and 1 M K+/Na+) of salt solutions (K2CO3, Na2CO3, NaOH and NaCl) were used to impregnate alkali in sawdust. After devolatilization, char samples were gasified at diffe ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.10.134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu79 citations 79 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.10.134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Embargo end date: 15 May 2018 IrelandPublisher:Elsevier BV Publicly fundedAuthors:Trubetskaya, Anna;
Trubetskaya, Anna
Trubetskaya, Anna in OpenAIREJensen, Peter Arendt;
Jensen, Peter Arendt
Jensen, Peter Arendt in OpenAIREJensen, Anker Degn;
Garcia Llamas, Angel David; +5 AuthorsJensen, Anker Degn
Jensen, Anker Degn in OpenAIRETrubetskaya, Anna;
Trubetskaya, Anna
Trubetskaya, Anna in OpenAIREJensen, Peter Arendt;
Jensen, Peter Arendt
Jensen, Peter Arendt in OpenAIREJensen, Anker Degn;
Garcia Llamas, Angel David;Jensen, Anker Degn
Jensen, Anker Degn in OpenAIREUmeki, Kentaro;
Umeki, Kentaro
Umeki, Kentaro in OpenAIREGardini, Diego;
Kling, Jens; Bates, Richard B.;Gardini, Diego
Gardini, Diego in OpenAIREGlarborg, Peter;
Glarborg, Peter
Glarborg, Peter in OpenAIREhandle: 10379/7357
This study presents the effect of biomass origin on the yield, nanostructure and reactivity of soot. Soot was produced from wood and herbaceous biomass pyrolysis at high heating rates and at temperatures of 1250 and 1400 °C in a drop tube furnace. The structure of solid residues was characterized by electron microscopy techniques, X-ray diffraction and N2 adsorption. The reactivity of soot was investigated by thermogravimetric analysis. Results showed that soot generated at 1400 °C was more reactive than soot generated at 1250 °C for all biomass types. Pinewood, beechwood and wheat straw soot demonstrated differences in alkali content, particle size and nanostructure. Potassium was incorporated in the soot matrix and significantly influenced soot reactivity. Pinewood soot particles produced at 1250 °C had a broader particle size range (27.2–263 nm) compared to beechwood soot (33.2–102 nm) and wheat straw soot (11.5–165.3 nm), and contained mainly multi-core structures.
National University ... arrow_drop_down National University of Ireland (NUI), Galway: ARANArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/10379/7357Data sources: Bielefeld Academic Search Engine (BASE)University of Limerick Institutional RepositoryArticle . 2016 . Peer-reviewedData sources: University of Limerick Institutional RepositoryUniversity of Galway Research RepositoryArticle . 2016License: CC BY NC NDData sources: University of Galway Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 89 citations 89 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert National University ... arrow_drop_down National University of Ireland (NUI), Galway: ARANArticle . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/10379/7357Data sources: Bielefeld Academic Search Engine (BASE)University of Limerick Institutional RepositoryArticle . 2016 . Peer-reviewedData sources: University of Limerick Institutional RepositoryUniversity of Galway Research RepositoryArticle . 2016License: CC BY NC NDData sources: University of Galway Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.02.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 JapanPublisher:Springer Science and Business Media LLC Authors:Kentaro Umeki;
Kunio Yoshikawa; Mi Yan; Herri Susanto; +2 AuthorsKentaro Umeki
Kentaro Umeki in OpenAIREKentaro Umeki;
Kunio Yoshikawa; Mi Yan; Herri Susanto;Kentaro Umeki
Kentaro Umeki in OpenAIREBayu Prabowo;
Bayu Prabowo;Bayu Prabowo
Bayu Prabowo in OpenAIREThis paper explored the feasibility and benefit of CO2 utilization as gasifying agent in the autothermal gasification process. The effects of CO2 injection on reaction temperature and producer gas composition were examined in a pilot scale downdraft gasifier by varying the CO2/C ratio from 0.6 to 1.6. O2 was injected at an equivalence ratio of approximately 0.33–0.38 for supplying heat through partial combustion. The results were also compared with those of air gasification. In general, the increase in CO2 injection resulted in the shift of combustion zone to the downstream of the gasifier. However, compared with that of air gasification, the long and distributed high temperature zones were obtained in CO2-O2 gasification with a CO2/C ratio of 0.6–1.2. The progress of the expected CO2 to CO conversion can be implied from the relatively insignificant decrease in CO fraction as the CO2/C ratio increased. The producer gas heating value of CO2-O2 gasification was consistently higher than that of air gasification. These results show the potential of CO2-O2 gasification for producing high quality producer gas in an efficient manner, and the necessity for more work to deeply imply the observation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11708-015-0375-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11708-015-0375-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Luleå University of Technology Biochar is attracting attention as an alternative carbon/fuel source to coal in the process industry and energy sector. However, it is prone to self-heating and often leads to spontaneous ignition and thermal runaway during storage, resulting in production loss and health risks. This study investigates biochar self-heating upon its contact with O₂ at low temperatures, i.e., 50–300 °C. First, kinetic parameters of O₂ adsorption and CO₂ release were measured in a thermogravimetric analyzer using biochar produced from a pilot-scale pyrolysis process. Then, specific heat capacity and heat of reactions were measured in a differential scanning calorimeter. Finally, a one-dimensional transient model was developed to simulate self-heating in containers and gain insight into the influences of major parameters. The model showed a good agreement with experimental measurement in a closed metal container. It was observed that char temperature slowly increased from the initial temperature due to heat released during O₂ adsorption. Thermal runaway, i.e., self-ignition, was observed in some cases even at the initial biochar temperature of ca. 200 °C. However, if O₂ is not permeable through the container materials, the temperature starts decreasing after the consumption of O₂ in the container. The simulation model was also applied to examine important factors related to self-heating. The results suggested that self-heating can be somewhat mitigated by decreasing the void fraction, reducing storage volume, and lowering the initial char temperature. This study demonstrated a robust way to estimate the cooling demands required in the biochar production process. Datasetet har ursprungligen publicerats i DiVA och flyttades över till SND 2024. Biochar is attracting attention as an alternative carbon/fuel source to coal in the process industry and energy sector. However, it is prone to self-heating and often leads to spontaneous ignition and thermal runaway during storage, resulting in production loss and health risks. This study investigates biochar self-heating upon its contact with O₂ at low temperatures, i.e., 50–300 °C. First, kinetic parameters of O₂ adsorption and CO₂ release were measured in a thermogravimetric analyzer using biochar produced from a pilot-scale pyrolysis process. Then, specific heat capacity and heat of reactions were measured in a differential scanning calorimeter. Finally, a one-dimensional transient model was developed to simulate self-heating in containers and gain insight into the influences of major parameters. The model showed a good agreement with experimental measurement in a closed metal container. It was observed that char temperature slowly increased from the initial temperature due to heat released during O₂ adsorption. Thermal runaway, i.e., self-ignition, was observed in some cases even at the initial biochar temperature of ca. 200 °C. However, if O₂ is not permeable through the container materials, the temperature starts decreasing after the consumption of O₂ in the container. The simulation model was also applied to examine important factors related to self-heating. The results suggested that self-heating can be somewhat mitigated by decreasing the void fraction, reducing storage volume, and lowering the initial char temperature. This study demonstrated a robust way to estimate the cooling demands required in the biochar production process. The dataset was originally published in DiVA and moved to SND in 2024.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5878/0whw-sx85&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5878/0whw-sx85&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FinlandPublisher:Elsevier BV Authors: Farrokh, N. T. (Najibeh Toloue); Suopajärvi, H. (Hannu); Mattila, O. (Olli);Umeki, K. (Kentaro);
+4 AuthorsUmeki, K. (Kentaro)
Umeki, K. (Kentaro) in OpenAIREFarrokh, N. T. (Najibeh Toloue); Suopajärvi, H. (Hannu); Mattila, O. (Olli);Umeki, K. (Kentaro);
Phounglamcheik, A. (Aekjuthon); Romar, H. (Henrik); Sulasalmi, P. (Petri); Fabritius, T. (Timo);Umeki, K. (Kentaro)
Umeki, K. (Kentaro) in OpenAIRESlow pyrolysis as a method of producing a high-quality energy carrier from lignin recovered from wood-based ethanol production has not been studied for co-firing or blast furnace (BF) applications ...
Energy arrow_drop_down University of Oulu Repository - JultikaArticle . 2018Data sources: University of Oulu Repository - Jultikaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.08.161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy arrow_drop_down University of Oulu Repository - JultikaArticle . 2018Data sources: University of Oulu Repository - Jultikaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2018.08.161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu