- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, United StatesPublisher:Oxford University Press (OUP) Funded by:NSF | The Management and Operat...NSF| The Management and Operation of the National Center for Atmoshperic Research (NCAR)Jacquelyn K Shuman; Jennifer K Balch; Rebecca T Barnes; Philip E Higuera; Christopher I Roos; Dylan W Schwilk; E Natasha Stavros; Tirtha Banerjee; Megan M Bela; Jacob Bendix; Sandro Bertolino; Solomon Bililign; Kevin D Bladon; Paulo Brando; Robert E Breidenthal; Brian Buma; Donna Calhoun; Leila M V Carvalho; Megan E Cattau; Kaelin M Cawley; Sudeep Chandra; Melissa L Chipman; Jeanette Cobian-Iñiguez; Erin Conlisk; Jonathan D Coop; Alison Cullen; Kimberley T Davis; Archana Dayalu; Fernando De Sales; Megan Dolman; Lisa M Ellsworth; Scott Franklin; Christopher H Guiterman; Matthew Hamilton; Erin J Hanan; Winslow D Hansen; Stijn Hantson; Brian J Harvey; Andrés Holz; Tao Huang; Matthew D Hurteau; Nayani T Ilangakoon; Megan Jennings; Charles Jones; Anna Klimaszewski-Patterson; Leda N Kobziar; John Kominoski; Branko Kosovic; Meg A Krawchuk; Paul Laris; Jackson Leonard; S Marcela Loria-Salazar; Melissa Lucash; Hussam Mahmoud; Ellis Margolis; Toby Maxwell; Jessica L McCarty; David B McWethy; Rachel S Meyer; Jessica R Miesel; W Keith Moser; R Chelsea Nagy; Dev Niyogi; Hannah M Palmer; Adam Pellegrini; Benjamin Poulter; Kevin Robertson; Adrian V Rocha; Mojtaba Sadegh; Fernanda Santos; Facundo Scordo; Joseph O Sexton; A Surjalal Sharma; Alistair M S Smith; Amber J Soja; Christopher Still; Tyson Swetnam; Alexandra D Syphard; Morgan W Tingley; Ali Tohidi; Anna T Trugman; Merritt Turetsky; J Morgan Varner; Yuhang Wang; Thea Whitman; Stephanie Yelenik; Xuan Zhang;Abstract Fire is an integral component of ecosystems globally and a tool that humans have harnessed for millennia. Altered fire regimes are a fundamental cause and consequence of global change, impacting people and the biophysical systems on which they depend. As part of the newly emerging Anthropocene, marked by human-caused climate change and radical changes to ecosystems, fire danger is increasing, and fires are having increasingly devastating impacts on human health, infrastructure, and ecosystem services. Increasing fire danger is a vexing problem that requires deep transdisciplinary, trans-sector, and inclusive partnerships to address. Here, we outline barriers and opportunities in the next generation of fire science and provide guidance for investment in future research. We synthesize insights needed to better address the long-standing challenges of innovation across disciplines to (i) promote coordinated research efforts; (ii) embrace different ways of knowing and knowledge generation; (iii) promote exploration of fundamental science; (iv) capitalize on the “firehose” of data for societal benefit; and (v) integrate human and natural systems into models across multiple scales. Fire science is thus at a critical transitional moment. We need to shift from observation and modeled representations of varying components of climate, people, vegetation, and fire to more integrative and predictive approaches that support pathways toward mitigating and adapting to our increasingly flammable world, including the utilization of fire for human safety and benefit. Only through overcoming institutional silos and accessing knowledge across diverse communities can we effectively undertake research that improves outcomes in our more fiery future.
Portland State Unive... arrow_drop_down Portland State University: PDXScholarArticle . 2022License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7mg7p5b3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgac115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 56 citations 56 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Portland State Unive... arrow_drop_down Portland State University: PDXScholarArticle . 2022License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7mg7p5b3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgac115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, United StatesPublisher:Oxford University Press (OUP) Funded by:NSF | The Management and Operat...NSF| The Management and Operation of the National Center for Atmoshperic Research (NCAR)Jacquelyn K Shuman; Jennifer K Balch; Rebecca T Barnes; Philip E Higuera; Christopher I Roos; Dylan W Schwilk; E Natasha Stavros; Tirtha Banerjee; Megan M Bela; Jacob Bendix; Sandro Bertolino; Solomon Bililign; Kevin D Bladon; Paulo Brando; Robert E Breidenthal; Brian Buma; Donna Calhoun; Leila M V Carvalho; Megan E Cattau; Kaelin M Cawley; Sudeep Chandra; Melissa L Chipman; Jeanette Cobian-Iñiguez; Erin Conlisk; Jonathan D Coop; Alison Cullen; Kimberley T Davis; Archana Dayalu; Fernando De Sales; Megan Dolman; Lisa M Ellsworth; Scott Franklin; Christopher H Guiterman; Matthew Hamilton; Erin J Hanan; Winslow D Hansen; Stijn Hantson; Brian J Harvey; Andrés Holz; Tao Huang; Matthew D Hurteau; Nayani T Ilangakoon; Megan Jennings; Charles Jones; Anna Klimaszewski-Patterson; Leda N Kobziar; John Kominoski; Branko Kosovic; Meg A Krawchuk; Paul Laris; Jackson Leonard; S Marcela Loria-Salazar; Melissa Lucash; Hussam Mahmoud; Ellis Margolis; Toby Maxwell; Jessica L McCarty; David B McWethy; Rachel S Meyer; Jessica R Miesel; W Keith Moser; R Chelsea Nagy; Dev Niyogi; Hannah M Palmer; Adam Pellegrini; Benjamin Poulter; Kevin Robertson; Adrian V Rocha; Mojtaba Sadegh; Fernanda Santos; Facundo Scordo; Joseph O Sexton; A Surjalal Sharma; Alistair M S Smith; Amber J Soja; Christopher Still; Tyson Swetnam; Alexandra D Syphard; Morgan W Tingley; Ali Tohidi; Anna T Trugman; Merritt Turetsky; J Morgan Varner; Yuhang Wang; Thea Whitman; Stephanie Yelenik; Xuan Zhang;Abstract Fire is an integral component of ecosystems globally and a tool that humans have harnessed for millennia. Altered fire regimes are a fundamental cause and consequence of global change, impacting people and the biophysical systems on which they depend. As part of the newly emerging Anthropocene, marked by human-caused climate change and radical changes to ecosystems, fire danger is increasing, and fires are having increasingly devastating impacts on human health, infrastructure, and ecosystem services. Increasing fire danger is a vexing problem that requires deep transdisciplinary, trans-sector, and inclusive partnerships to address. Here, we outline barriers and opportunities in the next generation of fire science and provide guidance for investment in future research. We synthesize insights needed to better address the long-standing challenges of innovation across disciplines to (i) promote coordinated research efforts; (ii) embrace different ways of knowing and knowledge generation; (iii) promote exploration of fundamental science; (iv) capitalize on the “firehose” of data for societal benefit; and (v) integrate human and natural systems into models across multiple scales. Fire science is thus at a critical transitional moment. We need to shift from observation and modeled representations of varying components of climate, people, vegetation, and fire to more integrative and predictive approaches that support pathways toward mitigating and adapting to our increasingly flammable world, including the utilization of fire for human safety and benefit. Only through overcoming institutional silos and accessing knowledge across diverse communities can we effectively undertake research that improves outcomes in our more fiery future.
Portland State Unive... arrow_drop_down Portland State University: PDXScholarArticle . 2022License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7mg7p5b3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgac115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 56 citations 56 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Portland State Unive... arrow_drop_down Portland State University: PDXScholarArticle . 2022License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7mg7p5b3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgac115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2015 United Kingdom, United Kingdom, United Kingdom, Spain, Argentina, United KingdomPublisher:Resilience Alliance, Inc. Funded by:EC | COMET-LAEC| COMET-LAWaylen, Kerry A.; Martin-Ortega, Julia; Blackstock, Kirsty L.; Brown, Iain; Avendaño Uribe, Bryan E.; Basurto Hernández, Saúl; Bertoni, María Belén; Bustos, M. Lujan; Cruz Bayer, Alejandra Xóchitl; Escalante Semerena, Roberto Ivan; Farah Quijano, Maria Adelaida; Ferrelli, Federico; Fidalgo, Guillermo Luis; Hernández López, Israel; Huamantinco Cisneros, María Andrea; London, Silvia; Maya Vélez, Diana L.; Ocampo-Díaz, Natalia; Ortiz-Guerrero, Cesar E.; Pascale, Juan Carlos; Perillo, Gerardo M.E.; Piccolo, M. Cintia; Pinzón Martínez, Lina N.; Rojas, Mara L.; Scordo, Facundo; Vitale, Valeria; Zilio, Mariana I.;handle: 10396/15290 , 11336/112697
Community-based natural resource management (CBNRM) is a concept critical to managing social-ecological systems but whose implementation needs strengthening. Scenario planning is one approach that may offer benefits relevant to CBNRM but whose potential is not yet well understood. Therefore, we designed, trialed, and evaluated a scenario-planning method intended to support CBNRM in three cases, located in Colombia, Mexico, and Argentina. Implementing scenario planning was judged as worthwhile in all three cases, although aspects of it were challenging to facilitate. The benefits generated were relevant to strengthening CBNRM: encouraging the participation of local people and using their knowledge, enhanced consideration of and adaptation to future change, and supporting the development of systems thinking. Tracing exactly when and how these benefits arose was challenging, but two elements of the method seemed particularly useful. First, using a systematic approach to discuss how drivers of change may affect local social-ecological systems helped to foster systems thinking and identify connections between issues. Second, explicitly focusing on how to use and respond to scenarios helped identify specific practical activities, or “response options,” that would support CBNRM despite the pressures of future change. Discussions about response options also highlighted the need for support by other actors, e.g., policy groups: this raised the question of when and how other actors and other sources of knowledge should be involved in scenario planning, so as to encourage their buy-in to actions identified by the process. We suggest that other CBNRM initiatives may benefit from adapting and applying scenario planning. However, these initiatives should be carefully monitored because further research is required to understand how and when scenario-planning methods may produce benefits, as well as their strengths and weaknesses versus other methods.
CORE arrow_drop_down Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2015License: CC BYFull-Text: http://dx.doi.org/10.5751/ES-07926-200428Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-07926-200428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2015License: CC BYFull-Text: http://dx.doi.org/10.5751/ES-07926-200428Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-07926-200428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2015 United Kingdom, United Kingdom, United Kingdom, Spain, Argentina, United KingdomPublisher:Resilience Alliance, Inc. Funded by:EC | COMET-LAEC| COMET-LAWaylen, Kerry A.; Martin-Ortega, Julia; Blackstock, Kirsty L.; Brown, Iain; Avendaño Uribe, Bryan E.; Basurto Hernández, Saúl; Bertoni, María Belén; Bustos, M. Lujan; Cruz Bayer, Alejandra Xóchitl; Escalante Semerena, Roberto Ivan; Farah Quijano, Maria Adelaida; Ferrelli, Federico; Fidalgo, Guillermo Luis; Hernández López, Israel; Huamantinco Cisneros, María Andrea; London, Silvia; Maya Vélez, Diana L.; Ocampo-Díaz, Natalia; Ortiz-Guerrero, Cesar E.; Pascale, Juan Carlos; Perillo, Gerardo M.E.; Piccolo, M. Cintia; Pinzón Martínez, Lina N.; Rojas, Mara L.; Scordo, Facundo; Vitale, Valeria; Zilio, Mariana I.;handle: 10396/15290 , 11336/112697
Community-based natural resource management (CBNRM) is a concept critical to managing social-ecological systems but whose implementation needs strengthening. Scenario planning is one approach that may offer benefits relevant to CBNRM but whose potential is not yet well understood. Therefore, we designed, trialed, and evaluated a scenario-planning method intended to support CBNRM in three cases, located in Colombia, Mexico, and Argentina. Implementing scenario planning was judged as worthwhile in all three cases, although aspects of it were challenging to facilitate. The benefits generated were relevant to strengthening CBNRM: encouraging the participation of local people and using their knowledge, enhanced consideration of and adaptation to future change, and supporting the development of systems thinking. Tracing exactly when and how these benefits arose was challenging, but two elements of the method seemed particularly useful. First, using a systematic approach to discuss how drivers of change may affect local social-ecological systems helped to foster systems thinking and identify connections between issues. Second, explicitly focusing on how to use and respond to scenarios helped identify specific practical activities, or “response options,” that would support CBNRM despite the pressures of future change. Discussions about response options also highlighted the need for support by other actors, e.g., policy groups: this raised the question of when and how other actors and other sources of knowledge should be involved in scenario planning, so as to encourage their buy-in to actions identified by the process. We suggest that other CBNRM initiatives may benefit from adapting and applying scenario planning. However, these initiatives should be carefully monitored because further research is required to understand how and when scenario-planning methods may produce benefits, as well as their strengths and weaknesses versus other methods.
CORE arrow_drop_down Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2015License: CC BYFull-Text: http://dx.doi.org/10.5751/ES-07926-200428Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-07926-200428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2015License: CC BYFull-Text: http://dx.doi.org/10.5751/ES-07926-200428Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-07926-200428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Wiley Funded by:NSF | Graduate Research Fellows..., NSERC, NSF | RCN:MSB:FRA: Grassroots g...NSF| Graduate Research Fellowship Program (GRFP) ,NSERC ,NSF| RCN:MSB:FRA: Grassroots global network science: a macrosystems modelAuthors: Mary Jade Farruggia; Janice Brahney; Andrew J. Tanentzap; Jennifer A. Brentrup; +18 AuthorsMary Jade Farruggia; Janice Brahney; Andrew J. Tanentzap; Jennifer A. Brentrup; Ludmila S. Brighenti; Sudeep Chandra; Alicia Cortés; Rocio L. Fernandez; Janet M. Fischer; Alexander L. Forrest; Yufang Jin; Kenneth Larrieu; Ian M. McCullough; Isabella A. Oleksy; Rachel M. Pilla; James A. Rusak; Facundo Scordo; Adrianne P. Smits; Celia C. Symons; Minmeng Tang; Samuel G. Woodman; Steven Sadro;doi: 10.1111/gcb.17367 , 10.31223/x53h41
pmid: 38840430
AbstractWildfire activity is increasing globally. The resulting smoke plumes can travel hundreds to thousands of kilometers, reflecting or scattering sunlight and depositing particles within ecosystems. Several key physical, chemical, and biological processes in lakes are controlled by factors affected by smoke. The spatial and temporal scales of lake exposure to smoke are extensive and under‐recognized. We introduce the concept of the lake smoke‐day, or the number of days any given lake is exposed to smoke in any given fire season, and quantify the total lake smoke‐day exposure in North America from 2019 to 2021. Because smoke can be transported at continental to intercontinental scales, even regions that may not typically experience direct burning of landscapes by wildfire are at risk of smoke exposure. We found that 99.3% of North America was covered by smoke, affecting a total of 1,333,687 lakes ≥10 ha. An incredible 98.9% of lakes experienced at least 10 smoke‐days a year, with 89.6% of lakes receiving over 30 lake smoke‐days, and lakes in some regions experiencing up to 4 months of cumulative smoke‐days. Herein we review the mechanisms through which smoke and ash can affect lakes by altering the amount and spectral composition of incoming solar radiation and depositing carbon, nutrients, or toxic compounds that could alter chemical conditions and impact biota. We develop a conceptual framework that synthesizes known and theoretical impacts of smoke on lakes to guide future research. Finally, we identify emerging research priorities that can help us better understand how lakes will be affected by smoke as wildfire activity increases due to climate change and other anthropogenic activities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Wiley Funded by:NSF | Graduate Research Fellows..., NSERC, NSF | RCN:MSB:FRA: Grassroots g...NSF| Graduate Research Fellowship Program (GRFP) ,NSERC ,NSF| RCN:MSB:FRA: Grassroots global network science: a macrosystems modelAuthors: Mary Jade Farruggia; Janice Brahney; Andrew J. Tanentzap; Jennifer A. Brentrup; +18 AuthorsMary Jade Farruggia; Janice Brahney; Andrew J. Tanentzap; Jennifer A. Brentrup; Ludmila S. Brighenti; Sudeep Chandra; Alicia Cortés; Rocio L. Fernandez; Janet M. Fischer; Alexander L. Forrest; Yufang Jin; Kenneth Larrieu; Ian M. McCullough; Isabella A. Oleksy; Rachel M. Pilla; James A. Rusak; Facundo Scordo; Adrianne P. Smits; Celia C. Symons; Minmeng Tang; Samuel G. Woodman; Steven Sadro;doi: 10.1111/gcb.17367 , 10.31223/x53h41
pmid: 38840430
AbstractWildfire activity is increasing globally. The resulting smoke plumes can travel hundreds to thousands of kilometers, reflecting or scattering sunlight and depositing particles within ecosystems. Several key physical, chemical, and biological processes in lakes are controlled by factors affected by smoke. The spatial and temporal scales of lake exposure to smoke are extensive and under‐recognized. We introduce the concept of the lake smoke‐day, or the number of days any given lake is exposed to smoke in any given fire season, and quantify the total lake smoke‐day exposure in North America from 2019 to 2021. Because smoke can be transported at continental to intercontinental scales, even regions that may not typically experience direct burning of landscapes by wildfire are at risk of smoke exposure. We found that 99.3% of North America was covered by smoke, affecting a total of 1,333,687 lakes ≥10 ha. An incredible 98.9% of lakes experienced at least 10 smoke‐days a year, with 89.6% of lakes receiving over 30 lake smoke‐days, and lakes in some regions experiencing up to 4 months of cumulative smoke‐days. Herein we review the mechanisms through which smoke and ash can affect lakes by altering the amount and spectral composition of incoming solar radiation and depositing carbon, nutrients, or toxic compounds that could alter chemical conditions and impact biota. We develop a conceptual framework that synthesizes known and theoretical impacts of smoke on lakes to guide future research. Finally, we identify emerging research priorities that can help us better understand how lakes will be affected by smoke as wildfire activity increases due to climate change and other anthropogenic activities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Facundo Scordo; Carina Seitz; Leonardo Buria; M. Cintia Piccolo; Gerardo M.E. Perillo;pmid: 39908900
We study the causes of the reduction in the surface area of five terminal lakes since 2007, within Laguna Blanca National Park, a Ramsar site in Patagonia (Southern South America). The terminal lakes in this park are critical habitats for several species of animals, some of which are endemic and endangered. We analyzed the lakes' area time series (1998-2024), a climatic index determining dry and wet periods, and human land use changes in the basin of the lakes. The area of the five terminal lakes decreased between 20 and 52 % since 2007, with a higher reduction in the smaller lakes. From 2007 to 2024, the months with dry conditions increased by 29 %, and the months with wet conditions decreased by 13 %, compared to 1998-2006. Moreover, since October 2020, fifty-three (53) irrigation channels have been constructed on the basin of Laguna Blanca Lake. Before the construction of the channels, Laguna Blanca Lake had already decreased by 19 % compared to 2007. The other four terminal lakes are outside the sub-basin affected by the channels. Therefore, the reduction in the surface area of all the terminal lakes was primarily due to an increase in dry conditions. However, the irrigation channels may accelerate the desiccation of Laguna Blanca Lake. As in our study, several terminal lakes are globally drying quickly due to climate change and human impact. This study shows international and local discussions are needed to prevent the disappearance of terminal lakes, as they are impacted even when located on protected land.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2025.178714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2025.178714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Facundo Scordo; Carina Seitz; Leonardo Buria; M. Cintia Piccolo; Gerardo M.E. Perillo;pmid: 39908900
We study the causes of the reduction in the surface area of five terminal lakes since 2007, within Laguna Blanca National Park, a Ramsar site in Patagonia (Southern South America). The terminal lakes in this park are critical habitats for several species of animals, some of which are endemic and endangered. We analyzed the lakes' area time series (1998-2024), a climatic index determining dry and wet periods, and human land use changes in the basin of the lakes. The area of the five terminal lakes decreased between 20 and 52 % since 2007, with a higher reduction in the smaller lakes. From 2007 to 2024, the months with dry conditions increased by 29 %, and the months with wet conditions decreased by 13 %, compared to 1998-2006. Moreover, since October 2020, fifty-three (53) irrigation channels have been constructed on the basin of Laguna Blanca Lake. Before the construction of the channels, Laguna Blanca Lake had already decreased by 19 % compared to 2007. The other four terminal lakes are outside the sub-basin affected by the channels. Therefore, the reduction in the surface area of all the terminal lakes was primarily due to an increase in dry conditions. However, the irrigation channels may accelerate the desiccation of Laguna Blanca Lake. As in our study, several terminal lakes are globally drying quickly due to climate change and human impact. This study shows international and local discussions are needed to prevent the disappearance of terminal lakes, as they are impacted even when located on protected land.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2025.178714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2025.178714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 New Zealand, Netherlands, Netherlands, Australia, Denmark, Norway, France, AustraliaPublisher:American Geophysical Union (AGU) Gesa A. Weyhenmeyer; Azubuike V. Chukwuka; Orlane Anneville; Justin Brookes; Carolinne R. Carvalho; James B. Cotner; Hans‐Peter Grossart; David P. Hamilton; Paul C. Hanson; Josef Hejzlar; Sabine Hilt; Matthew R. Hipsey; Bas W. Ibelings; Stéphan Jacquet; Külli Kangur; Theis Kragh; Bernhard Lehner; Fabio Lepori; Ben Lukubye; Rafael Marce; Yvonne McElarney; Ma. Cristina Paule‐Mercado; Rebecca North; Keilor Rojas‐Jimenez; James A. Rusak; Sapna Sharma; Facundo Scordo; Lisette N. de Senerpont Domis; Jonas Stage Sø; Susanna (Susie) A. Wood; Marguerite A. Xenopoulos; Yongqiang Zhou;AbstractThe world's 1.4 million lakes (≥10 ha) provide many ecosystem services that are essential for human well‐being; however, only if their health status is good. Here, we reviewed common lake health issues and classified them using a simple human health‐based approach to outline that lakes are living systems that are in need of oxygen, clean water and a balanced energy and nutrient supply. The main reason for adopting some of the human health terminology for the lake health classification is to increase the awareness and understanding of global lake health issues. We show that lakes are exposed to various anthropogenic stressors which can result in many lake health issues, ranging from thermal, circulatory, respiratory, nutritional and metabolic issues to infections and poisoning. Of particular concern for human well‐being is the widespread lake drying, which is a severe circulatory issue with many cascading effects on lake health. We estimated that ∼115,000 lakes evaporate twice as much water as they gain from direct precipitation, making them vulnerable to potential drying if inflowing waters follow the drying trend, putting more than 153 million people at risk who live in close vicinity to those lakes. Where lake health issues remain untreated, essential ecosystem services will decline or even vanish, posing a threat to the well‐being of millions of people. We recommend coordinated multisectoral and multidisciplinary prevention and treatment strategies, which need to include a follow‐up of the progress and an assessment of the resilience of lakes to intensifying threats. Priority should be given to implementing sewage water treatment, mitigating climate change, counteracting introductions of non‐native species to lakes and decreasing uncontrolled anthropogenic releases of chemicals into the hydro‐, bio‐, and atmosphere.
Lincoln University (... arrow_drop_down Lincoln University (New Zealand): Lincoln U Research ArchiveArticleLicense: CC BYFull-Text: https://doi.org/10.1029/2023ef004387Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2024License: CC BYFull-Text: https://hdl.handle.net/10072/430772Data sources: Bielefeld Academic Search Engine (BASE)Earth's FutureArticle . 2024License: CC BYData sources: University of Southern Denmark Research OutputBergen Open Research Archive - UiBArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversité Savoie Mont Blanc: HALArticle . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023ef004387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Lincoln University (... arrow_drop_down Lincoln University (New Zealand): Lincoln U Research ArchiveArticleLicense: CC BYFull-Text: https://doi.org/10.1029/2023ef004387Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2024License: CC BYFull-Text: https://hdl.handle.net/10072/430772Data sources: Bielefeld Academic Search Engine (BASE)Earth's FutureArticle . 2024License: CC BYData sources: University of Southern Denmark Research OutputBergen Open Research Archive - UiBArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversité Savoie Mont Blanc: HALArticle . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023ef004387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 New Zealand, Netherlands, Netherlands, Australia, Denmark, Norway, France, AustraliaPublisher:American Geophysical Union (AGU) Gesa A. Weyhenmeyer; Azubuike V. Chukwuka; Orlane Anneville; Justin Brookes; Carolinne R. Carvalho; James B. Cotner; Hans‐Peter Grossart; David P. Hamilton; Paul C. Hanson; Josef Hejzlar; Sabine Hilt; Matthew R. Hipsey; Bas W. Ibelings; Stéphan Jacquet; Külli Kangur; Theis Kragh; Bernhard Lehner; Fabio Lepori; Ben Lukubye; Rafael Marce; Yvonne McElarney; Ma. Cristina Paule‐Mercado; Rebecca North; Keilor Rojas‐Jimenez; James A. Rusak; Sapna Sharma; Facundo Scordo; Lisette N. de Senerpont Domis; Jonas Stage Sø; Susanna (Susie) A. Wood; Marguerite A. Xenopoulos; Yongqiang Zhou;AbstractThe world's 1.4 million lakes (≥10 ha) provide many ecosystem services that are essential for human well‐being; however, only if their health status is good. Here, we reviewed common lake health issues and classified them using a simple human health‐based approach to outline that lakes are living systems that are in need of oxygen, clean water and a balanced energy and nutrient supply. The main reason for adopting some of the human health terminology for the lake health classification is to increase the awareness and understanding of global lake health issues. We show that lakes are exposed to various anthropogenic stressors which can result in many lake health issues, ranging from thermal, circulatory, respiratory, nutritional and metabolic issues to infections and poisoning. Of particular concern for human well‐being is the widespread lake drying, which is a severe circulatory issue with many cascading effects on lake health. We estimated that ∼115,000 lakes evaporate twice as much water as they gain from direct precipitation, making them vulnerable to potential drying if inflowing waters follow the drying trend, putting more than 153 million people at risk who live in close vicinity to those lakes. Where lake health issues remain untreated, essential ecosystem services will decline or even vanish, posing a threat to the well‐being of millions of people. We recommend coordinated multisectoral and multidisciplinary prevention and treatment strategies, which need to include a follow‐up of the progress and an assessment of the resilience of lakes to intensifying threats. Priority should be given to implementing sewage water treatment, mitigating climate change, counteracting introductions of non‐native species to lakes and decreasing uncontrolled anthropogenic releases of chemicals into the hydro‐, bio‐, and atmosphere.
Lincoln University (... arrow_drop_down Lincoln University (New Zealand): Lincoln U Research ArchiveArticleLicense: CC BYFull-Text: https://doi.org/10.1029/2023ef004387Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2024License: CC BYFull-Text: https://hdl.handle.net/10072/430772Data sources: Bielefeld Academic Search Engine (BASE)Earth's FutureArticle . 2024License: CC BYData sources: University of Southern Denmark Research OutputBergen Open Research Archive - UiBArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversité Savoie Mont Blanc: HALArticle . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023ef004387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Lincoln University (... arrow_drop_down Lincoln University (New Zealand): Lincoln U Research ArchiveArticleLicense: CC BYFull-Text: https://doi.org/10.1029/2023ef004387Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2024License: CC BYFull-Text: https://hdl.handle.net/10072/430772Data sources: Bielefeld Academic Search Engine (BASE)Earth's FutureArticle . 2024License: CC BYData sources: University of Southern Denmark Research OutputBergen Open Research Archive - UiBArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversité Savoie Mont Blanc: HALArticle . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023ef004387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Review 2024 FranceWeyhenmeyer, Gesa; Chukwuka, Azubuike; Anneville, Orlane; Brookes, Justin; Carvalho, Carolinne; Cotner, James; Grossart, Hans‐peter; Hamilton, David; Hanson, Paul; Hejzlar, Josef; Hilt, Sabine; Hipsey, Matthew; Ibelings, Bas; Jacquet, Stéphan; Kangur, Külli; Kragh, Theis; Lehner, Bernhard; Lepori, Fabio; Lukubye, Ben; Marce, Rafael; Mcelarney, Yvonne; Paule-Mercado, Ma. Cristina; North, Rebecca; Rojas-Jimenez, Keilor; Rusak, James; Sharma, Sapna; Scordo, Facundo; de Senerpont Domis, Lisette; Sø, Jonas Stage; Xenopoulos, Marguerite; Zhou, Yongqiang;Abstract The world's 1.4 million lakes (≥10 ha) provide many ecosystem services that are essential for human well‐being; however, only if their health status is good. Here, we reviewed common lake health issues and classified them using a simple human health‐based approach to outline that lakes are living systems that are in need of oxygen, clean water and a balanced energy and nutrient supply. The main reason for adopting some of the human health terminology for the lake health classification is to increase the awareness and understanding of global lake health issues. We show that lakes are exposed to various anthropogenic stressors which can result in many lake health issues, ranging from thermal, circulatory, respiratory, nutritional and metabolic issues to infections and poisoning. Of particular concern for human well‐being is the widespread lake drying, which is a severe circulatory issue with many cascading effects on lake health. We estimated that ∼115,000 lakes evaporate twice as much water as they gain from direct precipitation, making them vulnerable to potential drying if inflowing waters follow the drying trend, putting more than 153 million people at risk who live in close vicinity to those lakes. Where lake health issues remain untreated, essential ecosystem services will decline or even vanish, posing a threat to the well‐being of millions of people. We recommend coordinated multisectoral and multidisciplinary prevention and treatment strategies, which need to include a follow‐up of the progress and an assessment of the resilience of lakes to intensifying threats. Priority should be given to implementing sewage water treatment, mitigating climate change, counteracting introductions of non‐native species to lakes and decreasing uncontrolled anthropogenic releases of chemicals into the hydro‐, bio‐, and atmosphere.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______9730::dd6783f8d3faaee81d76950956442122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______9730::dd6783f8d3faaee81d76950956442122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Review 2024 FranceWeyhenmeyer, Gesa; Chukwuka, Azubuike; Anneville, Orlane; Brookes, Justin; Carvalho, Carolinne; Cotner, James; Grossart, Hans‐peter; Hamilton, David; Hanson, Paul; Hejzlar, Josef; Hilt, Sabine; Hipsey, Matthew; Ibelings, Bas; Jacquet, Stéphan; Kangur, Külli; Kragh, Theis; Lehner, Bernhard; Lepori, Fabio; Lukubye, Ben; Marce, Rafael; Mcelarney, Yvonne; Paule-Mercado, Ma. Cristina; North, Rebecca; Rojas-Jimenez, Keilor; Rusak, James; Sharma, Sapna; Scordo, Facundo; de Senerpont Domis, Lisette; Sø, Jonas Stage; Xenopoulos, Marguerite; Zhou, Yongqiang;Abstract The world's 1.4 million lakes (≥10 ha) provide many ecosystem services that are essential for human well‐being; however, only if their health status is good. Here, we reviewed common lake health issues and classified them using a simple human health‐based approach to outline that lakes are living systems that are in need of oxygen, clean water and a balanced energy and nutrient supply. The main reason for adopting some of the human health terminology for the lake health classification is to increase the awareness and understanding of global lake health issues. We show that lakes are exposed to various anthropogenic stressors which can result in many lake health issues, ranging from thermal, circulatory, respiratory, nutritional and metabolic issues to infections and poisoning. Of particular concern for human well‐being is the widespread lake drying, which is a severe circulatory issue with many cascading effects on lake health. We estimated that ∼115,000 lakes evaporate twice as much water as they gain from direct precipitation, making them vulnerable to potential drying if inflowing waters follow the drying trend, putting more than 153 million people at risk who live in close vicinity to those lakes. Where lake health issues remain untreated, essential ecosystem services will decline or even vanish, posing a threat to the well‐being of millions of people. We recommend coordinated multisectoral and multidisciplinary prevention and treatment strategies, which need to include a follow‐up of the progress and an assessment of the resilience of lakes to intensifying threats. Priority should be given to implementing sewage water treatment, mitigating climate change, counteracting introductions of non‐native species to lakes and decreasing uncontrolled anthropogenic releases of chemicals into the hydro‐, bio‐, and atmosphere.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______9730::dd6783f8d3faaee81d76950956442122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______9730::dd6783f8d3faaee81d76950956442122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, United StatesPublisher:Oxford University Press (OUP) Funded by:NSF | The Management and Operat...NSF| The Management and Operation of the National Center for Atmoshperic Research (NCAR)Jacquelyn K Shuman; Jennifer K Balch; Rebecca T Barnes; Philip E Higuera; Christopher I Roos; Dylan W Schwilk; E Natasha Stavros; Tirtha Banerjee; Megan M Bela; Jacob Bendix; Sandro Bertolino; Solomon Bililign; Kevin D Bladon; Paulo Brando; Robert E Breidenthal; Brian Buma; Donna Calhoun; Leila M V Carvalho; Megan E Cattau; Kaelin M Cawley; Sudeep Chandra; Melissa L Chipman; Jeanette Cobian-Iñiguez; Erin Conlisk; Jonathan D Coop; Alison Cullen; Kimberley T Davis; Archana Dayalu; Fernando De Sales; Megan Dolman; Lisa M Ellsworth; Scott Franklin; Christopher H Guiterman; Matthew Hamilton; Erin J Hanan; Winslow D Hansen; Stijn Hantson; Brian J Harvey; Andrés Holz; Tao Huang; Matthew D Hurteau; Nayani T Ilangakoon; Megan Jennings; Charles Jones; Anna Klimaszewski-Patterson; Leda N Kobziar; John Kominoski; Branko Kosovic; Meg A Krawchuk; Paul Laris; Jackson Leonard; S Marcela Loria-Salazar; Melissa Lucash; Hussam Mahmoud; Ellis Margolis; Toby Maxwell; Jessica L McCarty; David B McWethy; Rachel S Meyer; Jessica R Miesel; W Keith Moser; R Chelsea Nagy; Dev Niyogi; Hannah M Palmer; Adam Pellegrini; Benjamin Poulter; Kevin Robertson; Adrian V Rocha; Mojtaba Sadegh; Fernanda Santos; Facundo Scordo; Joseph O Sexton; A Surjalal Sharma; Alistair M S Smith; Amber J Soja; Christopher Still; Tyson Swetnam; Alexandra D Syphard; Morgan W Tingley; Ali Tohidi; Anna T Trugman; Merritt Turetsky; J Morgan Varner; Yuhang Wang; Thea Whitman; Stephanie Yelenik; Xuan Zhang;Abstract Fire is an integral component of ecosystems globally and a tool that humans have harnessed for millennia. Altered fire regimes are a fundamental cause and consequence of global change, impacting people and the biophysical systems on which they depend. As part of the newly emerging Anthropocene, marked by human-caused climate change and radical changes to ecosystems, fire danger is increasing, and fires are having increasingly devastating impacts on human health, infrastructure, and ecosystem services. Increasing fire danger is a vexing problem that requires deep transdisciplinary, trans-sector, and inclusive partnerships to address. Here, we outline barriers and opportunities in the next generation of fire science and provide guidance for investment in future research. We synthesize insights needed to better address the long-standing challenges of innovation across disciplines to (i) promote coordinated research efforts; (ii) embrace different ways of knowing and knowledge generation; (iii) promote exploration of fundamental science; (iv) capitalize on the “firehose” of data for societal benefit; and (v) integrate human and natural systems into models across multiple scales. Fire science is thus at a critical transitional moment. We need to shift from observation and modeled representations of varying components of climate, people, vegetation, and fire to more integrative and predictive approaches that support pathways toward mitigating and adapting to our increasingly flammable world, including the utilization of fire for human safety and benefit. Only through overcoming institutional silos and accessing knowledge across diverse communities can we effectively undertake research that improves outcomes in our more fiery future.
Portland State Unive... arrow_drop_down Portland State University: PDXScholarArticle . 2022License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7mg7p5b3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgac115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 56 citations 56 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Portland State Unive... arrow_drop_down Portland State University: PDXScholarArticle . 2022License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7mg7p5b3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgac115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, United StatesPublisher:Oxford University Press (OUP) Funded by:NSF | The Management and Operat...NSF| The Management and Operation of the National Center for Atmoshperic Research (NCAR)Jacquelyn K Shuman; Jennifer K Balch; Rebecca T Barnes; Philip E Higuera; Christopher I Roos; Dylan W Schwilk; E Natasha Stavros; Tirtha Banerjee; Megan M Bela; Jacob Bendix; Sandro Bertolino; Solomon Bililign; Kevin D Bladon; Paulo Brando; Robert E Breidenthal; Brian Buma; Donna Calhoun; Leila M V Carvalho; Megan E Cattau; Kaelin M Cawley; Sudeep Chandra; Melissa L Chipman; Jeanette Cobian-Iñiguez; Erin Conlisk; Jonathan D Coop; Alison Cullen; Kimberley T Davis; Archana Dayalu; Fernando De Sales; Megan Dolman; Lisa M Ellsworth; Scott Franklin; Christopher H Guiterman; Matthew Hamilton; Erin J Hanan; Winslow D Hansen; Stijn Hantson; Brian J Harvey; Andrés Holz; Tao Huang; Matthew D Hurteau; Nayani T Ilangakoon; Megan Jennings; Charles Jones; Anna Klimaszewski-Patterson; Leda N Kobziar; John Kominoski; Branko Kosovic; Meg A Krawchuk; Paul Laris; Jackson Leonard; S Marcela Loria-Salazar; Melissa Lucash; Hussam Mahmoud; Ellis Margolis; Toby Maxwell; Jessica L McCarty; David B McWethy; Rachel S Meyer; Jessica R Miesel; W Keith Moser; R Chelsea Nagy; Dev Niyogi; Hannah M Palmer; Adam Pellegrini; Benjamin Poulter; Kevin Robertson; Adrian V Rocha; Mojtaba Sadegh; Fernanda Santos; Facundo Scordo; Joseph O Sexton; A Surjalal Sharma; Alistair M S Smith; Amber J Soja; Christopher Still; Tyson Swetnam; Alexandra D Syphard; Morgan W Tingley; Ali Tohidi; Anna T Trugman; Merritt Turetsky; J Morgan Varner; Yuhang Wang; Thea Whitman; Stephanie Yelenik; Xuan Zhang;Abstract Fire is an integral component of ecosystems globally and a tool that humans have harnessed for millennia. Altered fire regimes are a fundamental cause and consequence of global change, impacting people and the biophysical systems on which they depend. As part of the newly emerging Anthropocene, marked by human-caused climate change and radical changes to ecosystems, fire danger is increasing, and fires are having increasingly devastating impacts on human health, infrastructure, and ecosystem services. Increasing fire danger is a vexing problem that requires deep transdisciplinary, trans-sector, and inclusive partnerships to address. Here, we outline barriers and opportunities in the next generation of fire science and provide guidance for investment in future research. We synthesize insights needed to better address the long-standing challenges of innovation across disciplines to (i) promote coordinated research efforts; (ii) embrace different ways of knowing and knowledge generation; (iii) promote exploration of fundamental science; (iv) capitalize on the “firehose” of data for societal benefit; and (v) integrate human and natural systems into models across multiple scales. Fire science is thus at a critical transitional moment. We need to shift from observation and modeled representations of varying components of climate, people, vegetation, and fire to more integrative and predictive approaches that support pathways toward mitigating and adapting to our increasingly flammable world, including the utilization of fire for human safety and benefit. Only through overcoming institutional silos and accessing knowledge across diverse communities can we effectively undertake research that improves outcomes in our more fiery future.
Portland State Unive... arrow_drop_down Portland State University: PDXScholarArticle . 2022License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7mg7p5b3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgac115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 56 citations 56 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Portland State Unive... arrow_drop_down Portland State University: PDXScholarArticle . 2022License: PDMData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/7mg7p5b3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgac115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2015 United Kingdom, United Kingdom, United Kingdom, Spain, Argentina, United KingdomPublisher:Resilience Alliance, Inc. Funded by:EC | COMET-LAEC| COMET-LAWaylen, Kerry A.; Martin-Ortega, Julia; Blackstock, Kirsty L.; Brown, Iain; Avendaño Uribe, Bryan E.; Basurto Hernández, Saúl; Bertoni, María Belén; Bustos, M. Lujan; Cruz Bayer, Alejandra Xóchitl; Escalante Semerena, Roberto Ivan; Farah Quijano, Maria Adelaida; Ferrelli, Federico; Fidalgo, Guillermo Luis; Hernández López, Israel; Huamantinco Cisneros, María Andrea; London, Silvia; Maya Vélez, Diana L.; Ocampo-Díaz, Natalia; Ortiz-Guerrero, Cesar E.; Pascale, Juan Carlos; Perillo, Gerardo M.E.; Piccolo, M. Cintia; Pinzón Martínez, Lina N.; Rojas, Mara L.; Scordo, Facundo; Vitale, Valeria; Zilio, Mariana I.;handle: 10396/15290 , 11336/112697
Community-based natural resource management (CBNRM) is a concept critical to managing social-ecological systems but whose implementation needs strengthening. Scenario planning is one approach that may offer benefits relevant to CBNRM but whose potential is not yet well understood. Therefore, we designed, trialed, and evaluated a scenario-planning method intended to support CBNRM in three cases, located in Colombia, Mexico, and Argentina. Implementing scenario planning was judged as worthwhile in all three cases, although aspects of it were challenging to facilitate. The benefits generated were relevant to strengthening CBNRM: encouraging the participation of local people and using their knowledge, enhanced consideration of and adaptation to future change, and supporting the development of systems thinking. Tracing exactly when and how these benefits arose was challenging, but two elements of the method seemed particularly useful. First, using a systematic approach to discuss how drivers of change may affect local social-ecological systems helped to foster systems thinking and identify connections between issues. Second, explicitly focusing on how to use and respond to scenarios helped identify specific practical activities, or “response options,” that would support CBNRM despite the pressures of future change. Discussions about response options also highlighted the need for support by other actors, e.g., policy groups: this raised the question of when and how other actors and other sources of knowledge should be involved in scenario planning, so as to encourage their buy-in to actions identified by the process. We suggest that other CBNRM initiatives may benefit from adapting and applying scenario planning. However, these initiatives should be carefully monitored because further research is required to understand how and when scenario-planning methods may produce benefits, as well as their strengths and weaknesses versus other methods.
CORE arrow_drop_down Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2015License: CC BYFull-Text: http://dx.doi.org/10.5751/ES-07926-200428Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-07926-200428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2015License: CC BYFull-Text: http://dx.doi.org/10.5751/ES-07926-200428Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-07926-200428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2015 United Kingdom, United Kingdom, United Kingdom, Spain, Argentina, United KingdomPublisher:Resilience Alliance, Inc. Funded by:EC | COMET-LAEC| COMET-LAWaylen, Kerry A.; Martin-Ortega, Julia; Blackstock, Kirsty L.; Brown, Iain; Avendaño Uribe, Bryan E.; Basurto Hernández, Saúl; Bertoni, María Belén; Bustos, M. Lujan; Cruz Bayer, Alejandra Xóchitl; Escalante Semerena, Roberto Ivan; Farah Quijano, Maria Adelaida; Ferrelli, Federico; Fidalgo, Guillermo Luis; Hernández López, Israel; Huamantinco Cisneros, María Andrea; London, Silvia; Maya Vélez, Diana L.; Ocampo-Díaz, Natalia; Ortiz-Guerrero, Cesar E.; Pascale, Juan Carlos; Perillo, Gerardo M.E.; Piccolo, M. Cintia; Pinzón Martínez, Lina N.; Rojas, Mara L.; Scordo, Facundo; Vitale, Valeria; Zilio, Mariana I.;handle: 10396/15290 , 11336/112697
Community-based natural resource management (CBNRM) is a concept critical to managing social-ecological systems but whose implementation needs strengthening. Scenario planning is one approach that may offer benefits relevant to CBNRM but whose potential is not yet well understood. Therefore, we designed, trialed, and evaluated a scenario-planning method intended to support CBNRM in three cases, located in Colombia, Mexico, and Argentina. Implementing scenario planning was judged as worthwhile in all three cases, although aspects of it were challenging to facilitate. The benefits generated were relevant to strengthening CBNRM: encouraging the participation of local people and using their knowledge, enhanced consideration of and adaptation to future change, and supporting the development of systems thinking. Tracing exactly when and how these benefits arose was challenging, but two elements of the method seemed particularly useful. First, using a systematic approach to discuss how drivers of change may affect local social-ecological systems helped to foster systems thinking and identify connections between issues. Second, explicitly focusing on how to use and respond to scenarios helped identify specific practical activities, or “response options,” that would support CBNRM despite the pressures of future change. Discussions about response options also highlighted the need for support by other actors, e.g., policy groups: this raised the question of when and how other actors and other sources of knowledge should be involved in scenario planning, so as to encourage their buy-in to actions identified by the process. We suggest that other CBNRM initiatives may benefit from adapting and applying scenario planning. However, these initiatives should be carefully monitored because further research is required to understand how and when scenario-planning methods may produce benefits, as well as their strengths and weaknesses versus other methods.
CORE arrow_drop_down Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2015License: CC BYFull-Text: http://dx.doi.org/10.5751/ES-07926-200428Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-07926-200428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Helvia - Repositorio Institucional de la Universidad de CórdobaArticle . 2015License: CC BYFull-Text: http://dx.doi.org/10.5751/ES-07926-200428Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-07926-200428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Wiley Funded by:NSF | Graduate Research Fellows..., NSERC, NSF | RCN:MSB:FRA: Grassroots g...NSF| Graduate Research Fellowship Program (GRFP) ,NSERC ,NSF| RCN:MSB:FRA: Grassroots global network science: a macrosystems modelAuthors: Mary Jade Farruggia; Janice Brahney; Andrew J. Tanentzap; Jennifer A. Brentrup; +18 AuthorsMary Jade Farruggia; Janice Brahney; Andrew J. Tanentzap; Jennifer A. Brentrup; Ludmila S. Brighenti; Sudeep Chandra; Alicia Cortés; Rocio L. Fernandez; Janet M. Fischer; Alexander L. Forrest; Yufang Jin; Kenneth Larrieu; Ian M. McCullough; Isabella A. Oleksy; Rachel M. Pilla; James A. Rusak; Facundo Scordo; Adrianne P. Smits; Celia C. Symons; Minmeng Tang; Samuel G. Woodman; Steven Sadro;doi: 10.1111/gcb.17367 , 10.31223/x53h41
pmid: 38840430
AbstractWildfire activity is increasing globally. The resulting smoke plumes can travel hundreds to thousands of kilometers, reflecting or scattering sunlight and depositing particles within ecosystems. Several key physical, chemical, and biological processes in lakes are controlled by factors affected by smoke. The spatial and temporal scales of lake exposure to smoke are extensive and under‐recognized. We introduce the concept of the lake smoke‐day, or the number of days any given lake is exposed to smoke in any given fire season, and quantify the total lake smoke‐day exposure in North America from 2019 to 2021. Because smoke can be transported at continental to intercontinental scales, even regions that may not typically experience direct burning of landscapes by wildfire are at risk of smoke exposure. We found that 99.3% of North America was covered by smoke, affecting a total of 1,333,687 lakes ≥10 ha. An incredible 98.9% of lakes experienced at least 10 smoke‐days a year, with 89.6% of lakes receiving over 30 lake smoke‐days, and lakes in some regions experiencing up to 4 months of cumulative smoke‐days. Herein we review the mechanisms through which smoke and ash can affect lakes by altering the amount and spectral composition of incoming solar radiation and depositing carbon, nutrients, or toxic compounds that could alter chemical conditions and impact biota. We develop a conceptual framework that synthesizes known and theoretical impacts of smoke on lakes to guide future research. Finally, we identify emerging research priorities that can help us better understand how lakes will be affected by smoke as wildfire activity increases due to climate change and other anthropogenic activities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Wiley Funded by:NSF | Graduate Research Fellows..., NSERC, NSF | RCN:MSB:FRA: Grassroots g...NSF| Graduate Research Fellowship Program (GRFP) ,NSERC ,NSF| RCN:MSB:FRA: Grassroots global network science: a macrosystems modelAuthors: Mary Jade Farruggia; Janice Brahney; Andrew J. Tanentzap; Jennifer A. Brentrup; +18 AuthorsMary Jade Farruggia; Janice Brahney; Andrew J. Tanentzap; Jennifer A. Brentrup; Ludmila S. Brighenti; Sudeep Chandra; Alicia Cortés; Rocio L. Fernandez; Janet M. Fischer; Alexander L. Forrest; Yufang Jin; Kenneth Larrieu; Ian M. McCullough; Isabella A. Oleksy; Rachel M. Pilla; James A. Rusak; Facundo Scordo; Adrianne P. Smits; Celia C. Symons; Minmeng Tang; Samuel G. Woodman; Steven Sadro;doi: 10.1111/gcb.17367 , 10.31223/x53h41
pmid: 38840430
AbstractWildfire activity is increasing globally. The resulting smoke plumes can travel hundreds to thousands of kilometers, reflecting or scattering sunlight and depositing particles within ecosystems. Several key physical, chemical, and biological processes in lakes are controlled by factors affected by smoke. The spatial and temporal scales of lake exposure to smoke are extensive and under‐recognized. We introduce the concept of the lake smoke‐day, or the number of days any given lake is exposed to smoke in any given fire season, and quantify the total lake smoke‐day exposure in North America from 2019 to 2021. Because smoke can be transported at continental to intercontinental scales, even regions that may not typically experience direct burning of landscapes by wildfire are at risk of smoke exposure. We found that 99.3% of North America was covered by smoke, affecting a total of 1,333,687 lakes ≥10 ha. An incredible 98.9% of lakes experienced at least 10 smoke‐days a year, with 89.6% of lakes receiving over 30 lake smoke‐days, and lakes in some regions experiencing up to 4 months of cumulative smoke‐days. Herein we review the mechanisms through which smoke and ash can affect lakes by altering the amount and spectral composition of incoming solar radiation and depositing carbon, nutrients, or toxic compounds that could alter chemical conditions and impact biota. We develop a conceptual framework that synthesizes known and theoretical impacts of smoke on lakes to guide future research. Finally, we identify emerging research priorities that can help us better understand how lakes will be affected by smoke as wildfire activity increases due to climate change and other anthropogenic activities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Facundo Scordo; Carina Seitz; Leonardo Buria; M. Cintia Piccolo; Gerardo M.E. Perillo;pmid: 39908900
We study the causes of the reduction in the surface area of five terminal lakes since 2007, within Laguna Blanca National Park, a Ramsar site in Patagonia (Southern South America). The terminal lakes in this park are critical habitats for several species of animals, some of which are endemic and endangered. We analyzed the lakes' area time series (1998-2024), a climatic index determining dry and wet periods, and human land use changes in the basin of the lakes. The area of the five terminal lakes decreased between 20 and 52 % since 2007, with a higher reduction in the smaller lakes. From 2007 to 2024, the months with dry conditions increased by 29 %, and the months with wet conditions decreased by 13 %, compared to 1998-2006. Moreover, since October 2020, fifty-three (53) irrigation channels have been constructed on the basin of Laguna Blanca Lake. Before the construction of the channels, Laguna Blanca Lake had already decreased by 19 % compared to 2007. The other four terminal lakes are outside the sub-basin affected by the channels. Therefore, the reduction in the surface area of all the terminal lakes was primarily due to an increase in dry conditions. However, the irrigation channels may accelerate the desiccation of Laguna Blanca Lake. As in our study, several terminal lakes are globally drying quickly due to climate change and human impact. This study shows international and local discussions are needed to prevent the disappearance of terminal lakes, as they are impacted even when located on protected land.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2025.178714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2025.178714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Facundo Scordo; Carina Seitz; Leonardo Buria; M. Cintia Piccolo; Gerardo M.E. Perillo;pmid: 39908900
We study the causes of the reduction in the surface area of five terminal lakes since 2007, within Laguna Blanca National Park, a Ramsar site in Patagonia (Southern South America). The terminal lakes in this park are critical habitats for several species of animals, some of which are endemic and endangered. We analyzed the lakes' area time series (1998-2024), a climatic index determining dry and wet periods, and human land use changes in the basin of the lakes. The area of the five terminal lakes decreased between 20 and 52 % since 2007, with a higher reduction in the smaller lakes. From 2007 to 2024, the months with dry conditions increased by 29 %, and the months with wet conditions decreased by 13 %, compared to 1998-2006. Moreover, since October 2020, fifty-three (53) irrigation channels have been constructed on the basin of Laguna Blanca Lake. Before the construction of the channels, Laguna Blanca Lake had already decreased by 19 % compared to 2007. The other four terminal lakes are outside the sub-basin affected by the channels. Therefore, the reduction in the surface area of all the terminal lakes was primarily due to an increase in dry conditions. However, the irrigation channels may accelerate the desiccation of Laguna Blanca Lake. As in our study, several terminal lakes are globally drying quickly due to climate change and human impact. This study shows international and local discussions are needed to prevent the disappearance of terminal lakes, as they are impacted even when located on protected land.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2025.178714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2025.178714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 New Zealand, Netherlands, Netherlands, Australia, Denmark, Norway, France, AustraliaPublisher:American Geophysical Union (AGU) Gesa A. Weyhenmeyer; Azubuike V. Chukwuka; Orlane Anneville; Justin Brookes; Carolinne R. Carvalho; James B. Cotner; Hans‐Peter Grossart; David P. Hamilton; Paul C. Hanson; Josef Hejzlar; Sabine Hilt; Matthew R. Hipsey; Bas W. Ibelings; Stéphan Jacquet; Külli Kangur; Theis Kragh; Bernhard Lehner; Fabio Lepori; Ben Lukubye; Rafael Marce; Yvonne McElarney; Ma. Cristina Paule‐Mercado; Rebecca North; Keilor Rojas‐Jimenez; James A. Rusak; Sapna Sharma; Facundo Scordo; Lisette N. de Senerpont Domis; Jonas Stage Sø; Susanna (Susie) A. Wood; Marguerite A. Xenopoulos; Yongqiang Zhou;AbstractThe world's 1.4 million lakes (≥10 ha) provide many ecosystem services that are essential for human well‐being; however, only if their health status is good. Here, we reviewed common lake health issues and classified them using a simple human health‐based approach to outline that lakes are living systems that are in need of oxygen, clean water and a balanced energy and nutrient supply. The main reason for adopting some of the human health terminology for the lake health classification is to increase the awareness and understanding of global lake health issues. We show that lakes are exposed to various anthropogenic stressors which can result in many lake health issues, ranging from thermal, circulatory, respiratory, nutritional and metabolic issues to infections and poisoning. Of particular concern for human well‐being is the widespread lake drying, which is a severe circulatory issue with many cascading effects on lake health. We estimated that ∼115,000 lakes evaporate twice as much water as they gain from direct precipitation, making them vulnerable to potential drying if inflowing waters follow the drying trend, putting more than 153 million people at risk who live in close vicinity to those lakes. Where lake health issues remain untreated, essential ecosystem services will decline or even vanish, posing a threat to the well‐being of millions of people. We recommend coordinated multisectoral and multidisciplinary prevention and treatment strategies, which need to include a follow‐up of the progress and an assessment of the resilience of lakes to intensifying threats. Priority should be given to implementing sewage water treatment, mitigating climate change, counteracting introductions of non‐native species to lakes and decreasing uncontrolled anthropogenic releases of chemicals into the hydro‐, bio‐, and atmosphere.
Lincoln University (... arrow_drop_down Lincoln University (New Zealand): Lincoln U Research ArchiveArticleLicense: CC BYFull-Text: https://doi.org/10.1029/2023ef004387Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2024License: CC BYFull-Text: https://hdl.handle.net/10072/430772Data sources: Bielefeld Academic Search Engine (BASE)Earth's FutureArticle . 2024License: CC BYData sources: University of Southern Denmark Research OutputBergen Open Research Archive - UiBArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversité Savoie Mont Blanc: HALArticle . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023ef004387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Lincoln University (... arrow_drop_down Lincoln University (New Zealand): Lincoln U Research ArchiveArticleLicense: CC BYFull-Text: https://doi.org/10.1029/2023ef004387Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2024License: CC BYFull-Text: https://hdl.handle.net/10072/430772Data sources: Bielefeld Academic Search Engine (BASE)Earth's FutureArticle . 2024License: CC BYData sources: University of Southern Denmark Research OutputBergen Open Research Archive - UiBArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversité Savoie Mont Blanc: HALArticle . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023ef004387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 New Zealand, Netherlands, Netherlands, Australia, Denmark, Norway, France, AustraliaPublisher:American Geophysical Union (AGU) Gesa A. Weyhenmeyer; Azubuike V. Chukwuka; Orlane Anneville; Justin Brookes; Carolinne R. Carvalho; James B. Cotner; Hans‐Peter Grossart; David P. Hamilton; Paul C. Hanson; Josef Hejzlar; Sabine Hilt; Matthew R. Hipsey; Bas W. Ibelings; Stéphan Jacquet; Külli Kangur; Theis Kragh; Bernhard Lehner; Fabio Lepori; Ben Lukubye; Rafael Marce; Yvonne McElarney; Ma. Cristina Paule‐Mercado; Rebecca North; Keilor Rojas‐Jimenez; James A. Rusak; Sapna Sharma; Facundo Scordo; Lisette N. de Senerpont Domis; Jonas Stage Sø; Susanna (Susie) A. Wood; Marguerite A. Xenopoulos; Yongqiang Zhou;AbstractThe world's 1.4 million lakes (≥10 ha) provide many ecosystem services that are essential for human well‐being; however, only if their health status is good. Here, we reviewed common lake health issues and classified them using a simple human health‐based approach to outline that lakes are living systems that are in need of oxygen, clean water and a balanced energy and nutrient supply. The main reason for adopting some of the human health terminology for the lake health classification is to increase the awareness and understanding of global lake health issues. We show that lakes are exposed to various anthropogenic stressors which can result in many lake health issues, ranging from thermal, circulatory, respiratory, nutritional and metabolic issues to infections and poisoning. Of particular concern for human well‐being is the widespread lake drying, which is a severe circulatory issue with many cascading effects on lake health. We estimated that ∼115,000 lakes evaporate twice as much water as they gain from direct precipitation, making them vulnerable to potential drying if inflowing waters follow the drying trend, putting more than 153 million people at risk who live in close vicinity to those lakes. Where lake health issues remain untreated, essential ecosystem services will decline or even vanish, posing a threat to the well‐being of millions of people. We recommend coordinated multisectoral and multidisciplinary prevention and treatment strategies, which need to include a follow‐up of the progress and an assessment of the resilience of lakes to intensifying threats. Priority should be given to implementing sewage water treatment, mitigating climate change, counteracting introductions of non‐native species to lakes and decreasing uncontrolled anthropogenic releases of chemicals into the hydro‐, bio‐, and atmosphere.
Lincoln University (... arrow_drop_down Lincoln University (New Zealand): Lincoln U Research ArchiveArticleLicense: CC BYFull-Text: https://doi.org/10.1029/2023ef004387Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2024License: CC BYFull-Text: https://hdl.handle.net/10072/430772Data sources: Bielefeld Academic Search Engine (BASE)Earth's FutureArticle . 2024License: CC BYData sources: University of Southern Denmark Research OutputBergen Open Research Archive - UiBArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversité Savoie Mont Blanc: HALArticle . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023ef004387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Lincoln University (... arrow_drop_down Lincoln University (New Zealand): Lincoln U Research ArchiveArticleLicense: CC BYFull-Text: https://doi.org/10.1029/2023ef004387Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2024License: CC BYFull-Text: https://hdl.handle.net/10072/430772Data sources: Bielefeld Academic Search Engine (BASE)Earth's FutureArticle . 2024License: CC BYData sources: University of Southern Denmark Research OutputBergen Open Research Archive - UiBArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversité Savoie Mont Blanc: HALArticle . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023ef004387&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Review 2024 FranceWeyhenmeyer, Gesa; Chukwuka, Azubuike; Anneville, Orlane; Brookes, Justin; Carvalho, Carolinne; Cotner, James; Grossart, Hans‐peter; Hamilton, David; Hanson, Paul; Hejzlar, Josef; Hilt, Sabine; Hipsey, Matthew; Ibelings, Bas; Jacquet, Stéphan; Kangur, Külli; Kragh, Theis; Lehner, Bernhard; Lepori, Fabio; Lukubye, Ben; Marce, Rafael; Mcelarney, Yvonne; Paule-Mercado, Ma. Cristina; North, Rebecca; Rojas-Jimenez, Keilor; Rusak, James; Sharma, Sapna; Scordo, Facundo; de Senerpont Domis, Lisette; Sø, Jonas Stage; Xenopoulos, Marguerite; Zhou, Yongqiang;Abstract The world's 1.4 million lakes (≥10 ha) provide many ecosystem services that are essential for human well‐being; however, only if their health status is good. Here, we reviewed common lake health issues and classified them using a simple human health‐based approach to outline that lakes are living systems that are in need of oxygen, clean water and a balanced energy and nutrient supply. The main reason for adopting some of the human health terminology for the lake health classification is to increase the awareness and understanding of global lake health issues. We show that lakes are exposed to various anthropogenic stressors which can result in many lake health issues, ranging from thermal, circulatory, respiratory, nutritional and metabolic issues to infections and poisoning. Of particular concern for human well‐being is the widespread lake drying, which is a severe circulatory issue with many cascading effects on lake health. We estimated that ∼115,000 lakes evaporate twice as much water as they gain from direct precipitation, making them vulnerable to potential drying if inflowing waters follow the drying trend, putting more than 153 million people at risk who live in close vicinity to those lakes. Where lake health issues remain untreated, essential ecosystem services will decline or even vanish, posing a threat to the well‐being of millions of people. We recommend coordinated multisectoral and multidisciplinary prevention and treatment strategies, which need to include a follow‐up of the progress and an assessment of the resilience of lakes to intensifying threats. Priority should be given to implementing sewage water treatment, mitigating climate change, counteracting introductions of non‐native species to lakes and decreasing uncontrolled anthropogenic releases of chemicals into the hydro‐, bio‐, and atmosphere.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______9730::dd6783f8d3faaee81d76950956442122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______9730::dd6783f8d3faaee81d76950956442122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Review 2024 FranceWeyhenmeyer, Gesa; Chukwuka, Azubuike; Anneville, Orlane; Brookes, Justin; Carvalho, Carolinne; Cotner, James; Grossart, Hans‐peter; Hamilton, David; Hanson, Paul; Hejzlar, Josef; Hilt, Sabine; Hipsey, Matthew; Ibelings, Bas; Jacquet, Stéphan; Kangur, Külli; Kragh, Theis; Lehner, Bernhard; Lepori, Fabio; Lukubye, Ben; Marce, Rafael; Mcelarney, Yvonne; Paule-Mercado, Ma. Cristina; North, Rebecca; Rojas-Jimenez, Keilor; Rusak, James; Sharma, Sapna; Scordo, Facundo; de Senerpont Domis, Lisette; Sø, Jonas Stage; Xenopoulos, Marguerite; Zhou, Yongqiang;Abstract The world's 1.4 million lakes (≥10 ha) provide many ecosystem services that are essential for human well‐being; however, only if their health status is good. Here, we reviewed common lake health issues and classified them using a simple human health‐based approach to outline that lakes are living systems that are in need of oxygen, clean water and a balanced energy and nutrient supply. The main reason for adopting some of the human health terminology for the lake health classification is to increase the awareness and understanding of global lake health issues. We show that lakes are exposed to various anthropogenic stressors which can result in many lake health issues, ranging from thermal, circulatory, respiratory, nutritional and metabolic issues to infections and poisoning. Of particular concern for human well‐being is the widespread lake drying, which is a severe circulatory issue with many cascading effects on lake health. We estimated that ∼115,000 lakes evaporate twice as much water as they gain from direct precipitation, making them vulnerable to potential drying if inflowing waters follow the drying trend, putting more than 153 million people at risk who live in close vicinity to those lakes. Where lake health issues remain untreated, essential ecosystem services will decline or even vanish, posing a threat to the well‐being of millions of people. We recommend coordinated multisectoral and multidisciplinary prevention and treatment strategies, which need to include a follow‐up of the progress and an assessment of the resilience of lakes to intensifying threats. Priority should be given to implementing sewage water treatment, mitigating climate change, counteracting introductions of non‐native species to lakes and decreasing uncontrolled anthropogenic releases of chemicals into the hydro‐, bio‐, and atmosphere.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______9730::dd6783f8d3faaee81d76950956442122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______9730::dd6783f8d3faaee81d76950956442122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu