- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Fernando Canul Bacab;Elda España Gamboa;
Elda España Gamboa
Elda España Gamboa in OpenAIREJuan Enrique Ruiz Espinoza;
Rosa M Leal-Bautista; +4 AuthorsJuan Enrique Ruiz Espinoza
Juan Enrique Ruiz Espinoza in OpenAIREFernando Canul Bacab;Elda España Gamboa;
Elda España Gamboa
Elda España Gamboa in OpenAIREJuan Enrique Ruiz Espinoza;
Rosa M Leal-Bautista;Juan Enrique Ruiz Espinoza
Juan Enrique Ruiz Espinoza in OpenAIRERaúl Tapia Tussell;
Jorge Domínguez Maldonado;Raúl Tapia Tussell
Raúl Tapia Tussell in OpenAIREBlondy Canto Canché;
Liliana Alzate-Gaviria;Blondy Canto Canché
Blondy Canto Canché in OpenAIREdoi: 10.3390/en13040933
In an anaerobic digestion (AD) process, the hydrolysis phase is often limited when substrates with high concentrations of solids are used. We hypothesized that applying micro-aeration in the hydrolysis phase and the application of granular activated carbon (GAC) in the methanogenesis phase could make the AD process more efficient. A packed bed reactor (PBR) coupled with an up-flow anaerobic sludge blanket (UASB) was conducted, and its effects on methane generation were evaluated. The micro-aeration rate applied in PBR was 254 L-air/kg-Total solids (TS)-d was compared with a control reactor. Micro-aeration showed that it reduced the hydrolysis time and increased the organic matter solubilization as chemical oxygen demand (COD) increasing 200%, with a volatile fatty acids (VFAs) increment higher than 300%, compared to the control reactor (without aeration). Our findings revealed that the implementations of microaeration and GAC in the two-phase AD system could enhance methane production by reducing hydrolysis time, increasing solid waste solubilization.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/4/933/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13040933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/4/933/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13040933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors:Juan Enrique Ruiz Espinoza;
Cristian Carrera Figueiras; Alejandro Zepeda Pedreguera;Juan Enrique Ruiz Espinoza
Juan Enrique Ruiz Espinoza in OpenAIREAlfredo Córdova Lizama;
Alfredo Córdova Lizama
Alfredo Córdova Lizama in OpenAIREpmid: 30597397
This work studied the effects on the anaerobic digestion of sewage sludge by zero valent iron nanoparticles (NZVI) dosage. Biochemical methane potential tests were carried out with 5-9 mg/gVS (99.7%, 40-60 nm). The biogas yield increased from 132 (control) to 310 mL/gVS with 9 mg/gVS. The methane content increased from 63.2% (control) to 77.6% with NZVI, which corresponded to a maximum yield of 238 mLCH4/gVS with 9 mg/gVS. The maximum VS reduction was 19.6%. The highest INT-ETS activity (20.1-37.1 µgINTred/gVS·h) corresponding to the maximum values of sCOD was reached within the first days. NZVI decreased the ORP to -300 mV and increased the VFA's concentration (+2000 mg/L). The ORP-VFA-pH analysis showed that NZVI promoted the acidogenesis-acetogenesis without acidification. That is, NZVI was effective in intensifying the performance and stability of the process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.12.086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.12.086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:NSERCNSERCAuthors:Noori M. Cata Saady;
Fatemeh Rezaeitavabe;Noori M. Cata Saady
Noori M. Cata Saady in OpenAIREJuan Enrique Ruiz Espinoza;
Juan Enrique Ruiz Espinoza
Juan Enrique Ruiz Espinoza in OpenAIREdoi: 10.3390/en14196159
This paper reviews the chemical hydrolysis processes of dairy manure fiber to make its sugar accessible to microorganisms during anaerobic digestion and identifies obstacles and opportunities. Researchers, so far, investigated acid, alkali, sulfite, and advanced oxidation processes (such as hydrogen peroxide assisted by microwave/ultrasound irradiation, conventional boiling, and wet oxidation), or their combinations. Generally, dilute acid (3–10%) is less effective than concentrated acid (12.5–75%), which decrystallizes the cellulose. Excessive alkaline may produce difficult-to-degrade oxycellulose. Therefore, multi-step acid hydrolysis (without alkaline) is preferred. Such processes yielded 84% and 80% manure-to-glucose and -xylose conversion, respectively. Acid pretreatment increases lignin concentration in the treated manure and hinders subsequent enzymatic processes but is compatible with fungal cellulolytic enzymes which favor low pH. Manure high alkalinity affects dilute acid pretreatment and lowers glucose yield. Accordingly, the ratio of manure to the chemical agent and its initial concentration, reaction temperature and duration, and manure fineness need optimization because they affect the hydrolysis rate. Optimizing these factors or combining processes should balance removing hemicellulose and/or lignin and increasing cellulose concentrations while not hindering any subsequent process. The reviewed methods are neither economical nor integratable with the on-farm anaerobic digestion. Economic analysis and energy balance should be monolithic components of the research. More research is required to assess the effects of nitrogen content on these processes, optimize it, and determine if another pretreatment is necessary.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14196159&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14196159&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors:Alfredo Córdova Lizama;
Rafael A. Rojas Herrera;Alfredo Córdova Lizama
Alfredo Córdova Lizama in OpenAIREJuan Enrique Ruiz Espinoza;
Cristian Carrera Figueiras; +1 AuthorsJuan Enrique Ruiz Espinoza
Juan Enrique Ruiz Espinoza in OpenAIREAlfredo Córdova Lizama;
Rafael A. Rojas Herrera;Alfredo Córdova Lizama
Alfredo Córdova Lizama in OpenAIREJuan Enrique Ruiz Espinoza;
Cristian Carrera Figueiras; Alejandro Zepeda Pedreguera;Juan Enrique Ruiz Espinoza
Juan Enrique Ruiz Espinoza in OpenAIREAbstract Waste activated sludge (WAS) is a polluting waste with severe management problems that must be treated to prevent pollution and human health risks. Anaerobic digestion (AD) is the most used process to stabilize sludge; however, it must be improved because the biomethanation of sludge entails low biodegradability, pathogen inactivation, and biogas production. This study investigated the effects of ultrasonic pretreatment (USp) of WAS as a strategy to improve AD. Macromolecule solubilization, heavy metal behavior, pathogen inactivation and biogas production were evaluated. USp was applied at a range of 5000–35000 kJ/kg TS (total solids). The maximum solubilization degree of soluble chemical oxygen demand was 26%, and 22.9% of proteins at 35000 kJ/kg TS. The highest USp reduced only 2 log units of pathogens; nevertheless, a high inactivation was obtained when TS were reduced to 2% and continuous stirring was applied. AD of raw and sonicated WAS were compared with biochemical methane potential tests, and a biogas overproduction of 31.43% (219.5 mL/g VS) was achieved at highest USp. A modified Gompertz model was used for kinetic study of biogas production. The kinetic parameters at highest energy were: biogas production potential, G 0 = 634.2 mL; maximum biogas production rate, R max = 57.23 mL/day.
International Biodet... arrow_drop_down International Biodeterioration & BiodegradationArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ibiod.2017.05.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Biodet... arrow_drop_down International Biodeterioration & BiodegradationArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ibiod.2017.05.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu