- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Funder
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Netherlands, United Kingdom, United Kingdom, United KingdomPublisher:Wiley Funded by:UKRI | Linkages between plant fu...UKRI| Linkages between plant functional diversity soil biological communities and ecosystem services in agricultural grasslandJonathan R. De Long; Marina Semchenko; William J. Pritchard; Irene Cordero; Ellen L. Fry; Benjamin G. Jackson; Ksenia Kurnosova; Nicholas J. Ostle; David Johnson; Elizabeth M. Baggs; Richard D. Bardgett;pmid: 31588158
pmc: PMC6767434
Abstract Maternal effects (i.e. trans‐generational plasticity) and soil legacies generated by drought and plant diversity can affect plant performance and alter nutrient cycling and plant community dynamics. However, the relative importance and combined effects of these factors on plant growth dynamics remain poorly understood. We used soil and seeds from an existing plant diversity and drought manipulation field experiment in temperate grassland to test maternal, soil drought and diversity legacy effects, and their interactions, on offspring plant performance of two grassland species (Alopecurus pratensis and Holcus lanatus) under contrasting glasshouse conditions. Our results showed that drought soil legacy effects eclipsed maternal effects on plant biomass. Drought soil legacy effects were attributed to changes in both abiotic (i.e. nutrient availability) and biotic soil properties (i.e. microbial carbon and enzyme activity), as well as plant root and shoot atom 15N excess. Further, plant tissue nutrient concentrations and soil microbial C:N responses to drought legacies varied between the two plant species and soils from high and low plant diversity treatments. However, these diversity effects did not affect plant root or shoot biomass. These findings demonstrate that while maternal effects resulting from drought occur in grasslands, their impacts on plant performance are likely minor relative to drought legacy effects on soil abiotic and biotic properties. This suggests that soil drought legacy effects could become increasingly important drivers of plant community dynamics and ecosystem functioning as extreme weather events become more frequent and intense with climate change. A plain language summary is available for this article.
Functional Ecology arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2019Data sources: The University of Manchester - Institutional RepositoryLancaster University: Lancaster EprintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.13341&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Functional Ecology arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2019Data sources: The University of Manchester - Institutional RepositoryLancaster University: Lancaster EprintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.13341&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Netherlands, United Kingdom, United Kingdom, United KingdomPublisher:Wiley Funded by:UKRI | Linkages between plant fu...UKRI| Linkages between plant functional diversity soil biological communities and ecosystem services in agricultural grasslandJonathan R. De Long; Marina Semchenko; William J. Pritchard; Irene Cordero; Ellen L. Fry; Benjamin G. Jackson; Ksenia Kurnosova; Nicholas J. Ostle; David Johnson; Elizabeth M. Baggs; Richard D. Bardgett;pmid: 31588158
pmc: PMC6767434
Abstract Maternal effects (i.e. trans‐generational plasticity) and soil legacies generated by drought and plant diversity can affect plant performance and alter nutrient cycling and plant community dynamics. However, the relative importance and combined effects of these factors on plant growth dynamics remain poorly understood. We used soil and seeds from an existing plant diversity and drought manipulation field experiment in temperate grassland to test maternal, soil drought and diversity legacy effects, and their interactions, on offspring plant performance of two grassland species (Alopecurus pratensis and Holcus lanatus) under contrasting glasshouse conditions. Our results showed that drought soil legacy effects eclipsed maternal effects on plant biomass. Drought soil legacy effects were attributed to changes in both abiotic (i.e. nutrient availability) and biotic soil properties (i.e. microbial carbon and enzyme activity), as well as plant root and shoot atom 15N excess. Further, plant tissue nutrient concentrations and soil microbial C:N responses to drought legacies varied between the two plant species and soils from high and low plant diversity treatments. However, these diversity effects did not affect plant root or shoot biomass. These findings demonstrate that while maternal effects resulting from drought occur in grasslands, their impacts on plant performance are likely minor relative to drought legacy effects on soil abiotic and biotic properties. This suggests that soil drought legacy effects could become increasingly important drivers of plant community dynamics and ecosystem functioning as extreme weather events become more frequent and intense with climate change. A plain language summary is available for this article.
Functional Ecology arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2019Data sources: The University of Manchester - Institutional RepositoryLancaster University: Lancaster EprintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.13341&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 33 citations 33 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Functional Ecology arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2019Data sources: The University of Manchester - Institutional RepositoryLancaster University: Lancaster EprintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2435.13341&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu