Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
4 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Zhenfan Wang; Yu Tu; Kai Zhang; Zhaolong Han; +2 Authors

    Wind farm layout optimization (WFLO) seeks to alleviate the wake loss and maximize wind farm power output efficiency, and is a crucial process in the design of wind energy projects.Since the optimization algorithms typically require thousands of numerical evaluations of the wake effects, conventional WFLO studies are usually carried out with the low-fidelity analytical wake models.In this paper, we develop an optimization framework for wind farm layout design using CFD-based Kriging model to maximize the annual energy production (AEP) of wind farms. This surrogate-based optimization (SBO) framework uses latin hypercube sampling to generate a group of wind farm layout samples, based on which CFD simulations are carried out to obtain the corresponding AEPs.This wind farm layout dataset is used to train the Kriging model, which is then integrated with an optimizer based on genetic algorithm (GA). As the optimization progresses, the intermediate optimal layout designs are again fed into the dataset.Such adaptive update of wind farm layout dataset continues until the algorithm converges.To evaluate the performance of the proposed SBO framework, we apply it to three representative wind farm cases.Compared to the conventional staggered layout, the optimized wind farm produces significantly higher total AEP.In particular, the SBO framework requires significantly smaller number of CFD calls to yield the optimal layouts that generates almost the same AEP with the direct CFD-GA method.Further analysis on the velocity fields show that the optimization framework attempts to locate the downstream turbines away from the the wakes of upstream ones.The proposed CFD-based surrogate model provides a more accurate and flexible alternative to the conventional analytical-wake-model-based methods in WFLO tasks, and has the potential to be used for designing efficient wind farm projects.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.48550/ar...
    Article . 2023
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Ocean Engineering
    Article . 2024 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.48550/ar...
      Article . 2023
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Ocean Engineering
      Article . 2024 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Rui Zhang; Limin Kuang; Yu Tu; Zhikun Dong; +5 Authors

    Vertical-axis wind turbines (VAWTs) are gaining attention for urban and offshore applications. However, their development is hindered by suboptimal power performance, primarily attributable to the complex aerodynamic characteristics of the blades. Flow control techniques are expected to regulate the flow on the blade surface and improve blade aerodynamics. In the present study, an effective active flow control technique, multiple boundary layer suction slots (MBLSS), is designed for VAWTs performance improvement. The impact of MBLSS on the aerodynamic performance of VAWTs is examined using high-fidelity computational fluid dynamics simulations. The response surface methodology is employed to identify the relatively optimal configuration of MBLSS. Three key parameters are considered, i.e., number of slots (n), distance between slots (d), and slot length (l), which vary from 2 to 4, 0.025c to 0.125c, and 0.025c to 0.075c, respectively. The results show that MBLSS positively affects the power performance and aerodynamics of VAWTs. Parameter n has the most significant effect on VAWT power performance and the importance of d and l is determined by tip speed ratios (TSRs). Tight and loose slot arrangements are recommended for high and low TSRs, respectively. The relatively optimal configuration (n = 2, d = 0.025c, l = 0.05c) results in a remarkable 31.02% increase in the average net power output of the studied TSRs. The flow control mechanism of MBLSS for VAWT blade boundary layer flow has also been further complemented. MBLSS can prevent the bursting of laminar separation bubbles and avoid the formation of dynamic stall vortices. This increases the blade lift-to-drag ratio and mitigates aerodynamic load fluctuations. The wake profiles of VAWTs with MBLSS are also investigated. This study would add value to the application of active flow control techniques for VAWTs.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Yixiao Shao; Jie Su; Yu Tu; Limin Kuang; +3 Authors

    The actuator line model is used to study the vertically staggered wind turbine cluster composed of horizontal- and vertical-axis wind turbines (HAWTs and VAWTs) in a tandem layout. We consider three simple configurations, including VAWT upwind of HAWT (V + H), VAWT downwind of HAWT (H + V), and VAWT between the two HAWTs (H + V + H). A VAWT installed upwind of the HAWT can not only generate power by itself but can also enhance the power generation of the HAWT, and the total power increases by about 100 kW. When installed downstream the HAWT, the presence of the VAWT slightly reduces the power generation efficiency of the HAWT. However, the VAWT utilizes the increased wind speed between the HAWT and the ground and generates more power. The total power increases by about 60 kW. When installed between the two HAWTs, the beneficial effects of the VAWT on the downstream HAWT are not manifested. Nevertheless, the wind turbine cluster still generates 50 kW more power than that without the VAWT. Overall, even in the tandem layout where the wake effects are most pronounced, the collocation of VAWTs can still utilize the otherwise wasted wind resources, thus increasing the power generation density of wind farms.

    Physics of Fluidsarrow_drop_down
    Physics of Fluids
    Article . 2023 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    7
    citations7
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      Physics of Fluidsarrow_drop_down
      Physics of Fluids
      Article . 2023 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yu Tu; Yaoran Chen; Kai Zhang; Ruiyang He; +2 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2025 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    https://doi.org/10.2139/ssrn.4...
    Article . 2023 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2025 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      https://doi.org/10.2139/ssrn.4...
      Article . 2023 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
4 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Zhenfan Wang; Yu Tu; Kai Zhang; Zhaolong Han; +2 Authors

    Wind farm layout optimization (WFLO) seeks to alleviate the wake loss and maximize wind farm power output efficiency, and is a crucial process in the design of wind energy projects.Since the optimization algorithms typically require thousands of numerical evaluations of the wake effects, conventional WFLO studies are usually carried out with the low-fidelity analytical wake models.In this paper, we develop an optimization framework for wind farm layout design using CFD-based Kriging model to maximize the annual energy production (AEP) of wind farms. This surrogate-based optimization (SBO) framework uses latin hypercube sampling to generate a group of wind farm layout samples, based on which CFD simulations are carried out to obtain the corresponding AEPs.This wind farm layout dataset is used to train the Kriging model, which is then integrated with an optimizer based on genetic algorithm (GA). As the optimization progresses, the intermediate optimal layout designs are again fed into the dataset.Such adaptive update of wind farm layout dataset continues until the algorithm converges.To evaluate the performance of the proposed SBO framework, we apply it to three representative wind farm cases.Compared to the conventional staggered layout, the optimized wind farm produces significantly higher total AEP.In particular, the SBO framework requires significantly smaller number of CFD calls to yield the optimal layouts that generates almost the same AEP with the direct CFD-GA method.Further analysis on the velocity fields show that the optimization framework attempts to locate the downstream turbines away from the the wakes of upstream ones.The proposed CFD-based surrogate model provides a more accurate and flexible alternative to the conventional analytical-wake-model-based methods in WFLO tasks, and has the potential to be used for designing efficient wind farm projects.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.48550/ar...
    Article . 2023
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Ocean Engineering
    Article . 2024 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.48550/ar...
      Article . 2023
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Ocean Engineering
      Article . 2024 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Rui Zhang; Limin Kuang; Yu Tu; Zhikun Dong; +5 Authors

    Vertical-axis wind turbines (VAWTs) are gaining attention for urban and offshore applications. However, their development is hindered by suboptimal power performance, primarily attributable to the complex aerodynamic characteristics of the blades. Flow control techniques are expected to regulate the flow on the blade surface and improve blade aerodynamics. In the present study, an effective active flow control technique, multiple boundary layer suction slots (MBLSS), is designed for VAWTs performance improvement. The impact of MBLSS on the aerodynamic performance of VAWTs is examined using high-fidelity computational fluid dynamics simulations. The response surface methodology is employed to identify the relatively optimal configuration of MBLSS. Three key parameters are considered, i.e., number of slots (n), distance between slots (d), and slot length (l), which vary from 2 to 4, 0.025c to 0.125c, and 0.025c to 0.075c, respectively. The results show that MBLSS positively affects the power performance and aerodynamics of VAWTs. Parameter n has the most significant effect on VAWT power performance and the importance of d and l is determined by tip speed ratios (TSRs). Tight and loose slot arrangements are recommended for high and low TSRs, respectively. The relatively optimal configuration (n = 2, d = 0.025c, l = 0.05c) results in a remarkable 31.02% increase in the average net power output of the studied TSRs. The flow control mechanism of MBLSS for VAWT blade boundary layer flow has also been further complemented. MBLSS can prevent the bursting of laminar separation bubbles and avoid the formation of dynamic stall vortices. This increases the blade lift-to-drag ratio and mitigates aerodynamic load fluctuations. The wake profiles of VAWTs with MBLSS are also investigated. This study would add value to the application of active flow control techniques for VAWTs.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Yixiao Shao; Jie Su; Yu Tu; Limin Kuang; +3 Authors

    The actuator line model is used to study the vertically staggered wind turbine cluster composed of horizontal- and vertical-axis wind turbines (HAWTs and VAWTs) in a tandem layout. We consider three simple configurations, including VAWT upwind of HAWT (V + H), VAWT downwind of HAWT (H + V), and VAWT between the two HAWTs (H + V + H). A VAWT installed upwind of the HAWT can not only generate power by itself but can also enhance the power generation of the HAWT, and the total power increases by about 100 kW. When installed downstream the HAWT, the presence of the VAWT slightly reduces the power generation efficiency of the HAWT. However, the VAWT utilizes the increased wind speed between the HAWT and the ground and generates more power. The total power increases by about 60 kW. When installed between the two HAWTs, the beneficial effects of the VAWT on the downstream HAWT are not manifested. Nevertheless, the wind turbine cluster still generates 50 kW more power than that without the VAWT. Overall, even in the tandem layout where the wake effects are most pronounced, the collocation of VAWTs can still utilize the otherwise wasted wind resources, thus increasing the power generation density of wind farms.

    Physics of Fluidsarrow_drop_down
    Physics of Fluids
    Article . 2023 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    7
    citations7
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      Physics of Fluidsarrow_drop_down
      Physics of Fluids
      Article . 2023 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yu Tu; Yaoran Chen; Kai Zhang; Ruiyang He; +2 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2025 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    https://doi.org/10.2139/ssrn.4...
    Article . 2023 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2025 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      https://doi.org/10.2139/ssrn.4...
      Article . 2023 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph